The cubic formula

John Kerl

January, 2006

In college algebra we make frequent use of the quadratic formula. Namely, if

$$
f(x)=a x^{2}+b x+c,
$$

then the zeroes of $f(x)$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

This formula can be derived by completing the square. Note that if $b^{2}-4 a c$ (what we call the discriminant) is negative, then the quadratic polynomial $f(x)$ has two complex roots. Otherwise, you get two real roots, and in this case you don't need to know anything about complex numbers.

It is shown in upper-division math that any degree- n polynomial with rational (or real, or complex) coefficients has n complex roots. (This fact is called the fundamental theorem of algebra.) So, if we have a quadratic formula for finding both (possibly complex) roots of a quadratic (degree-2) polynomial, then it's natural to ask for a formula for all three roots of a cubic. Likewise, we would like a formula for all four roots of a quartic, and so on. It can be proved (the terms are Galois theory and solvable groups), that there cannot exist a general formula for degree 5 and above.

Here is a presentation of the cubic formula, adapted from Grove's Algebra. Note the following:

- It turns out that deriving this formula takes a bit more work. Details are on pages 278-279 of the reference provided below.
- The formula uses complex numbers. Even if the cubic polynomial has three real roots, some intermediate numbers in the formula are complex.
- To use the quadratic formula, you just plug in your coefficients. The cubic formula, by contrast, comes in separate steps.
- These days, it's probably easier to just do graphical root-finding using your calculator. However, it's interesting to see what people did in the old days. (The cubic formula was discovered in Renaissance Italy - for example, search Wikipedia for Nicolo Tartaglia or Scipio del Ferro).

This formula works for any cubic. At each step of the general procedure, I'll also do that step for a particular example cubic polynomial.

Step 1. Divide the cubic polynomial by its leading coefficient. For example, if you have

$$
2 x^{3}+18 x^{2}+36 x-56
$$

then divide by the leading 2 to obtain

$$
x^{3}+9 x^{2}+18 x-28
$$

Now you have something of the form

$$
f(x)=x^{3}+a x^{2}+b x+c .
$$

Step 2. It turns out that it is desirable to get rid of one of the coefficients. To accomplish this, substitute

$$
x=y-a / 3
$$

into $f(x)$ and call the result $g(y)$. For example, using $f(x)$ as above, $a=9$ so $a / 3=3$.

$$
\begin{aligned}
f(x) & =x^{3}+9 x^{2}+18 x-28 \\
g(y)=f(y-3) & =(y-3)^{3}+9(y-3)^{2}+18(y-3)-28 \\
& =y^{3}-9 y^{2}+27 y-27+9\left(y^{2}-6 y+9\right)+18 y-54-28 \\
& =y^{3}-9 y^{2}+27 y-27+9 y^{2}-54 y+81+18 y-54-28 \\
& =y^{3}-9 y^{2}+9 y^{2}+27 y-54 y+18 y-27+81-54-28 \\
& =y^{3}-9 y-28 .
\end{aligned}
$$

Step 3. Now that we've eliminated the quadratic term, we have something of the form

$$
g(y)=x^{3}+p y+q .
$$

The next step is computing the discriminant of $g(y)$. All polynomials have discriminants, but it's particularly easy to compute now that we have only two coefficients, p and q. This is

$$
D=-4 p^{3}-27 q^{2} .
$$

In our example, since we have $g(y)=x^{3}-9 y-28$, we have $p=-9$ and $q=-28$. So

$$
\begin{aligned}
D & =-4 p^{3}-27 q^{2} \\
& =-4(-9)^{3}-27(-28)^{2} \\
& =-18252 .
\end{aligned}
$$

Step 4. Below we'll need the numbers

$$
-q / 2 \quad \text { and } \quad \sqrt{\frac{-D}{108}}
$$

so let's go ahead and compute them now. In our example, these are

$$
-q / 2=14 \quad \text { and } \quad \sqrt{\frac{-D}{108}}=\sqrt{\frac{18252}{108}}=\sqrt{169}=13
$$

Step 5. Here is the formula for the three roots of the cubic $g(y)$:

$$
\begin{aligned}
& y_{1}=u_{1}+v_{1} \\
& y_{2}=\omega u_{1}+\omega^{2} v_{1} \\
& y_{3}=\omega^{2} u_{1}+\omega v_{1} .
\end{aligned}
$$

We need to know what u_{1}, v_{1}, ω, and ω^{2} are. First, ω and ω^{2} are constants:

$$
\begin{aligned}
\omega & =\frac{-1+i \sqrt{3}}{2} \\
\omega^{2} & =\frac{-1-i \sqrt{3}}{2}
\end{aligned}
$$

(Side note: ω, ω^{2}, and 1 are the three complex numbers whose cube is 1 . Try FOILing out the product $\omega \cdot \omega^{2}$.) Also,

$$
\begin{aligned}
& u_{1}=\sqrt[3]{-q / 2+\sqrt{-D / 108}} \\
& v_{1}=\sqrt[3]{-q / 2-\sqrt{-D / 108}}
\end{aligned}
$$

In our example, we have

$$
\begin{aligned}
& u_{1}=\sqrt[3]{14+13}=\sqrt[3]{27}=3 ; \\
& v_{1}=\sqrt[3]{14-13}=\sqrt[3]{1}=1
\end{aligned}
$$

So the first root is

$$
y_{1}=3+1=4 .
$$

The second root is

$$
\begin{aligned}
y_{2} & =3\left(\frac{-1+i \sqrt{3}}{2}\right)+\left(\frac{-1-i \sqrt{3}}{2}\right) \\
& =\left(\frac{-3+3 i \sqrt{3}}{2}\right)+\left(\frac{-1-i \sqrt{3}}{2}\right) \\
& =\frac{1}{2}(-3+3 i \sqrt{3}-1-i \sqrt{3}) \\
& =\frac{1}{2}(-3-1+3 i \sqrt{3}-i \sqrt{3}) \\
& =\frac{1}{2}(-4+2 i \sqrt{3}) \\
& =-2+i \sqrt{3} .
\end{aligned}
$$

The third root is

$$
\begin{aligned}
y_{3} & =3\left(\frac{-1-i \sqrt{3}}{2}\right)+\left(\frac{-1+i \sqrt{3}}{2}\right) \\
& =\left(\frac{-3-3 i \sqrt{3}}{2}\right)+\left(\frac{-1+i \sqrt{3}}{2}\right) \\
& =\frac{1}{2}(-3-3 i \sqrt{3}-1+i \sqrt{3}) \\
& =\frac{1}{2}(-3-1-3 i \sqrt{3}+i \sqrt{3}) \\
& =\frac{1}{2}(-4-2 i \sqrt{3}) \\
& =-2-i \sqrt{3} .
\end{aligned}
$$

Step 6. We just found the roots of $g(y)$. To finish up, we need to undo the change of variable

$$
x=y-a / 3 .
$$

In our example, we found

$$
y=4, \quad-2+i \sqrt{3}, \quad \text { and } \quad-2-i \sqrt{3} .
$$

Since $a / 3$ was 3 , we have, for the original polynomial

$$
2 x^{3}+18 x^{2}+36 x-56
$$

the three roots

$$
x=1, \quad-5+i \sqrt{3}, \quad \text { and } \quad-5-i \sqrt{3} .
$$

Reference

L.C. Grove, Algebra, Dover, 2004.

