
1

ASU MAT 591: Opportunities in Industry

High Performance ArithmeticHigh Performance Arithmetic
John Kerl

Lockheed Martin Management & Data Systems
Intelligence, Surveillance, and Reconnaissance Systems

Litchfield Park, Arizona
October 18, 2004

john dot r dot kerl at lmco dot com
kerl at mathpost dot asu dot edu

2

ASU MAT 591: Opportunities in Industry

Volumes of data require automation

�
−=

1

0

2)()(dxxfekF kxi π

))(()(ασα σ −Π= ∈ xC G

? ?
? ?

?

0101 0101 1000 1001 1110 0101 1000 1011 0101 0101 0001 0000 0011 0001 1100 0000
0011 1001 1101 0000 0101 0011 1000 1011 0100 1101 0000 1100 1000 1011 0101 1101
0000 1000 1101 1001 1110 1110 0111 1101 0001 1000 1000 1101 0111 0100 0010 0110
0000 0000 1000 1101 1011 1100 0010 0111 1101 1001 0000 0100 1000 0001 1101 1000

?

Abstract Human Design

Concrete Machine Implementation

How the … ?

3

ASU MAT 591: Opportunities in Industry

Isn’t the rest merely implementation details?

� Recent talks in this series have presented some high-level
designs for compute-intensive problems

� Implementation details are where engineers spend much of
their time, hence much of the company’s resources

� It is important that high-level designers be aware of low-level
constraints, and that low-level implementers be aware of the
big picture

� Implementation constraints affect design

4

ASU MAT 591: Opportunities in Industry

General-purpose tools don’t always suffice

� Computer algebra systems such as MATLAB, Mathematica,
etc., provide abstract-looking syntax

� Excellent for prototyping, but don’t provide adequate
performance for demanding applications.

� We have competitors, and so do our customers. Everyone
wants to process more data, in less time, at more MIPS per
watt.

� We use common off-the-shelf (COTS) technology when
appropriate

� When standard parts aren’t fast enough, we build our own
� We do what we know, partner for what we don’t
� We re-use past efforts (and design for re-use) to reduce risk

and cost

5

ASU MAT 591: Opportunities in Industry

Hardware acceleration is everywhere

HW/SW choices presented here don’t just apply to SAR/DSP:
� Other DSP applications
� Adaptive control
� Telecommunications
� Cryptography: Large-modular (RSA), finite-field (AES), elliptic

curves
� Error-control coding
� Anywhere real-time computation is needed

6

ASU MAT 591: Opportunities in Industry

Hierarchy of detail

SAR algorithm

Chains (deskew, autofocus, …)

Primitives (FFT, IPF, …)

Arithmetic (+, -,)

Logic gates (NAND, XOR, …)

Resistors, capacitors, transistors

Materials

Quantum mechanics

Key to success:

Modular design

at all levels

It all has to work, even

though no one person

understands it all

7

ASU MAT 591: Opportunities in Industry

Disciplines

� Systems engineering
� Software engineering
� Electrical engineering
� (Mechanical engineering*)
� (Chemical engineering)
� (Materials-science engineering*)
� Program management: The difference between a good job and

a great job; the difference between an also-ran and a winning
organization

8

ASU MAT 591: Opportunities in Industry

Useful skills for success in industry

� Interdisciplinary education
� Writing and speaking skills are always needed
� Programming skills are vital for almost any technical job. You

must learn at least one of C, FORTRAN, MATLAB, Perl, etc.
� Can you perform some basic computational tasks, both on

paper and using automation: numerical estimation of a
derivative, integration using Simpson’s rule, Lagrange
interpolation, Taylor-series approximation, making plots, etc.?
If not, learn how.

� Undergraduate numerical analysis and computer arithmetic
� Digital design: CSE 330, various EEE courses

9

ASU MAT 591: Opportunities in Industry

Discretization

Continuous analog waveform …

… with discrete amplitudes

… sampled in discrete time …

10

ASU MAT 591: Opportunities in Industry

Fundamental arithmetic operations for DSP

� Addition, subtraction and multiplication
� Division not so much. Multiply by reciprocals of constants

when necessary.
� A common operation is multiply and accumulate (MAC): sum of

products
� Number formats: signed or unsigned fixed-point (integers are

just a special case); floating point.
� Today we’ll discuss addition of unsigned integers.
� In digital logic, high voltage (5.0V, 3.3V, 1.8V, …) represents a

one
� Low voltage (0V) represents a zero
� Arithmetic is done in binary (base 2)

11

ASU MAT 591: Opportunities in Industry

Integers and integer addition

5
+ 3

8

0101
+ 0011

1000

� Addition is just like in elementary school
� “1 + 1 is 0, carry the 1 … ”
� Column sums
� Carry-in, carry-out

� Binary integers: base 2, not 10. E.g. 01011 = 8 + 2 + 1 = 11
� N bits: MSB is 2N-1, LSB is 20 = 1

12

ASU MAT 591: Opportunities in Industry

Digital logic gates

0

1

10

00

10

AND:

0

1

10

10

11

OR:

0

1

10

10

01

XOR:

0

1

1

0

NOT:

DeMorgan’s Laws:

= =

Name

Truth

table

Schematic

symbol

We take these as our starting point (lowest level in the design hierarchy)

13

ASU MAT 591: Opportunities in Industry

Digital logic gates (cont’d)

� Each of these is composed of resistors, capacitors, diodes,
transistors and wires, each of which is built to have a simple
mathematical model

� Put it in a box and label it with a schematic symbol (modular
design)

Vcc

14

ASU MAT 591: Opportunities in Industry

Digital logic gates (cont’d)

� Conductors have overlapping outer bands; outer electrons are
free to flow

� Electron charges are quantized, but (at fabrication scales in
use today!) we can still model them as a fluid

� Current flows, but in digital logic we think of voltage as carrying
information

� Power-plane voltage is high (1); ground-plane voltage is low (0)
� A NOT gate drives out a low voltage when input voltage is high,

and vice versa. Similarly for the other gates.

15

ASU MAT 591: Opportunities in Industry

Integer addition using logic circuits

� 1-bit half adder:

0
+ 0

0 0

Sum

Carry-out

0
+ 1

0 1

1
+ 0

0 1

1
+ 1

1 0

Notice:
� Column sum is XOR of inputs (sum mod 2)
� Carry-out is 1 if both inputs are 1 (AND)

A

B

S

O

A

B

S

O

Hide the details in a
box:

H

16

ASU MAT 591: Opportunities in Industry

Integer addition using logic circuits (cont’d)

� 1-bit full adder:
� A + B + carry-in gives column sum and carry-out

A

B

S

I

O

A

B
S

O
FHide the details in a

box:
I

17

ASU MAT 591: Opportunities in Industry

N-bit full adder (4-bit example)

A0=1

B0=0

A1=0

B1=1

A2=1

B2=0

A3=0

B3=0

S0=1

S1=1

S2=1

S3=0

0101 + 0010 = 0111 i.e. 5 + 2 = 7 (1’s here are marked in red)

Put this all in a

box and call it: +
4 4

4

(Remember: this is nothing more than the elementary-school algorithm.)

18

ASU MAT 591: Opportunities in Industry

Timing (the heart of digital design)

� Everything up to now was static
� Now let bit B0 change from 0 (low voltage) to 1 (high voltage)
� The low-to-high wave front has its own rise time:

� Furthermore, it takes some propagation time for the wave
fronts to travel from the B0 input to the S0-S3 outputs (all of
which change in this example), then stabilize (remember forced
damped oscillator from ODEs?) to their new values

� Values during that time are not mathematically correct

A0=1

B0=0

Sample the voltage here (another continuous
analog waveform) and plot with respect to time:

19

ASU MAT 591: Opportunities in Industry

Clocking

� Just as with the signal under analysis (for which these circuits
are built), we sample the voltages at discrete times, with
discrete amplitudes (but only two levels here: high and low)

� There is an oscillating (sinusoidal or square) signal called the
clock fed throughout the chip. Clock frequency in MHz or GHz.

� Electronic devices (made of logic gates) called registers retain
whatever value is present at, say, the rising clock edge, and
drive that out until the next rising edge Sample

points

Wire signal
(register input)

Clock signal
Registered signal
(register output)

20

ASU MAT 591: Opportunities in Industry

Registers

Clock

Input Output

+4 4
4

4

4

4

� The amount of combinational logic between registers
determines the pipeline depth.

� Maximum depth constrains clock speed, or vice versa.
� In order to meet timing, sometimes logic must be split across

registers, decreasing depth but increasing latency (e.g. 1 clock
for an add, 3 for a multiply).

21

ASU MAT 591: Opportunities in Industry

Registers and wires

� To a first approximation, digital logic consists of:
– The clock (distributed throughout a chip)
– Registers, where voltages can change only at e.g. rising clock edge
– Wires (“combinational logic”), where voltages can change at any time

� The clock signal must be clean (no spurious edges)
� Register inputs must not be near half-value at sampling time
� The deepest logic in the circuit limits the clock speed
� Clock frequency can’t be too high (and/or logic too deep), else

wire signals will be sampled before they are stabilized to their
new values

� This is why engineers have to work so hard to increase clock
frequency

22

ASU MAT 591: Opportunities in Industry

Faster, faster, faster

� Increase the clock frequency, i.e. shorten the clock period
� Requires shortening path length
� Requires finer fabrication techniques (130 nm, 90 nm, …)
� Keeps electrical and materials-science engineers employed

23

ASU MAT 591: Opportunities in Industry

Sequential processors

� Machine instructions are just integers stored in memory
� Stored-program concept: instructions are data
� Various bits in an instruction word specify arithmetic and/or I/O

operations
� Arithmetic and logic unit (ALU) has various arithmetic blocks
� Only one result is done at a time
� Sequential processing

3232

32

Operation select (+, -, , <, etc.)

Instruction word

32

…

24

ASU MAT 591: Opportunities in Industry

Sequential processors (cont’d)

� Everyone knows about Pentiums
� Embedded processors: PowerPC, ARM, etc.
� Programmable via an instruction set
� Higher-level languages (C/C++, FORTRAN, MATLAB, ...),

largely portable
� Compilers are highly non-trivial (keeping computer scientists

employed)
� Many MB (GB?) of RAM, plus GB of disk, permit quite large

instruction space, stack space, deep recursion, many function
arguments, etc.

� The programmer has a lot of freedom

25

ASU MAT 591: Opportunities in Industry

Sequential processors (cont’d)

� Hardware design is fixed
� Mercifully, you don’t need to muck with the hardware in order to

write programs
� Intel et al. invest time and resources into making a reliable,

functionally correct processor
� Customers don’t need to be convinced that such chips function

correctly
� Approximately one instruction per clock cycle
� Key point: Quicker to write, slower to run

26

ASU MAT 591: Opportunities in Industry

Custom parallel processing

� We want to do more than one thing at a time
� The hardware design is our own, so we can do what we want
� This takes time and resources to implement
� VHDL/Verilog are fundamentally different from C/FORTRAN
� But we don’t want to make everything custom:
� CPUs are highly non-trivial
� Expense of design and verification
� Customer might doubt the result will be bug-free (“risk

reduction”)
� Focus on our core competencies
� CPUs are still nice for setup and control
� Key point: Slower to write, quicker to run.

27

ASU MAT 591: Opportunities in Industry

Custom parallel processing (cont’d)

� Find those steps in the algorithm most in need of acceleration,
and most amenable to it. Create custom circuitry for those
things only: hardware-software co-design.

� How much programmability should we implement?
– At least, vector lengths and coefficients
– Microcode?
– Simple instruction set?
– Include a third-party CPU core (e.g. ARM)?

28

ASU MAT 591: Opportunities in Industry

Custom parallel processing (cont’d)

� Signal processing primitive: FFT radix-2 butterfly. A ± w B,
with A, B, and w complex numbers, w on the unit circle (ei2 k/N)

� ei2 k/N might be computed/interpolated using custom circuitry
� Depending on the amount of parallelism, maybe several output

samples per clock
� Logic depth and clock determine number of registers (latency)
� The result can far outperform a comparably clocked sequential

processor

DAG
Input

buffers

Output

buffers

DAG

Trig

x

+

-

DAG

DAG

Complex math (really 4 multipliers, 3 adders,
3 subtracters)

29

ASU MAT 591: Opportunities in Industry

Custom parallel processing (cont’d)

� Put this in a box and call it:

� Throughput is two output samples per clock, with 4 multiplies,
3 adds and 3 subtracts.

� But it requires that input data can be provided at 2 samples
per clock.

� These can be stacked up to increase
throughput even more (parallelism):

� Implementing these arithmetic circuits
requires more space on the chip

� Keeping these arithmetic circuits busy
requires that I/O be done at the same
rate

30

ASU MAT 591: Opportunities in Industry

References

� Feynman, Feynman Lectures on Computation
� Hennessey and Patterson, Computer Organization and Design
� Horowitz and Hill, The Art of Electronics
� Knuth, The Art of Computer Programming: Seminumerical

Algorithms (vol. 2)
� Press et al., Numerical Recipes

31

ASU MAT 591: Opportunities in Industry

Thanks for attending!

