
The Berlekamp algorithm

John Kerl

University of Arizona Department of Mathematics

2009 Integration Workshop

August 6, 2009

Abstract

Integer factorization is a Hard Problem. Some cryptosystems, such as RSA, are in fact designed
around the difficulty of integer factorization. For polynomials with coefficients in the finite field Fq, on
the other hand, we can use the Berlekamp algorithm to factor polynomials of high degree in reasonable
amounts of time.

In this project, you will see how the algorithm works, prove its correctness, and analyze its compu-
tational complexity. This project is aimed toward those with interests in computational algebra, finite
fields, and/or linear algebra.

Contents

Contents 1

1 Theory 2

1.1 Definitions . 2

1.2 Linear algebra . 3

1.3 GCDs . 3

1.4 Squarefree preparation . 4

2 Practicalities 4

2.1 Pseudocode . 4

2.2 Worked example . 4

2.3 Complexity analysis . 5

A Background: integers 6

A.1 Integer factorization and complexity . 6

A.2 Modular arithmetic with integers . 6

1

B Background: polynomial and modular polynomial arithmetic over F2 7

B.1 Polynomial arithmetic . 7

B.2 Modular polynomial arithmetic . 7

References 8

1 Theory

1.1 Definitions

Definition 1.1. Let f ∈ Fq[x] have degree n. Suppose

f = e1 · · · ek

be the prime factorization of f , for ei ∈ Fq[x] with degrees di = deg(ei) ≥ 1. Suppose f is monic and that
all the ei’s are as well. Assume that f is squarefree, i.e. that all the ei’s are distinct. (See section 1.4 to see
why this restriction is not a difficulty.) Of course, we don’t yet know what the ei’s are, nor what k is; that
is the purpose of a factorization algorithm.

Definition 1.2. Let
Af = Fq[x]/〈f〉.

This is a vector space over Fq, of degree n. In fact it is an algebra: a vector space wherein you can also
multiply the vectors.

Definition 1.3. Let
Bf = {h ∈ Af : hq ≡ h (mod f)}.

This is the Berlekamp subalgebra of Af . (You will prove below that this is actually a subalgebra.)

Definition 1.4. Define
Qf : Af → Af

by a(x) 7→ a(x)q for each a ∈ Af .

Proposition 1.5. This is an Fq-linear map from Af to itself.

Proof. Prove this. (Hint: use the freshman’s dream.)

Proposition 1.6. Bf = ker(Qf − I).

Proof. Prove this. (Hint: you will need the Frobenius automorphism from finite-field theory.)

Proposition 1.7. Bf is a subalgebra of Af .

Proof. Prove this. (Hint: You can check subspace axioms, or you can use the fact that Bf is the kernel of a
linear map.)

Remark 1.8. By the Chinese Remainder Theorem,

Af
∼= Fq[x]/〈e1〉 × · · · × Fq[x]/〈ek〉.

(Since each of the ei’s is irreducible, each factor is a finite field.)

2

1.2 Linear algebra

We can find a basis for the vector subspace Bf of Af using linear algebra. (See section 2.2 for a worked
example.) The set {xn−1, xn−2, . . . , x, 1} (where n = deg f) is a basis for Af . The map Qf , defined above,
is defined by its action on this standard basis. Let the M be the matrix of Qf , with respect to the standard
basis for Af .

Question: Using both the polynomial point of view and the vector-space point of view, figure out how to
write down the matrix for Q. Write h(x) as a vector with respect to the standard basis; do the same for
Qh = hq, where the latter is reduced mod f . (Hint: reduction mod f is a ring homomorphism, so it moves
through terms.)

Using row reduction, we can compute a basis for Bf = ker(Qf −I) using row reduction on the matrix M −I.
This is an important part of the factorization algorithm, for the following reason.

Proposition 1.9. The nullity of Qf − I is the number of irreducible factors of f(x).

Proof. Please flesh out the details in the following sketch.

We have, by hypothesis,
f = e1 · · · ek.

By the Chinese Remainder Theorem (mapping how, precisely?),

Af = Fq[x]/〈e1〉 × · · · × Fq[x]/〈ek〉.

Now let h ∈ Bf . The CRT map sends h to (r1, . . . , rk). Since h ∈ Bf ,

0 = hq − h = (rq
1
− r1, . . . , r

q
k − rk).

This means rq
i = ri for each i, so therefore each ri is in Fq.

We may conclude that Bf
∼= (Fq)

k. (How does this relate to the rank and nullity of Qf − I?)

This means that we can already test for irreducibility, just by checking the nullity of Qf − I. Going ahead
and finding a non-trivial factor of f(x) takes a little more work.

1.3 GCDs

Proposition 1.10. For each h ∈ Bf ,

f(x) =
∏

c∈Fq

gcd(f, h − c).

Proof. Prove this. (Hint: Show that the left-hand side divides the right-hand side, and vice versa.)

Corollary 1.11. For each h ∈ Bf , if 0 < deg h, there exists some c ∈ Fq such that g = gcd(f, h − c) 6= 1.
Such a g is a non-trivial factor of f .

Proof. Prove this.

3

1.4 Squarefree preparation

This section is optional.

Berlekamp’s algorithm requires squarefree input — yet, given an input polynomial f , how do you know if
it’s squarefree? Isn’t this the kind of thing you want a factorization algorithm to do for you?

It turns out there is a trick. Given f , let f ′ be the formal derivative of f with respect to x. Then let

g = gcd(f, f ′).

Case 1: If g has degree 0, then the input f is squarefree, and is ready for Berlekamp.

Question: Prove why this is true.

Case 2: If f ′ = 0: the input is a perfect pth power, where p is the characteristic of Fq. You can find out
what this is just by looking at f .

Question: Use the freshman’s dream to find out why. (Hint: make up a few polynomials over F2 and square
them; make up a few polynomials over F3 and cube them. What do they look like? Looking at only the pth
powers, is it easy to guess what they are the pth powers of?)

(Now, if f is a pth power, its pth root might also be a pth power: e.g. if f(x) = x4 +1 over F2. So, you need
to recursively run the pth root of f through the squarefree-preparation routine.)

Case 3: Else — i.e. if g has degree ≥ 1, and if f ′ 6= 0, then recursively apply the squarefree-preparation
algorithm to g and f/g.

2 Practicalities

2.1 Pseudocode

Question: Use the pieces of theory from the above sections to write out a pseudocode description of
Berlekamp’s algorithm. (You may assume the input is squarefree, or you may incorporate the information
in section 1.4 and describe how non-squarefree input is handled.) The algorithm should take an input
polynomial, and describe how to factor it into distinct irreducible factors. Your description should include
what can happen when there are three or more factors. You need not describe row reduction in detail: you
may treat this as a black-box step of the algorithm. However, you should be explicit about how each of the
basis vectors are handled.

Extra question: What do you choose to do if the input polynomial is non-monic?

2.2 Worked example

Given squarefree f(x), we want to find polynomials h(x) such that hq ≡ h (mod f). Take f = x5 +x4 +1 =
110001 = 111 · 1011. The degree of f is 5. By explicit search, we can find the following polynomials h of
degree < 5 such that h2 ≡ h (mod f): 0, 1, 11100, 11101.

4

To avoid having to do a search, we use linear algebra instead.

f = x5 + x4 + 1 = 110001

x0 ≡ 00001 (mod f)

x2 ≡ 00100 (mod f)

x4 ≡ 10000 (mod f)

x6 ≡ 10011 (mod f)

x8 ≡ 11111 (mod f).

h = a4x
4 + a3x

3 + a2x
2 + a1x + a0

h2 = a4x
8 + a3x

6 + a2x
4 + a1x

2 + a0

= a4(x
4 + x3 + x2 + x + 1) + a3(x

4 + x + 1) + a2(x
4) + a1(x

2) + a0(1)












a4

a3

a2

a1

a0













=













1 1 1 0 0
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 1 0 0 1













·













a4

a3

a2

a1

a0

























0
0
0
0
0













=













0 1 1 0 0
1 1 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 0 0 0













·













a4

a3

a2

a1

a0













.

Call the matrix M . Its (n − 1 − j)th column is xjq (mod f). Put M − I in row-echelon form to obtain













1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0













with kernel basis

(1, 1, 1, 0, 0), (0, 0, 0, 0, 1).

These are h1 = 11100 and h2 = 1, respectively. Compute gcd(f, h1) = 111 and gcd(f, h1 + 1) = 1011 to
obtain non-trivial factors of f .

2.3 Complexity analysis

Question: Describe the number of Fq arithmetic operations needed to perform one step of Berlekamp’s
algorithm, i.e. to find one non-trivial factor of an input polynomial f(x). (For row reduction, you can count
operations. For the GCD step, describe the complexity of a single GCD, since the number of GCDs that
need to be computed may vary.)

5

A Background: integers

I assume you’re familiar with integer arithmetic, but perhaps not so much with polynomials over Fq. More-
over, even if you have had exposure to finite fields, my experience is that many instructors teach the subject
very abstractly. So, you might have been taught existence and uniqueness of finite fields, but you might
never have been taught how to actually do explicit computations with them.

Here we remind ourselves of some facts about the familiar integers, in order to facilitate comparison with
perhaps-less-familiar polynomials over finite fields, below.

A.1 Integer factorization and complexity

How do you factor an integer n into primes? You don’t need to find all prime factors at once. It suffices to
find any non-trivial factor a. If there is no such, then n is prime. Otherwise you get b = n/a. Then, using a
divide-and-conquer strategy, you can apply whatever algorithm you used for n to the integers a and b.

So, how do we find a non-trivial factor of a given n? One way is to trial-divide n by all 2 ≤ a < n. If
the remainder is zero for any such a, then a | n. What is the computational complexity? This takes n − 2
divisions; we say that this algorithm is O(n) in the number of divisions. (Note of course that division itself
takes longer when n is bigger; you would get a different order of complexity if you were to count not number
of divisions, but say, digit operations.)

This is clearly non-optimal, though. If a | n, then b = n/a | n as well, and we can take a ≤ b. That is, if
n has one factor greater than or equal to

√
n, then it has another factor less than or equal to

√
n. Given

n = 101, once you’ve gotten past a = 10 you can stop. Thus, a second algorithm for finding a non-trivial
factor of n is to trial-divide by all 2 ≤ a ≤ √

n. This takes O(
√

n) trial divisions.

This is also non-optimal. Once you’ve found that 2 ∤ n, it’s silly to divide n by 4, 6, or any other even
number. Likewise, once you know 3 ∤ n, you needn’t trial-divide n by any other multiple of 3. So, a third
algorithm would be to trial-divide n by all 2 ≤ p ≤ √

n only for primes p. (Of course, you can only do
this if you have a big enough table of primes.) What’s the complexity? By the prime number theorem, the
number of primes less than or equal to

√
n is approximately

√
n/ ln(

√
n), so the number of trial divisions is

O(
√

n/ ln(
√

n)).

There are lots of integer-factorization algorithms, some easy and some hard, and also there are quite nice
primality-testing algorithms which don’t produce a factorization but which tell you if you should bother. I
won’t describe them further; the above examples suffice to demonstrate that (a) there are different ways of
doing things, and (b) one can quantify the amount of time they take.

A.2 Modular arithmetic with integers

Given any n ≥ 2, we can compute in the residue ring Z/nZ = Z/〈n〉. (I happily write this Zn, although
number theorists balk at this notation since it means something else to them.) The method is to reduce mod
n and take remainders. E.g. if n = 10 and a = 27, we reduce 27 mod 10 to obtain the canonical representative
7 for the equivalence class containing 7. Specifically, we divide 27 by 10 and take the remainder, 7.

Given equivalence-class representatives a and b, we can add, subtract, or multiply them in Z, then reduce
mod n. This is because reduction mod n is a ring homomorphism from Z to Zn.

If n is prime (call it p), then Zp is a field. This is how we construct finite fields of prime order p. Otherwise,

6

Zn is a ring with zero-divisors.

B Background: polynomial and modular polynomial arithmetic

over F2

This project studies factorizations of polynomials in Fq[x]. Since this may be less familiar than working with
integers, we give some computational examples and some notation.

B.1 Polynomial arithmetic

Take q = 2. Then x4 + 1 is a fourth-degree polynomial with coefficients 0 or 1, with coefficient arithmetic
done mod 2. This factors as (x2 + 1)2, which in turn factors as (x + 1)4. So, x4 + 1 is reducible.

By contrast, f(x) = x4 + x + 1 has no non-trivial factors; we say that it is irreducible. How can I be so
sure of that statement? Well, since degree four is small, we can do an explicit search. If f has a non-trivial
factor, i.e. a factor with degree greater than or equal to one, one factor must have degree 1, 2, or 3. There
are two degree-one polynomials over F2: x and x + 1. There are four degree-two polynomials: x2, x2 + 1,
x2 + x, and x2 + x + 1. There are eight degree-three polynomials, x3 through x3 + x2 + x + 1. So, all we
need to do is use long division, dividing x4 + x + 1 by each of these fourteen possible divisors. If none of
them goes into x4 + x + 1 with a zero remainder, then x4 + x + 1 is irreducible.

This is similar to the most naive trial division for integers. As with integer division, where we need to trial-
divide up to

√
n, here too we can stop trial-dividing by polynomials with degree up to n/2 where n = deg f .

For larger degree, the number of trial divisors gets large.

Question: What is the number of trial divisors using the above method? You can write it as a function of
n and q.

Elwyn Berlekamp’s algorithm (1967) is a powerful way to factor polynomials over Fq. Note that we don’t
have such a powerful algorithm for polynomials with coefficients in Q, or for integers.

For shorthand, we’ll often write polynomials with their coefficients only, in descending order of degrees of
terms. For example, x4 + 1 = 10001 = 1012 = 114 and x4 + x + 1 = 10011.

You can check that
110001 = 111 · 1011

and
111100001110 = 10 · 11 · 111 · 1011 · 1101

Likewise you can check that each of these factors is in fact irreducible. (The ring F [x], for any field F , is
a unique factorization domain so irreducibility and primality are equivalent. Nonetheless, the convention
is to use the words “prime” and “composite” for integers, and the words “irreducible” and “reducible” for
polynomials.)

B.2 Modular polynomial arithmetic

Once we know how to add, subtract, and multiply polynomials in Fq[x], it’s not much harder to do arithmetic
in the residue ring Fq[x]/〈f〉. Just as with modular arithmetic of integers, given a polynomial a(x), we divide

7

it by the modulus f(x) and take the remainder. This means in particular that deg a < deg f , where a here
refers to the canonical representative.

Question: Given f(x) ∈ Fq[x], with deg f = n, how many elements are there in Fq[x]/〈f〉?

Given two polynomials a(x) and b(x), we can add, subtract, or multiply them, then reduce the result mod
f(x). For example, if f(x) = 10011 ∈ F2[x], a(x) = 1111, and b(x) = 101, then a(x)b(x) can be found using
high-school multiplication (with coefficients mod 2, i.e. you can just forget to carry):

1111

* 101

1111

1111

110011

Now to reduce mod f(x), you can do long division and keep the remainder. But, since all you need is the
remainder and not the quotient, it’s even easier. Just keep subtracting off multiples of f(x) until the result
has degree less than the degree of f(x):

110011

- 10011

10101

- 10011

110

So, just as 27 · 36 ≡ 2 (mod 10) in the integers, we have 1111 · 101 ≡ 110 (mod 10011) in F2[x].

If f(x) is irreducible in Fq[x], then Fq[x]/f(x) is a field — a finite field of size qn where n = deg(f).
Otherwise, it’s a ring with zero-divisors.

References

[DF] D.S. Dummit and R.M. Foote. Abstract Algebra (2nd ed.). John Wiley and Sons, 1999.

[PARI] H. Cohen, K. Belebas et al. PARI/GP. pari.math.u-bordeaux.fr.

[Knu] D.E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms (2nd ed.). Addison-
Wesley, 1973.

[Knu] D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (2nd ed.).
Addison-Wesley, 1973.

[LN] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.

8

	Contents
	Theory
	Definitions
	Linear algebra
	GCDs
	Squarefree preparation

	Practicalities
	Pseudocode
	Worked example
	Complexity analysis

	Background: integers
	Integer factorization and complexity
	Modular arithmetic with integers

	Background: polynomial and modular polynomial arithmetic over F2
	Polynomial arithmetic
	Modular polynomial arithmetic

	References

