
An introduction to coding theory for mathematics students

John Kerl

September 29, 2004

Abstract

The following are notes for a lecture presented on September 29, 2004 as part of the Arizona
State University Department of Mathematics Graduate Student Seminar Series.

In this talk, intended for a general audience, I will give an introduction to coding theory.
Error-control coding is the study of the efficient detection and correction of errors in a digital
signal. The essential idea of so-called “block codes” is to divide a message into blocks of bits, then
add just enough redundant bits to permit recovery of the original information after transmission
through a noisy medium. The required amount of redundancy depends, of course, on the
statistics of the transmission medium. The mathematics will be basic linear algebra over F2.
I will construct a few simple codes, define terms such as rate and minimum distance, discuss
some upper and lower bounds on both of these parameters, and present some algorithms for
encoding and decoding.

1

Contents

Contents 2

1 Introduction 4

1.1 Motivation . 4

1.2 Non-topics . 5

2 Fundamental terms and examples 6

2.1 The binary symmetric channel . 6

2.2 Linear codes . 6

2.3 The repetition codes . 7

2.4 Minimum distance . 7

2.5 Error detection and error correction . 8

2.6 The even-weight parity check codes . 9

2.7 A graphical perspective . 10

2.8 Rate, relative minimum distance, and asymptotics 10

2.9 Code parameters; upper and lower bounds . 11

3 Encoding 13

3.1 The generator matrix . 13

3.2 Systematic codes . 14

4 Decoding 15

4.1 The parity-check matrix . 15

4.2 Computing H for systematic codes . 17

4.3 Brute-force decoding . 18

4.4 The coat of arms . 18

4.5 Standard-array decoding . 19

5 The binary Hamming and simplex codes 22

2

6 Classification of codes 24

7 More information 25

8 Acknowledgements 25

References 26

Index 27

3

1 Introduction

1.1 Motivation

A mathematical problem originating in electrical engineering is the recovery of a signal which is
transmitted over a noisy medium. Examples include electrical signals traveling down a wire (e.g.
data networking), radio signals traveling through free space (e.g. cellular phones or space probes),
magnetization domains on a hard disk, or pits on an optical disk. In the latter cases, the issue is
storage rather than transmission; for brevity we will use the term transmission nonetheless.

Abstractly, let Σ be a finite set, or alphabet, of symbols. Often, but not necessarily, Σ = {0, 1},
in which case symbols are called bits. Let Σ∗ be the (infinite) set of all strings, or messages, of
zero or more symbols over Σ. Let M be an element of Σ∗, transmitted over some medium. Due to
physical phenomena occurring during transmission, the transmitted string M may differ from the
received string M ′. For example, let Σ be the lower-case letters along with the space character.
Errors include, but are not limited to, the following: insertion or duplication of symbols (e.g. “the
house” is received as “the houuse”), deletion of symbols (e.g. “the huse”), and/or modified symbols
(e.g. “the hopse”). When we type, a common error is transposition (“teh house”).

The essential idea is that protection against errors is accomplished by adding additional symbols
to M in such a way that the redundant information may be used to detect and/or correct the
errors in M ′. This insertion of redundant information is called coding. The term error control
encompasses error detection and error correction. We will be discussing so-called block codes, in
which a message is divided into blocks of k symbols at a time. The transmitter will encode by
adding additional symbols to each block of k symbols to form a transmitted block of n symbols.
The receiver will decode by transforming each received block of n symbols back into a k-symbol
block, making a best estimate which k-symbol block to decode to. (Note that you can mentally
fix each misspelling of “the house” above, without needing redundant information. You do this (a)
by context, i.e. those weren’t just random letters, and (b) by using your intelligence. Automated
error-control systems typically have neither context nor intelligence, and so require redundancy in
order to perform their task.)

Encoding circuitry is typically simple. It is the decoding circuity which is more complicated and
hence more expensive in terms of execution time, number of transistors on a chip, power consump-
tion (which translates into battery life), etc. For this reason, in situations with low error rate
it is common for a receiver to detect errors without any attempt at correcting them, then have
the sender re-transmit. It is also for this reason that much of the effort in coding-theory research
involves finding better codes, and more efficient decoding algorithms.

Different media require different amounts of redundancy. For example, communications between
a motherboard and a mouse or keyboard are sufficiently reliable that they typically have no error
detection at all. The higher-speed USB protocol uses short cyclic redundancy checks (not discussed
today) to implement light error detection. (For engineering reasons, higher-speed communications
are more error prone. The basic idea is that at higher data rates, voltages have less time to cor-
rectly swing between high and low values.) Compact disks have moderately strong error-correction
abilities (specifically, Reed-Solomon codes): this is what permits them to keep working in spite of

4

little scratches. Deep-space applications have more stringent error-correction demands ([VO]). An
interesting recent innovation is home networking over ordinary power lines ([Gib]). Naturally, this
requires very strong error correction since it must keep working even when the vacuum cleaner is
switched on.

1.2 Non-topics

What we are not talking about:

• The type of coding discussed here is technically referred to as channel coding. The term
source coding refers to data compression done at the receiver, independently of any error-
control coding, in order to reduce transmission time or signal bandwidth.

• We are not talking about cryptographic codes.

• There exist tree codes, of which convolutional codes are a special case, which do not
divide a message into blocks. In engineering practice these are quite important, but they are
beyond the scope of today’s talk. See [PW] for information on tree codes.

• We are discussing systems designed to protect against random errors, i.e. we assume that
the transmission medium is such that any given bit has some probability p of being incorrect.
In practice, some but not all media are such. In particular, a burst error may occur when
a nearby electrical motor is switched on, in which case several consecutive symbols may be
incorrect.

• Insertion, duplication, and deletion of symbols are called synchronization errors, since a
transmitted n-symbol block may be received with fewer or greater than n symbols.

• Codes exist to handle burst and synchronization errors, although they won’t be discussed
today. Please see [MS], [Ber], and [PW] for more information on this topic.

5

2 Fundamental terms and examples

2.1 The binary symmetric channel

We are confining ourselves to communications channels in which only random errors occur, rather
than burst or synchronization errors. Also, for today we will talk about binary codes, where the
alphabet is {0, 1}. We can quantify the random-error property a bit more by assuming there is
a probability p of any bit being flipped from 0 to 1 or vice versa. This model of a transmission
medium is called the binary symmetric channel, or BSC: binary since the symbols are bits, and
symmetric since the probabilities of bit-setting and bit-clearing are the same.

The fundamental theorem of communication is Shannon’s theorem ([Sha]), which when re-
stricted to the BSC says that if p < 1/2, reliable communication is possible: we can always make a
code long enough that decoding mistakes are very unlikely. Shannon’s theorem defines the channel
capacity, i.e. what minimum amount of redundant data needs to be added to make communica-
tion reliable. (See [Sud] for a nice proof.) Note however that Shannon’s theorem proves only the
existence of codes with desirable properties; it does not tell how to construct them.

In [MS] it is shown that if p is exactly 1/2 then no communication is possible, but that if p > 1/2
then one may interchange 0 and 1, and then assume p < 1/2. (For example, if p = 1, then it
is certain that all 0’s become 1’s and vice versa, and after renaming symbols there is no error
whatsoever.)

If n bits are transmitted in a block, the probability of all bits being wrong is (1−p)n. The probability
of an error in the first position is p(1 − p)n−1, and the same for the other single-position errors.
Any given double error has probability p2(1− p)n−2, and so on; the probability of an error in all n
positions is pn. Since we assume p < 1/2, the most likely scenario is no error at all. Each single-bit
error case is the next likely, followed by each of the double-bit error cases, etc. (For example, with
n = 3 and p = 0.1, these probabilities are 0.729, 0.081, 0.009, and 0.001.) So, when I send you
something that gets garbled in transit, you can only guess what happened to the message. But
since we assume that fewer bit errors are more probable, you can use the maximum likelihood
assumption to help guide your guesses, as we will see below.

2.2 Linear codes

In physics, to facilitate analysis of a problem one often makes certain simplifying assumptions. For
example, orbital mechanics is simpler, but fractionally less accurate, if one assumes the earth is a
perfect sphere rather than a lumpy oblate spheroid. In particular, one often makes assumptions
that permit analysis of a system using linear rather than non-linear differential equations, since the
former are easy to solve. In engineering, by contrast, one designs systems rather than studying pre-
existing systems: one has the liberty of designing in linearity (and other simplifying assumptions)
from the start.

In this spirit, to facilitate analysis, we immediately replace the abstract alphabet Σ with the finite
field of q elements, Fq. (Recall that a finite field has a prime-power number of elements. See [LN]

6

for background on finite fields. For today, q will simply be 2 so you won’t need any particular
expertise in finite fields.) Furthermore, since we divide a message M into blocks of k symbols each,
i.e. k-tuples over Fq, we have vectors over a field. This permits the application of the well-known
and powerful tools of linear algebra.

Definitions:

• A block code (here, we will just call it a code) is any subset of the set of all n-tuples over
Σ, for some positive integer n. Since we take Σ = Fq, this means that a code is any subset C
of the vector space Fn

q .

• If C is not just a subset of Fn
q but a subspace as well, then we say that C is a linear code.

In this case, we take k to be the dimension of C. (All codes discussed today will be linear.)

• The parameter k is called the dimension of the linear code C; n is called the length of C.

• The encoding problem is that of embedding the smaller vector space Fk
q into the larger

vector space Fn
q , in a maximal way as will be discussed below.

• A vector in Fk
q is called a message word; its image in C is called a codeword.

• During transmission, a codeword may be turned into any element of Fn
q . We will call this a

received word.

Notation. For brevity, we will often write n-tuples in the form 111 rather than (1, 1, 1). There is
no ambiguity as long as each coordinate takes only a single digit, which is certainly the case over
F2.

2.3 The repetition codes

Example. The three-bit repetition code embeds F2 into F3
2 via the following: 0 7→ 000 and

1 7→ 111. Here, k = 1 and n = 3. Note that there are 23 = 8 elements of F3
2, but only two of them

are codewords.

More generally, we have a family of n-bit repetition codes, embedding F2 into Fn
2 : 0 maps to the

vector consisting of n zeroes, and 1 maps to n ones. Clearly, these are linear codes.

2.4 Minimum distance

Definition. The Hamming weight of a vector v in Fn
q is given by the number of non-zero entries

in v. This is a function w : Fn
q → Z. For example, w(101) = 2.

Definition. The Hamming distance between vectors u and v in Fn
q is given by the number of

non-zero entries in their difference. That is, d : Fn
q × Fn

q → Z is given by d(u,v) = w(u− v). For
example, d(101, 110) = w(011) = 2.

Remark. When q = 2 this means we simply count the number of differing slots.

7

Definition. The minimum distance of a code C is the smallest distance between distinct pairs
of vectors of C. If C is linear, then the difference of u and v is also in C, so the minimum distance
is then the minimum weight over all non-zero vectors in C. For example, the three-bit repetition
code has minimum distance 3. We overload the letter d by writing the minimum distance of C as
d(C), or simply d. From the context, it’s clear which meaning of d is intended.

(Note: For some codes it is clear what the minimum distance is. For others, while it may be
relatively easy to compute a lower bound on a code’s minimum distance, the true minimum
distance may be much harder to find. For some families of codes, true minimum distances are
unknown.)

2.5 Error detection and error correction

By example, we will see how error-detection and error-correction abilities of a code are related to
the code’s minimum distance. Suppose we are sending single 0’s and 1’s using a three-bit repetition
code. You may trust me to encode only 0 or 1, as 000 or 111, respectively, but due to noise you
might receive any of 000, 001, 010, 011, 100, 101, 110 or 111. If you were to receive the block 111,
then you may assume that either I sent 111 and all bits are intact, or I sent 000 and there was a
triple bit error. Using the maximum likelihood assumption from above, the former conclusion
is the more likely. Now suppose you receive the message 101 from me. Which is more likely: that
I sent 000 and two bits were flipped, or that I sent 111 and the middle bit was flipped? Again, the
latter is the more likely.

That is:

• If you receive 000 (weight 0), then you decode to 0, and you assume there were no errors in
transmission.

• If you receive 100, 010, or 001 (weight 1), then you decode to 0, and you believe there was a
single bit error in transmission.

• If you receive 110, 101, or 011 (weight 2), then you decode to 1, and you believe there was a
single bit error in transmission.

• If you receive 111 (weight 3), then you decode to 1, and you assume there were no errors in
transmission.

In the following figure I mark codewords with an open circle. Maximum-likelihood decoding involves
finding the codeword which is nearest to a given received word:

000
w = 0

����s �
100, 010, 001

w = 1s
110, 101, 011

w = 2s -

111
w = 3

����s

8

For this 3-bit repetition code, you can correctly detect any one-bit error. If a triple bit error
occurs, you won’t know it; if a double-bit error occurs, it will look like a single-bit error instead.
In these latter two cases, you would have made a decoding error.

Now suppose we use a four-bit repetition code. I encode 0 as 0000 and 1 as 1111. If you receive a
vector of weight 0 or 1, you decode to 0; if you receive a vector of weight 3 or 4, then you decode to
1. However, if you receive a vector with two zero bits and two one bits, then you know something
is wrong (I can be trusted to only have sent 0000 or 1111, neither of which you got), but it’s a coin
toss whether two bits got set by error, or two bits got cleared by error:

0000

w = 0

����s �

1000, 0100
0010, 0001

w = 1s

1100, 1010, 1001
0110, 0101, 0011

w = 2
� -

? ?
s

1110, 1101
1011, 0111

w = 3s -

1111

w = 4

����s
For this 4-bit repetition code, you can reliably correct any 1-bit error, but you can only detect a
2-bit error.

More generally, we see intuitively that if the minimum distance d of a code C is odd, then C can
detect and correct up to (d− 1)/2 errors per block. If d is even, then C can correct up to d/2− 1
errors per block, and can detect up to d/2 errors per block.

Thus, when an error-control system is being designed, the error statistics of the transmission
medium must be known so that the minimum distance can be made high enough that the chance
of d/2 or more errors occurring in a block is vanishingly small. (Shannon’s theorem guarantees
the existence of such codes.) Any fixed code may be defeated by worse-than-expected noise: either
a system must be designed to handle worst-case noise, or it must be parameterized such that
parameters may be adaptively adjusted at run time to match changing channel conditions.

2.6 The even-weight parity check codes

Let n = k + 1. Embed Fk
2 into Fn

2 by sending

(a0, a1, . . . , ak) to (a0, a1, . . . , ak, a0 + . . . + ak)

where the sum is taken mod 2. For example, with k = 4, 1110 maps to 11101. By construction,
every codeword has even weight. The extra bit may be thought of as a parity bit: It is 0 when
the input message word has an even number of 1 bits, and 1 when the input message word has an
odd number of 1 bits. (Of course, we could define an odd-weight parity-check code as well. Since
it would lack the zero vector, though, it would be not be a subspace of Fn

2 .) Thus, these are called
the even-weight parity check codes.

Since Fk
2 consists of all k-tuples, including those with 1 in a single position and zeroes elsewhere,

the code contains some (k+1)-tuples of weight 2. Since all codewords have even weight, this means
that these parity-check codes have minimum distance 2. From the above discussion, this means

9

they can detect single-bit errors, but can’t correct any errors at all. These are useful in the case
when the probability of a single bit error is quite small but non-zero, and the probability of a
double bit error is vanishingly small. They enable the receiver to flag a block as bad, and request
the sender to retransmit it.

As with the repetition codes, these form a family of codes: the n-bit even-weight parity-check
codes, embedding Fn−1

2 into Fn
2 . Since q = 2, the difference of two even-weight vectors is another

even-weight vector. Thus these are linear codes.

2.7 A graphical perspective

Here is what the 3-bit repetition and parity-check codes look like, respectively, inside F3
2:

�
�

�
�

�
�

�
�

000 100

001 101

010 110

011 111

�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

000 100

001 101

010 110

011 111

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

PPPPPP

B
B
B
B
BB

@
@
@

@
@

@
@@

On the left, F2 could have been sent to any edge, e.g. 000 and 001, but the two codewords would
have distance 1 between them; as shown, they have distance 3. Likewise, on the right, F2

2 could
have been sent to a face of the cube, with minimum distance 1; as shown, the codewords are spread
out over the cube, as far apart from one another as possible, with minimum distance 2. These are
clearly the highest-distance 1-dimensional and 2-dimensional subspaces, respectively, of F3

2. Here
we have q = 2, n = 3 and k = 1 or 2. For higher n, k and q, though, it’s not immediately obvious
how to spread out codewords in this maximum-distance manner.

In general, the encoding problem consists in large part of finding a way of constructing such
embeddings such that all codewords are as far apart from one another as possible. This problem
clearly is combinatorial in nature. However, in recent years various approaches have happened to
prove fruitful, including finite geometry ([AK]) and algebraic geometry ([Pre2]).

2.8 Rate, relative minimum distance, and asymptotics

The repetition codes have good error-correcting ability. However, the drawback is that most of the
transmitted data is redundant. For the 5-bit repetition codes, only one of every 5 bits is actual
data. The parity-check codes, on the other hand, add just a single redundant bit, but tolerate fewer
errors.

Definition. The rate of a code is the ratio R = k/n.

10

The repetition codes have rate R = 1/n. As n increases, R approaches zero. The parity-check
codes have rate R = (n− 1)/n, which approaches 1 as n increases.

Definition. The relative minimum distance of a code is the ratio δ = d/n.

The repetition codes have relative minimum distance δ = n/n = 1. The parity-check codes have
relative minimum distance 2/n, which approaches 0 as n increases.

Of course, R and δ are both confined to the unit interval. We say that asymptotically (as n
gets big) the repetition-code family has R = 0 and δ = 1; asymptotically the parity-check family
has R = 1 and δ = 0. For large n, the repetition codes carry vanishingly little actual data; their
overhead is too large. For large n, the parity-check codes detect vanishingly few errors per block;
their overhead is too small.

Definition. A good code (really, a good family of codes) is one whose asymptotic rate and
asymptotic relative minimum distance are both bounded away from zero.

Clearly, the repetition and parity-check codes are not good. It can be shown that good codes exist;
see [MS] for examples.

2.9 Code parameters; upper and lower bounds

A linear code is parameterized by the four integers n, k, d and q, or equivalently by the four rational
numbers n, R, δ and q. Sometimes one says that C is an [n, k, d] code, or perhaps an [n, k, d]q
code. For example, the 5-bit binary repetition code is a [5, 1, 5]2 code. (Similarly, we might write
an asymptotic parameterization of a family of codes as [R, δ] or [R, δ]q.)

We encode by embedding Fk
q into Fn

q . Not any embedding will do: as we saw in section 2.7, the
canonical injection which appends n − k zeroes is an embedding, but it has minimum distance 1.
We want to find an embedding which keeps the vectors as far apart from one another as possible,
maximizing d, in order to maximize the code’s error-control ability. Or, given a fixed minimum
distance, we would like to minimize n or maximize k, to keep the code’s rate high. Ideally we
would like the rate and the relative minimum distance to both be high, but there are results (see
[MS], [PW], [Wal]) which show that there are upper bounds on the asymptotic rate and relative
minimum distance.

Both R and δ are in the unit interval, so we may think of a parameter space which looks like the
unit square:

Asymptotic Singleton upper bound�

Good codes exist�

Asymptotic Plotkin upper bound�

Unattainable ideal�s

Repetition codes�s

Parity-check codes - s
R

@
@
@
@
@
@
@@

A
A
A
A
A
A
AA

δ

11

Note that there are particular codes with parameters in various places on this square. The zero-
appending code, given by the map from Fq to Fn

q which appends n − 1 zeroes, has R = 1/n and
δ = 1/n. Asymptotically, both are zero. Also, the identity code with n = k = 1 has R = 1 and
δ = 1. However, this has no error-control ability at all.

The Singleton bound states that for all codes, d ≤ n− k + 1. Thus, for any code with n > 1, the
R = 1, δ = 1 corner is unattainable. Asympotically, the Singleton bound shows that R + δ ≤ 1.
This means that the asymptotic (R, δ) of a family of codes must be below the main diagonal.
Clearly, this applies to even the identity codes, for which R = 1 but δ → 0. The Plotkin bound
shows that the asymptotic (R, δ) must be below the lower diagonal as well, where the δ intercept
is 1− 1/q. See [Wal] for a lucid discussion of these and other bounds.

The Singleton and Plotkin bounds provide upper limits on the best code families: no codes can
be asymptotically better. There are also lower bounds which specify how good the best codes
can be, but don’t constrain how bad the worst codes can be (for example, the zero-appending code
mentioned above). One proves a lower bound, showing that there exist codes with (R, δ) above
some curve in R, δ space; the problem of actually producing such codes is another problem entirely.
Both of these issues are topics of research.

12

3 Encoding

3.1 The generator matrix

Up to now we haven’t really put much linear algebra to work. To facilitate analysis, we now require
not only that we have linear block codes mapping injectively from Fk

q into Fn
q , but furthermore that

the injective mapping is a vector-space homomorphism, i.e. a linear transformation. There are
many advantages to using a linear transformation, not the least of which is that instead of having
to remember qk images for all the message words, we need to remember only the images of k basis
vectors.

Such a linear transformation exists for any linear code. For example, {000, 100, 010, 110} is a
subspace of F3

2, but I can send F2
2 into it by 00 7→ 110, 01 7→ 100, 10 7→ 000, 11 7→ 010. This is

a 1-1 map but it isn’t linear since it doesn’t send zero to zero. As long as I don’t insist on which
elements of Fk

q map to which elements of C, though, I can produce a linear map: since Fk
q and C

are vector spaces of the same dimensions over the same field, an isomorphism exists. To obtain
it explicitly if only C is given, form a tall matrix the rows of which are all the vectors of C, then
row-reduce and discard zero rows. The result is a basis for C. Then, send the ith standard basis
vector in Fk

q to the ith basis vector of C.

However it is obtained, we write a generator matrix

G : Fk
q → Fn

q

where C is the image of G in Fn
q . For convenience later on (although it seems quite strange at the

moment), we write G as a k×n matrix: to encode the message word m, we write mG rather than
Gm. (If this seems awkward, you may wish to temporarily think in terms of an n × k generator
matrix, then transpose it when you’re done. Also, from the context it is clear whether I’m treating
m as a row or column vector.)

What is a generator matrix for the repetition codes? Clearly, we write (n = 5 here)

G =
[

1 1 1 1 1
]

For the parity-check code, we want (with n = 5)

[
a, b, c, d, a + b + c + d

]
=

[
a, b, c, d

]
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

so

G =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

Of course, when εi is the ith standard basis vector for Fk

q , εiG is the ith row of G. Unless k = 1
and q = 2, there will be more than one basis vector, hence more than one permutation of the

13

basis, along with various linear combinations of the basis vectors. Thus the generator matrix is
generally not unique. Two different generator matrices are equivalent, though, if they generate the
same subspace C of Fn

q . To test for equivalence of two generator matrices, test for equality of their
row-echelon forms.

(Computational note: finite fields have the property that computer arithmetic is exact. Thus, there
is no roundoff error, and algorithms such as row reduction may be implemented easily for finite
fields, with naive pivoting.)

3.2 Systematic codes

We’ve been saying that a linear code C is a k-dimensional subspace of Fn
q . From this definition,

G could take any form as long as it has rank k. However, our two examples so far (repetition
and parity-check codes) have an additional property: the first k bits of each n-bit codeword are
identical to the k bits of the corresponding message word.

Definition. A linear code is systematic if its generator matrix G is of the form [Ik|A] for some
k × (n− k) matrix A, where Ik is the k × k identity matrix.

Any linear code can be made systematic: just put G in row-echelon form.

14

4 Decoding

4.1 The parity-check matrix

If a linear code C has been chosen, we’ve just seen that encoding is easy: it’s just matrix multipli-
cation. But how do we decode, and moreover, how do we do so efficiently? This might seem to be
a harder problem. In fact, in general it is. There have been codes which were published before any
decoding algorithm was known. And even for well-known codes, one area of current research is to
develop improved decoding algorithms.

Below, it will be useful to find a so-called parity-check matrix, H, such that C is precisely the
kernel of H. (The terminology originally comes from parity-check codes, but it is a poor choice of
words: all linear codes, not just the parity-check ones, have a parity-check matrix.) That is, we
will want Hv to be zero if and only if v is in C. By the rank-nullity theorem, H will necessarily
be (n− k)× n. Unlike with G, we post-multiply, i.e. we write Hv, not vH.

How can such a matrix H be constructed, given G? First, some terminology.

Definition. The dual code of C, written C⊥, is the set of vectors in Fn
q which are orthogonal to

all vectors of C, using the standard dot product. (Note that the term dual code here has nothing
to do with the term dual space from linear algebra.) That is,

C⊥ = {v ∈ Fn
q : u · v = 0 for all u ∈ C}

(The Hamming weight is a vector-space norm, if we define |c| on Fq to have value 0 when c = 0,
1 otherwise. If we use the standard dot product, then Fn

q satisfies all the axioms for an inner
product space except for the positive-definiteness of the dot product. E.g. if Fq has characteristic
2, the non-zero vector (1, 1) dotted with itself is 1 + 1 = 0. Note that the Hamming weight is
computed in Z: it is the number of non-zero coordinates in a vector. However, the dot product
is computed in Fq. Thus the Hamming weight and Hamming distance are positive definite, while
the dot product is not. This means that inner-product-space results such as Fn

q = C ⊕ C⊥ do not
apply: the intersection of a subspace and its perp can contain more than just the zero vector. In
fact, a code can be self dual, i.e. C = C⊥. For example, {00, 11} is a self-dual subspace of F2

2.
From the result immediately below, a self-dual code must have even n, and k must be n/2.)

We already have G; it remains to actually compute a matrix for H. Suppose that our problem
were reversed, i.e. if we had H, how would we compute G? That’s easy: since the kernel of H
is the image of G (which is C) we could just compute the kernel basis of H, which is a standard
elementary linear algebra problem. G would have rows equal to the elements of that basis.

Now, I claim that, fortuitously, the generator matrix of C⊥ is H and the parity-check matrix of
C⊥ is G. That is, C⊥’s G and H are swapped from C’s. Also note that (C⊥)⊥ is just C. We are
given G, which is C’s generator matrix as well as C⊥’s parity-check matrix. The kernel basis of G
is the generator matrix for C⊥, which is also the parity-check matrix for C. So this trick means
that not only can we get a G by computing a kernel basis of an H, but vice versa as well.

It remains to prove that C⊥ has generator matrix H and parity-check matrix G. Remember the

15

convention that a generator matrix acts by post-multiplication and that a parity-check matrix acts
by pre-multiplication. So in this role, H maps Fn−k

q to Fn
q by sending z to zH, and G maps Fn

q to
Fk

q by sending v to Gv. To avoid confusion (only for the duration of this proof) we will write ·G
for G : Fk

q → Fn
q acting by post-multiplication and G· for G : Fn

q → Fk
q acting by pre-multiplication.

Likewise, we will write H· for H : Fn
q → Fn−k

q and ·H for H : Fn−k
q → Fn

q . Plain G and H refer to
the matrices without respect to a linear transformation.

We want the following short exact sequences:

0→ Fk
q

·G→ Fn
q

H·→ Fn−k
q → 0

0← Fk
q

G·← Fn
q

·H← Fn−k
q ← 0

with im(·G) = C = ker(H·) and im(·H) = C⊥ = ker(G·). The short exactness means that ·G and
·H are 1-1, while H· and G· are onto. Thus, it suffices to show: (1) im(·H) = C⊥; (2) ·H is 1-1,
(3) ker(G·) = C⊥, and (4) G· is onto. Now, we already have that the matrix G has rank k and H
has rank n − k. Since row rank equals column rank, (4) will follow from (3) by the rank-nullity
theorem. Likewise, (2) will follow from (1) since C⊥ has dimension n− k.

To prove (3), first let v ∈ C⊥. The rows of G form a basis for C; let gi be the ith row of G, for
i = 1, . . . , k, where each gi is a vector of length n (since it is in Fn

q). Also let v = (v1, . . . , vn). The
matrix-times-vector multiplication G · v consists of dot products of v with the rows of G:

G · v =

 g1
...

gk

 v1

...
vn

=

 g1 · v
...

gk · v

Since each gi is in C and since v is in C⊥, all the dot products are zero and so G · v = 0.

Conversely, let v ∈ ker(G·). Then G · v = 0. Again, this product consists of dot products of rows
of G with v, so gi · v = 0 for all gi’s. Let c be an arbitrary element of C. Since the gi’s are a basis
for C, c =

∑k
i=1 cigi for some ci’s in Fq. Then

v · c = v ·
k∑

i=1

cigi

=
k∑

i=1

ci(v · gi) = 0

Therefore v ∈ C⊥.

To prove that im(·H) = C⊥, notice in general that when a matrix X acts on a standard basis by
Xεi, the image of that basis consists of the columns of X. Likewise, when X acts on a standard
basis by εiX, the image of that basis consists of the rows of X. It will suffice to show that the rows

16

of H are a basis for C⊥. Remember that we set up H to check the elements of C, and since G has
rows forming a basis for C, necessarily

HGt = 0

This means that the rows of H are orthogonal to the rows of G, which shows that the rows of H
are in C⊥. Since we know that H has rank n− k, the image of the standard basis for Fn−k

q under
·H is linearly independent, and im(·H) must be all of C⊥.

Example. Let’s carry out this computation for the two families of codes we’ve seen so far. The
5-bit repetition code has generator matrix

G =
[

1 1 1 1 1
]

We then compute the kernel basis (in row-echelon form)

H =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

Intuitively, this makes sense: recalling that we are working mod 2, this means that Hv is 0 only
when v has all coordinates the same. The two possible cases are 00000 and 11111, which are
precisely the codewords of the 5-bit repetition codes.

Next, the 5-bit parity-check code has generator matrix

G =

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

We then compute

H =
[

1 1 1 1 1
]

Intuitively, this also makes sense: pre-multiplying v by H just adds up the bits of v mod 2. The
result will be zero precisely when v has even parity, which is the case iff v is in C.

As an added bonus, since the first G is the same as the second H, and vice versa, we now see that
the repetition and parity-check families are duals of one another.

4.2 Computing H for systematic codes

The parity-check matrix is particularly easy to compute when C is systematic, i.e. when G is in
row-echelon form. For example, take k = 3, n = 6 and suppose

G = [Ik|A] =

 1 0 0 a14 a15 a16

0 1 0 a24 a25 a26

0 0 1 a34 a35 a36

17

Writing Gtm rather than mG to save horizontal space on the paper, a message word (m1,m2,m3)
is encoded as

1 0 0
0 1 0
0 0 1

a14 a24 a34

a15 a25 a35

a16 a26 a36

 m1

m2

m3

 =

m1

m2

m3

a14m1 + a24m2 + a34m3

a15m1 + a25m2 + a35m3

a16m1 + a26m2 + a36m3

We want to write an H such that H times this codeword is zero, but that’s easy:

 −a14 −a24 −a34 1 0 0
−a15 −a25 −a35 0 1 0
−a16 −a26 −a36 1 0 1

m1

m2

m3

a14m1 + a24m2 + a34m3

a15m1 + a25m2 + a35m3

a16m1 + a26m2 + a36m3

 =

0
0
0
0
0
0

We can generalize this example to see that if

G = [Ik|A]

then
H = [−At|In−k]

Thus, systematic G and H may be computed from one another by inspection.

4.3 Brute-force decoding

If I send you an encoded message, with errors in transit, how do you decode to find out what I
really meant to say? If the message space is small, i.e. if q and n are small, then you could simply
make a list of all possible elements of Fn

q , with the nearest-neighbor codeword precomputed by
hand for each. This is what we did in section 2.5. However this is infeasible for larger codes, which
might have billions of codewords or more: it requires having a table of size qn.

4.4 The coat of arms

A useful diagram from [MS], attributed therein to David Slepian, is the following:

18

Sender - Encoder - Channel - Decoder - Recipient

m = m1 · · ·mk

Message
u = u1 · · ·un

Codeword

e = e1 · · · en

6

6

����

Error vector

v = u + e

Received vector
ê = ê1 · · · ên

Estimate of
error

m̂ = m̂1 · · · m̂k

Estimate of message

Since we are assuming our channel only inserts random errors, without changing the block length
by loss of synchronization, we can think of the error vector as being added to the codeword during
transmission. Since we embed our Fk

q into Fn
q using a linear transformation (rather than any old

injective map), and since Hu is zero for all codewords u, we have the following key fact:

v = u + e

Hv = H(u + e) = Hu + He = He

4.5 Standard-array decoding

Definition. The quantity Hv = He from the previous section is called the syndrome of v.

When we form the quotient space Fn
q /C, from elementary algebra we know that the cosets of C

partition Fn
q . Since C is precisely the kernel of H, if two received vectors are in the same coset,

u ∼ v

u− v ∈ C

H(u− v) = 0
Hu = Hv

Thus, two vectors are in the same coset iff they share the same syndrome.

Now, u was transmitted; v = u+e was received, but the receiver can only guess at what e is. Since
v and e have the same syndrome, the true error vector e is somewhere in v’s coset. Furthermore,
since we are using the maximum likelihood assumption mentioned in section 2.1, the most likely
error vector ê is the smallest-weight vector in v’s coset. (A decoding error means e 6= ê.)

So, the standard-array decoding algorithm has two stages: the first stage is some precompu-
tation before any data is received; the second is done as each block is received.

Precomputation stage:

• Write down the elements of Fk
q and encode each element. This is a two-by-qk table, pairing

up message words and codewords. Sort this by codeword for easy lookup later.

19

• Write down the quotient space Fn
q /C. This requires making, for the moment, a matrix of all

qn elements of Fn
q . (Note that this algorithm is also not OK for large codes, although the

resulting tables will be smaller than for the brute-force method.)

• For each coset, search for the smallest-weight element in the coset. This is called the coset
leader. Compute and remember the syndrome of the coset leader; forget about the rest of
the coset.

• Make a list pairing up syndromes and coset leaders. This is a two-by-qn−k table. Sort this
by syndrome for easy lookup later.

Decoding stage:

• Given a received vector v, compute its syndrome s.

• Look up this syndrome in the precomputed syndrome/leader table.

• Find the most likely error vector ê corresponding to s.

• Compute û = v − ê.

• Look up û in the precomputed message/codeword table to obtain m̂. This is our best guess
of what the transmitter sent.

Note that both table lookups are done on sorted data. This means we don’t have to sequentially
scan either table at run time. The syndromes are all of Fn−k

q , so we can use base-q arithmetic to
go directly to the desired element of the syndrome/leader table. For the message/codeword table,
we can use a binary search, with a number of lookups roughly log2 of the table size.

(Note that the message/codeword table isn’t necessary. Once we have a codeword û, we can solve
the linear system û = m̂G for m̂ using row reduction. This reduces table space, at the expense of
making the decoding stage use more computation.)

Example. Let’s compute the standard array for the 3-bit repetition code. We have

G =
[

1 1 1
]
, H =

[
1 0 1
0 1 1

]
The message words are 0 and 1. Their images under G are 000 and 111. So, the message/codeword
table is as follows:

m u

0 000
1 111

The possible received vectors (all of Fn
q) are:

000, 001, 010, 011, 100, 101, 110, 111

20

C is:
000, 111

Fn
q /C is:

{000, 111},
{010, 101},
{100, 011},
{001, 110}

The coset leaders are the minimum-weight vectors of each coset. These are as follows, with corre-
sponding syndromes:

ê s

000 00
010 01
100 10
001 11

Here is an example of using the standard array to decode a received vector:

• Receive v = 011.

• Compute s = Hv = 10

• 10 in binary is 2 in decimal, so go to row 2 (with row indices starting at 0) of the syn-
drome/leader table.

• At that spot, find ê = 100.

• Compute û = v − ê = 011− 100 = 111.

• Match codeword 111 with message word 1 in the message/codeword table to obtain m̂ = 1.

21

5 The binary Hamming and simplex codes

Having seen the repetition and parity-check codes, we will now round out our set of simple examples
with two more families.

Above we saw that for a linear code C with parity-check matrix H, if v = u + e is the received
vector, then Hv = He. In the special case q = 2, though, more may be said. In this case, all the
error bits are 0 or 1. Letting εj be the standard basis for Fn

q , i.e. εj has a 1 in the jth spot and
zeroes elsewhere,

e =
n∑

j=1

cjεj

where all the cj ’s are zero or one. Then

He = H

n∑
j=1

cjεj

=
n∑

j=1

cjHεj

=
n∑

j=1

cjHj

where we write Hj for the jth column of H. That is, for a binary code, the syndrome is the sum of
the columns of H where an error occurred. If we only wish to be able to correct a single-bit error,
then we may assume that e has at most a single 1-bit. In that case, if v is a codeword, then Hv
will be the zero vector, but if v is not a codeword, then Hv will be Hj where j is the position of
the error bit. One way to make this easy is to simply make a parity-check matrix whose columns
encode all possible error positions. For example,

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Column 1 is 001 which is binary for 1; column 2 is 010 which is binary for 2; etc. (There is no
column equal to 000, since a column of zeroes has no effect on the syndrome.)

Let r be the number of rows of H; the number of columns is 2r − 1. Since H is an (n − k) × n
matrix, the binary Hamming codes have k = 2r − 1− r and n = 2r − 1. As n gets big, R = k/n
goes to 1. The binary Hamming codes have minimum distance 3: notice that 1110 · · · 0 is always
a codeword, so d ≤ 3; meanwhile, the Hamming codes are single-error-correcting so d ≥ 3. This
forces d = 3, and δ = d/n goes to zero as n gets big. Thus, Hamming codes are not good codes.
However, the decoding algorithm is fantastically simple.

The duals of the binary Hamming codes are called binary simplex codes. As discussed in [MS],
in the simplex codes all pairs of distinct non-zero vectors are the same distance from one another,
namely, 2r−1. There are 2r elements in the r simplex code, so these are [2r − 1, r, 2r−1] codes.
Asymptotically, they have R = 0 and δ = 1/2.

22

The Hamming code for r = 2 is just the 3-bit repetition code, so the simplex code for r = 2 is the
3-bit parity-check code. In the figures of section 2.7, you can see that all distinct pairs of vectors
have distance 2. Here we see an analogy with the classification of finite groups: even though, say,
the family of dihedral groups Dn and the family of symmetric groups Sn (both parameterized by n)
are distinct, they coincide (up to isomorphism) for n = 3. Likewise, the simplex and parity-check
codes families are distinct, as are the Hamming and repetition families, but they coincide for n = 3.

23

6 Classification of codes

To summarize, here are parameters for codes described in this paper. Of course, we have not
constructed any good codes: they take a bit more work to define ([MS]).

Zero-appending codes Identity codes
n k d R δ n k d R δ

1 1 1 1 1 1 1 1 1 1
2 1 1 1/2 1/2 2 2 1 1 1/2
3 1 1 1/3 1/3 3 3 1 1 1/3
4 1 1 1/4 1/4 4 4 1 1 1/4
→∞ → 0 → 0 →∞ → 1 → 0

Parity-check codes Repetition codes
n k d R δ n k d R δ

2 1 2 1/2 1 1 1 1 1 1
3 2 2 2/3 2/3 2 1 2 1/2 1
4 3 2 3/4 1/2 3 1 3 1/3 1
5 4 2 4/5 2/5 4 1 4 1/4 1
→∞ → 1 → 0 →∞ → 0 → 1

Hamming codes Simplex codes
r n k d R δ r n k d R δ

2 3 1 3 1/3 1 2 3 2 2 2/3 2/3
3 7 4 3 4/7 3/7 3 7 3 4 3/7 4/7
4 15 11 3 11/15 3/15 4 15 4 8 4/15 8/15
5 31 26 3 26/31 3/31 5 31 5 16 5/31 16/31
→∞ → 1 → 0 →∞ → 0 → 1/2

24

7 More information

The three most fundamental papers (dating from 1948-1950) are [Sha], [Ham], and [Gol].

There are many introductions to coding theory, of which I mention a few: see [MS] and [Ber] for a
thorough treatment of elementary as well as advanced topics. [VO] and [Pre1] are less encyclopedic
and more elementary. [MS] discusses only block codes, and does so in depth; [PW] discusses block
and tree codes. See [Sud] for an algorithmic approach.

Topics of research in coding theory include the following:

• New families of codes, including some highly mathematical approaches (e.g. [Pre2]).

• Sharper bounds.

• More efficient decoding algorithms.

• Non-linear codes.

• Codes over non-fields (e.g. [HKCSS]).

[MS] contains many open problems. [Sud] has a large bibliography; [MS] has a huge bibliography.

8 Acknowledgements

The presentation here is more or less from the first chapters of [MS], [PW], [Ber], and [VO].
However, given that my intended audience is mathematics students rather than electrical engineers,
I have chosen to write a more algebraic treatment.

25

References

[AK] Assmus, E.F. and Key, J.D. Designs and Their Codes. Cambridge University Press, 1994.

[Ber] E. Berlekamp. Algebraic Coding Theory (revised 1984 edition). Aegean Park Press, 1984.

[Gol] Golay, M.J.E. Notes on digital coding. Proceedings of the IRE, 37:657, June 1949.

[Gib] Gibbs, W.W. The Network in Every Room. Scientific American, February 2002.

[Ham] Hamming, R.W. Error Detecting and Error Correcting Codes. Bell System Technical
Journal, 29:147-160, April 1950.

[HKCSS] Hammons, A.R. et al. The Z4-Linearity of Kerdock, Preparata, Goethals and Related
Codes. http://www.research.att.com/~njas/doc/linear.ps

[LN] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.

[MS] MacWilliams, F.J. and Sloane, N.J.A. The Theory of Error-Correcting Codes. Elsevier
Science B.V., 1997.

[PW] Peterson, W.W. and Weldon, E.J. Error-Correcting Codes (2nd ed.). MIT Press, 1972.

[Pre1] Pretzel, O. Error-Correcting Codes and Finite Fields. Oxford University Press, 1996.

[Pre2] Pretzel, O. Codes and Algebraic Curves. Oxford University Press, 1998.

[Sha] Shannon, C.E. A mathematical theory of communication. Bell System Technical Journal,
27:379-423, 623-656, 1948.

[Sud] Sudan, M. Algorithmic Introduction to Coding Theory.
http://theory.lcs.mit.edu/~madhu/coding/ibm

[VO] Vanstone, S.A. and van Oorschot, P.C. An Introduction to Error Correcting Codes with
Applications. Kluwer Academic Publishers, 1989.

[Wal] Walker, J. Codes and Curves.
http://www.math.unl.edu/~jwalker/papers/rev.pdf

26

27

Index

A
alphabet . 4
asymptotically .11

B
binary codes . 6
binary symmetric channel .6
bits .4
block code . 7
block codes . 4
burst error .5

C
channel capacity . 6
channel coding .5
code . 7
codeword . 7
coding . 4
convolutional codes . 5
correct . 9
coset leader .20

D
decode .4
decoding error . 9, 19
detect . 9
dimension . 7
dual code .15

E
embedding .7
encode .4
encoding problem . 7
error control . 4
even-weight . 9

F
family . 7, 10

G
generator matrix . 13
good code . 11

H

Hamming codes . 22
Hamming distance . 7
Hamming weight . 7

L
length . 7
linear code .7
lower bounds . 12

M
maximum likelihood 6, 8, 19
message word . 7
messages . 4
minimum distance . 8
minimum weight . 8

P
parity check . 9
parity-check matrix . 15

R
random errors . 5
rate . 10
received word . 7
relative minimum distance 11
repetition code . 7

S
self dual . 15
Shannon’s theorem . 6
simplex codes .22
Singleton bound . 12
source coding . 5
standard-array decoding algorithm19
synchronization errors . 5
syndrome .19
systematic . 14

T
tree codes . 5
true minimum distance . 8

U
upper bounds .11

28

	Contents
	Introduction
	Motivation
	Non-topics

	Fundamental terms and examples
	The binary symmetric channel
	Linear codes
	The repetition codes
	Minimum distance
	Error detection and error correction
	The even-weight parity check codes
	A graphical perspective
	Rate, relative minimum distance, and asymptotics
	Code parameters; upper and lower bounds

	Encoding
	The generator matrix
	Systematic codes

	Decoding
	The parity-check matrix
	Computing H for systematic codes
	Brute-force decoding
	The coat of arms
	Standard-array decoding

	The binary Hamming and simplex codes
	Classification of codes
	More information
	Acknowledgements
	References
	Index

