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ABSTRACT

This paper gives an example-driven overview of algebraic-geometry codes, with attention

confined to bivariate Goppa codes. J. Walker’s Codes and Curves uses notation that is standard

for graduate mathematics, but unfortunately does not discuss decoding; O. Pretzel’s Codes and

Algebraic Curves gives a full discussion, but using non-standard notation. The current work is a

synthesis of the two, extending Walker’s work by including a discussion of the Skorobogatov-Vlǎduţ

(SV) decoding algorithm.

First, notation for finite fields is given; then, the engineering problem is defined. Selected

concepts from algebraic geometry are introduced, illustrated by examples. The construction and

encoding of Goppa codes is described, followed by an exposition of the SV decoding algorithm.

Several worked examples are shown. Software implementations of the encoder and decoder are

discussed, followed by performance analysis and comparison with other codes. Finally, directions

for further research are sketched.
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CHAPTER 1

Preliminaries

This is an expository paper. Proofs due to other authors are cited as such; proofs without

citation are due to this author. Graduate abstract algebra at the level of [DF] is taken for granted.

The following symbols are used:

• Z denotes the integers, Q the rationals, R the real numbers, and C the complex numbers.

• Given a field K, K[x] denotes the ring of univariate polynomials with coefficients in K. Like-

wise, K[x1, . . . , xn] denotes the ring of polynomials with n variables and coefficients in K. The

field of quotients of the integral domain K[x1, . . . , xn] is written K(x1, . . . , xn).

• Given an extension field L of K and u ∈ L, K(u) denotes the smallest extension field of K

containing u. If u is algebraic over K (which is the case for finite fields), then K(u) = K[u].

The algebraic closure of a field K is written K.

• Given functions f(x) and g(x), the product of functions is written (fg)(x) or fg(x), both equal

to f(x)g(x) by definition. The notation f(g(x)) is used for composition of functions.

• The number of elements in a finite set S is written #S.

• A finite field with q elements is denoted Fq. This is unambiguous since a finite field of a given

order is unique up to isomorphism. Necessarily, q = pr for some prime integer p, called the

characteristic of Fq, and some positive integer r, called the degree of Fq over Fp. For this

paper, p is always 2.
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• Vectors in a finite-dimensional vector space, say of dimension m, are usually written in the

form u, having components (u1, . . . , um) with respect to the standard basis. In particular,

if a vector v is written in boldface type, then (v1, . . . , vn) in non-boldface type denotes the

components of v.

• Likewise, given a matrix A in uppercase, aij in lowercase refers to the element in the ith row

and jth column of A. The entries of A may be specified by an expression in the form (f(i, j))ij ,

e.g. A = ( 1
i+j+1 )ij .

• Given a field K and vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in the n-dimensional vector

space Kn, u · v denotes the standard dot product
∑n

i=1 uivi.

• The ideal generated by an element a of a ring R is denoted 〈a〉.

• The notation bxc denotes the largest integer less than or equal to x.



CHAPTER 2

Finite Fields

A compact notation for finite fields is presented in this chapter, along with computational

notes. See [LN] for full information on finite fields.

2.1. Compact Notation

The finite field Fq necessarily forms a vector space over Fp. In order to define vector-vector

multiplication on Fq , i.e. in order to make Fq into an Fp-algebra, Fq may be viewed as Fp[x]/〈m(x)〉

for some degree-r monic irreducible m(x) over Fp. If u = x+ 〈m(x)〉, then Fq = Fp[u]. This makes

u a root of m(x) in the extension field Fq .

Since m(x) has degree r, elements of Fp[u] are of the form ar−1u
r−1 + . . . + a1u + a0 for

ai ∈ Fp. This may be written as an r-tuple of coefficients, (ar−1, . . . , a1, a0), e.g. (1, 0, 1, 1), where

m(x) is taken from context. Since p = 2 for this paper, one may further abbreviate by omitting

parentheses and commas to write ar−1 . . . a1a0, e.g. 1011. Further abbreviation may be obtained

using a compact hexadecimal (base-16) notation, clustering quadruples of digits beginning at the

right. This is illustrated using table 1.

Binary 0000 0001 0010 0011 0100 0101 0110 0111
Hex 0 1 2 3 4 5 6 7

Binary 1000 1001 1010 1011 1100 1101 1110 1111
Hex 8 9 a b c d e f

Table 1. Binary and hexadecimal notation
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The hexadecimal digits a-f are written upright, to distinguish them from variables a-f . For

example, the following are equivalent notations for an element of Fq where r ≥ 10: u9 + u7 + u6 +

u4 + u3 + 1, (1, 0, 1, 1, 0, 1, 1, 0, 0, 1), 1011011001, 2d9.

This compact notation is important for the following reasons: (1) Since this paper deals with

vectors over Fq, the compact notation avoids nested parentheses. (2) The compact notation makes

finite-field elements look simply like numbers, or scalars, which is precisely what they are in this

context. (3) The 16-digit hexadecimal alphabet makes individual finite-field elements short and easier

to recognize than long strings of ones and zeroes. For example, (u7 +u5 +u3 +u2 +u, u7 +u6 +u5 +

u3+u+1, u4+u3+u2), looks much like (u7+u5+u3+u2+u, u7+u6+u5+u2+u+1, u4+u3+u2), as do

(10101110, 11101011, 00011100) and (10101110, 11100111, 00011100), but (ae, eb, 1c) and (ae, e7, 1c)

are visibly distinct. (All three represent the same pair of elements of the vector space F3
256.) (4)

Since 16 is a power of 2, the individual bits are readily recovered for computations as needed.

It may be verified by trial factorization that the polynomials listed in table 2 are monic

irreducibles over F2. Unless otherwise noted, it is assumed in this paper that the fields F2r , for

r = 1, . . . , 6, are defined using these moduli. These particular moduli are chosen for the following

two reasons. First, they are the lexically smallest monic irreducibles of each degree in F2[x]. Second,

they are primitive in the sense that their roots generate the multiplicative group of Fp[x]/〈m(x)〉.

It is possible for the lexically smallest monic irreducible of a given degree to be imprimitive, but the

first such occurrence is at r = 8.

r 1 2 3 4 5 6
m(x) x+ 1 x2 + x+ 1 x3 + x+ 1 x4 + x+ 1 x5 + x2 + 1 x6 + x+ 1

Table 2. Selected monic irreducible polynomials over F2

2.2. Tables

Arithmetic in Fq is readily performed using the construction Fq
∼= Fp[x]/〈m(x)〉: addition

and subtraction are performed coefficientwise mod p; multiplication is done in Fp[x], then reduced
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mod m(x). Division may be done using the extended Euclidean algorithm in Fp[x]: let a(x)+〈m(x)〉

be non-zero in Fp[x]/〈m(x)〉. Since m(x) is assumed to be irreducible, a(x) is relatively prime to

m(x), with gcd(a(x),m(x)) = 1. Therefore, there are g(x), h(x) ∈ Fp[x] such that g(x)a(x) +

h(x)m(x) = 1. This means that g(x)a(x) ≡ 1 (mod m(x)), and thus g(x) + 〈m(x)〉 is the reciprocal

of a(x) + 〈m(x)〉. Tables 3 through 5 are provided as a convenience, to accelerate computation for

a few small fields.

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Table 3. Addition and multiplication for F2, using m(x) = x+ 1.

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Table 4. Addition and multiplication for F4, using m(x) = x2 + x+ 1.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

Table 5. Addition and multiplication for F8, using m(x) = x3 + x+ 1.

The Galois group of Fq over Fp is cyclic of order r, generated by the p-power Frobenius

map α 7→ αp. Elements of Fq cluster into conjugates via the action of the Frobenius map: two field

elements are in the same cluster, or orbit, if and only if they share the same minimal polynomial over
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Fp. Table 6 shows root charts for F2r , with r = 1, 2, 3, 4. Each element of F2r is listed along with

its conjugates, preceded by their common minimal polynomial. Furthermore, elements are listed in

Frobenius order. For example, in F16, 82 = c, c2 = f, f2 = a, and a2 = 8.

Min. poly. Orbit Min. poly. Orbit Min. poly. Orbit
x 0 x 0 x 0

x+ 1 1 x+ 1 1 x+ 1 1
x2 + x+ 1 2 3 x3 + x+ 1 2 4 6

x3 + x2 + 1 3 5 7

Min. poly. Orbit
x 0

x+ 1 1
x2 + x+ 1 6 7
x4 + x+ 1 2 4 3 5
x4 + x3 + 1 b 9 d e

x4 + x3 + x2 + x+ 1 8 c f a

Table 6. Root charts for F2 through F16.

Remark 2.2.1. A finite field of order pr has a unique subfield of order pd for each d | r, and these

are its only subfields. Looking at the root chart for a field, it is easy to see which elements comprise

these various subfields: the elements of a subfield of order pd are exactly those whose minimal

polynomials have degree dividing d. For example, F4 and F8 have no proper non-trivial subfields;

F16 has subfield F4, with elements visibly equal to 0, 1, 6, and 7.



CHAPTER 3

Coding Theory

The essential definitions for coding theory are given here. Engineering motivations, channel

models, error probabilities, examples of non-AG codes, etc. are not discussed. See any of [MS],

[Ber], [PW], [VvO] for a thorough introduction. Coding theory is a broad subject; here, discussion

is limited to linear block codes over field alphabets.

3.1. Linear Codes

A block code (or simply a code) is any subset C of the vector space Fn
q . If C is not just a

subset of Fn
q but a subspace as well, then C is said to be a linear code. The vector-space dimension

k = dimFq
(C) is called the dimension of the linear code C; n is called the length of C.

The encoding problem is that of embedding the smaller vector space Fk
q into the larger vector

space Fn
q , in a maximal way as is to be discussed below. A vector m in Fk

q is called a message word ;

its image u in C is called a code word. During transmission, a code word may be turned into any

element (say v) of Fn
q . This is called a received word.

Notation 3.1.1. For brevity, n-tuples are written in this chapter in the form 111 rather than (1, 1, 1).

There is no ambiguity as long as each coordinate takes only a single digit, which is certainly the

case over F2.

Example 3.1.2. The three-bit repetition code embeds F2 into F3
2 by the map which sends 0 to 000

and 1 to 111. Here, k = 1 and n = 3. Note that there are 23 = 8 elements of F3
2, but only two of
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them are code words. More generally, one obtains a family of n-bit repetition codes, embedding F2

into Fn
2 : 0 maps to the vector consisting of n zeroes, and 1 maps to n ones. Clearly, these are linear

codes.

Example 3.1.3. The family of n-bit parity codes embed Fn−1
2 into Fn

2 via the following: the

additional bit at the end is the sum of the previous n− 1, taken mod 2. For example, 1101 encodes

to 11011. Here, k = n− 1. These are also clearly linear codes.

3.2. Minimum Distance

Definition 3.2.1. The Hamming weight of a vector v in Fn
q is given by the number of non-zero

entries in v. This is a function wt : Fn
q → Z.

Definition 3.2.2. The Hamming distance between vectors u and v in Fn
q is given by the number of

non-zero entries in their difference. That is, dist : Fn
q × Fn

q → Z is given by dist(u,v) = wt(u− v).

For example, wt(101) = 2 and dist(101, 110) = wt(010) = 1.

Definition 3.2.3. The minimum distance of a code C, written d(C) or simply d, is the smallest

distance between distinct pairs of vectors of C.

If C is linear, then the difference of u and v is also in C, so the minimum distance is then

the minimum weight over all non-zero vectors in C. For example, the three-bit repetition code has

minimum distance 3.

Definition 3.2.4. The weight distribution of a code C is the function mapping from the integers w

such that 0 ≤ w ≤ n to the number of code words in C having weight w.

For example, consider the three-bit repetition code, with code words 000 and 111, and the

three-bit parity-check code, with code words 000, 110, 101, and 011. Their weight distributions are

shown in table 7.

Definition 3.2.5. The values n, k, d, and q are called the code parameters for a given code.
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3-bit rep. code
w 0 1 2 3
# 1 0 0 1

3-bit par. code
w 0 1 2 3
# 1 0 3 0

Table 7. Weight distributions for three-bit repetition and parity-check codes

Notation 3.2.6. If a linear code C over Fq has length n, dimensions k, and minimum distance d,

then C is said to be an [n, k, d]q code.

For example, the n-bit binary repetition code is an [n, 1, n]2 code; the n-bit binary parity-

check code is [n, n − 1, 2]2.

A linear code C contains qk code words among the qn possible n-tuples over Fq . After

transmission, errors may result in a code word being received as an arbitrary element of Fn
q . In

order that the receiver may correct the highest number of errors, the code words should be placed

at maximum distance from one another in n-dimensional space. The minimum distance is related

to error control as shown in the next section.

3.3. Error Detection and Error Correction

The relationship between a code’s minimum distance and its ability to detect and/or correct

errors is illustrated by example. Suppose single 0’s and 1’s are transmitted using a three-bit repetition

code. The receiver may trust the sender to encode only 0 or 1, as 000 or 111, respectively, but due

to noise any of 000, 001, 010, 011, 100, 101, 110 or 111 might be received. If the block 111 were

received, then the receiver may assume that either 111 was sent and all bits are intact, or 000 was

sent and there was a triple bit error. The maximum-likelihood assumption is made in this paper

(see [MS] for the statistical basis for this assumption) that the former conclusion is the more likely,

namely, that fewer errors are more likely than more errors. Now suppose 101 was received: either

000 was sent and two bits were flipped, or 111 was sent and the middle bit was flipped. The latter

case is the more likely. The receiver cannot distinguish the two cases, and so would make a decoding

error in the former case.
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In figure 1, code words are marked with an open circle. Maximum-likelihood decoding

involves finding the code word which is nearest to a given received word. For this three-bit repetition

code, any one-bit error can be correctly detected. The receiver cannot detect a triple-bit error at

all; a double-bit error looks like a single-bit error instead. These latter two cases are referred to as

decoding errors.

000

w = 0

��
��s �

100, 010, 001

w = 1

s

110, 101, 011

w = 2

s -

111

w = 3

��
��s

Figure 1. Maximum-likelihood decoding for the three-bit repetition code

Now suppose a four-bit repetition code is used (figure 2). Then 0 is encoded as 0000 and 1

is encoded as 1111. If a vector of weight 0 or 1 is received, it is decoded to 0; if a vector of weight

3 or 4, it is decoded to 1. However, if a vector with two zero bits and two one bits is received, that

vector is clearly not a code word (the only code words are 0000 and 1111), but the receiver cannot

tell whether two bits got set by error, or two bits got cleared by error. For this four-bit repetition

code, 1-bit errors can be corrected, but 2-bit errors can only be detected. More generally, one sees

intuitively that if the minimum distance d of a code C is odd, then C can detect and correct up to

d−1
2 errors per block. If d is even, then C can correct up to d

2 −1 errors per block, and can detect up

to d
2 errors per block. Whether d is even or odd, one may then say that a linear code C can correct

at most bd−1
2 c errors per block.

0000

w = 0

��
��s �

1000, 0100

0010, 0001

w = 1

s

1100, 1010, 1001

0110, 0101, 0011

w = 2

� -

? ?

s

1110, 1101

1011, 0111

w = 3

s -

1111

w = 4

��
��s

Figure 2. Maximum-likelihood decoding for the four-bit repetition code
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Remark 3.3.1. Note that error-correction ability is counted in terms of elements of Fq. For en-

gineering applications, q is typically a power of 2. All of the example codes in this chapter use

q = 2, but the codes discussed in later chapters are over larger fields. Transmission errors typi-

cally affect bits, which in this case are distinct from field elements. For example, the error pattern

(0, 0, 1, 1, 0, 1, 0, 0) is a 3-bit error in F8
2. If the same data were treated as a 4-tuple over F4, i.e.

((0, 0), (1, 1), (0, 1), (0, 0)), then the error pattern has weight 2, not 3.

3.4. Maximization and Minimization

The example of the previous section motivates the following description of the fundamental

problems of constructing codes:

• Given k and n, d should be maximized in order to achieve high error correction.

• Given d and k, n should be minimized in order to achieve high data rate through the commu-

nications channel.

• Given n and d, k should be maximized in order to put as much end-user data as possible in

each encoded block.

Here, q is assumed to be given, although this need not be the case [Sud]. Once a code has

been constructed, efficient encoding and decoding are separate problems.

Figure 3 shows selected embeddings of F2 into F3
2. The one-dimensional vector space F2 is

represented by the ends of a line segment. The three-dimensional vector space F3
2 is represented

by the vertices of a cube, where the horizontal axis represents the first coordinate, the vertical axis

represents the second coordinate, and the receding axis represents the third coordinate. Heavy dots

represent the image of F2. In the first embedding, F2 is sent to the front left edge, with 0 mapping

to 000 and 1 mapping to 010. This code visibly has minimum distance 1. In the second embedding

of figure 3, F2 is sent to opposite corners of the left face, with 0 mapping to 000 and 1 mapping

to 011. This code has minimum distance 2. The third embedding shows 0 mapping to 000 and 1
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mapping to 111, where the elements of the image of F2 are as far apart as possible, namely, with

minimum distance 3. This is the three-bit repetition code.

F2

0

1

s

s

F2 inside F3
2, d = 1

�
�

�
�

�
�

�
�

000

010

001

011

100

110

101

111

s

s

F2 inside F3
2, d = 2

�
�

�
�

�
�

�
�

000

010

001

011

100

110

101

111

s

s
F2 inside F3

2, d = 3

�
�

�
�

�
�

�
�

000

010

001

011

100

110

101

111

s

s

Figure 3. Selected embeddings of F2 into F3
2

Figure 4 shows selected embeddings of F2
2 into F3

2. Much as in figure 3, the two-dimensional

vector space F2
2 is represented by the vertices of a square and the three-dimensional vector space F3

2

is represented by the vertices of a cube. Heavy dots represent the image of F2
2 in F3

2. In the first

embedding, F2
2 is sent to a slant plane, with 00 7→ 000, 01 7→ 011, 10 7→ 100, and 11 7→ 111. This

code has minimum distance 1. In the second embedding of figure 4, the image of F2
2 looks like a

tetrahedron, but algebraically it is a plane. This code, the three-bit parity-check code, has minimum

distance 2.
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Figure 4. Selected embeddings of F2
2 into F3

2
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The rightmost embeddings in figures 3 and 4 are visibly the highest-distance 1-dimensional

and 2-dimensional subspaces, respectively, of F3
2. Here q = 2, n = 3 and k = 1 or 2. For higher

n, k and q, though, it is not immediately obvious how to spread out code words in this maximum-

distance manner. The encoding problem consists in large part of finding a way of constructing

such embeddings such that all code words are as far apart from one another as possible. This

problem clearly is combinatorial in nature. Another technique for constructing such embeddings,

using algebraic geometry, is explored starting in chapter 5.

3.5. Bounds on the Minimum Distance

Several upper and lower bounds are available in the literature ([Wal], [MS]). In particular,

the following is easy to prove, though not sharp: some but certainly not all codes meet this bound.

Proposition 3.5.1 (Singleton bound). Let C be a linear code of length n, dimension k, and

minimum distance d over Fq. Then

d ≤ n− k + 1

Proof. Following [Wal], § 2.1, let W be the subspace of Fn
q consisting of vectors for which all but

the first d − 1 elements are zero. Clearly, dim(W ) = d − 1. Since all vectors in W have weight at

most d− 1, W ∩ C = {0}. From linear algebra,

dim(W + C) = dim(W ) + dim(C) = d− 1 + k ≤ n.

3.6. Rate, Relative Minimum Distance, and Asymptotics

Definition 3.6.1. The rate of a code is the ratio R = k/n. For example, the n-bit repetition codes

have rate R = 1/n: as n increases, R approaches zero.

Definition 3.6.2. The relative minimum distance of a code is the ratio δ = d/n. For example, the

repetition codes have relative minimum distance δ = n/n = 1.
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Definition 3.6.3. The values R, δ, and q are called the asymptotic code parameters for a family of

codes.

For example, the parity-check codes have rate R = (n − 1)/n, which approaches 1 as n

increases, and relative minimum distance 2/n, which approaches 0 as n increases. Of course, R

and δ are both confined to the unit interval. One says that asymptotically (as n gets big) the

repetition-code family has R = 0 and δ = 1; asymptotically the parity-check family has R = 1 and

δ = 0.

The repetition codes have good error-correcting ability. However, the drawback is that most

of the transmitted data is redundant: only one of every n bits is actual data. The parity-check

codes, on the other hand, add just a single redundant bit, but tolerate few errors. These extreme

cases motivate the following definition.

Definition 3.6.4. A good code (really, a good family, but “good code” is standard in the literature)

is one for which R and δ are bounded away from 0 and 1.

For engineering reasons, it is also desirable for codes to have large block length [HvLP].

Since blocks are n-tuples over Fq, long blocks may be obtained by increasing either q or n. The

former requires more complicated circuitry to do arithmetic over larger finite fields, so the latter is

preferred.

Definition 3.6.5. A long code is one for which n is large relative to q.

Code length is one key advantage of the algebraic-geometry codes discussed starting in

chapter 5.

3.7. Encoding and the Generator Matrix

It has been assumed up to this point that a k-dimensional linear code C is a subspace of

Fn
q . Furthermore, it is now assumed that Fk

q is mapped to C by an injective linear transformation.

The advantage of using a linear transformation is that, instead of needing a list of qk images for the
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elements of Fk
q , one needs only the images of k basis vectors to fully specify the map from Fk

q into

C.

Such a linear transformation exists for any linear code: since Fk
q and C are vector spaces of

the same dimension over the same field, an isomorphism exists. To obtain it explicitly if only C is

given, form a tall matrix the rows of which are all the vectors of C, then row-reduce and discard

zero rows. The result is a basis for C. Then, send the ith standard basis vector in Fk
q to the ith

basis vector of C. Regardless of how it is obtained, the result is a generator matrix

G : Fk
q → Fn

q

where C is the image of G in Fn
q . For convenience later on, as well as consistency with the literature,

G is written as a k × n matrix. To encode the message word m, one writes mG rather than Gm.

No explicit notational distinction is made in this paper between column and row vectors: the form

is clear from the context.

For example, for the 5-bit repetition code one obtains

G =

[

1 1 1 1 1

]

.

For the 5-bit parity-check code, one wants

[

a, b, c, d, a+ b+ c+ d

]

=

[

a, b, c, d

]

G

where

G =























1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1























.

Generator matrices are in general non-unique. For example, given a generator matrix with

two or more rows, one may permute the rows of G to obtain a different matrix G′ such that Fk
qG

′ =

Fk
qG.



16

3.8. The Parity-Check Matrix

For a linear code C, encoding is easy: it is simply matrix multiplication. Decoding, and

doing so efficiently, is a harder problem. In fact, there have been codes which were published before

any decoding algorithm was known, and one area of current research is to develop improved decoding

algorithms for existing codes.

Below, it will be useful to find a so-called parity-check matrix, H , such that C is precisely

the kernel of H . (The terminology originally comes from parity-check codes, but it is a poor choice

of words: all linear codes, not just the parity-check ones, have a parity-check matrix.) That is, Hv

should be zero if and only if v ∈ C. By the rank-nullity theorem, H may be written as an (n−k)×n

matrix, of rank n−k. Unlike with G, H conventionally is taken to operate by pre-multiplication: one

writes Hv, not vH . Before a technique to construct such a matrix is presented, some terminology

is defined.

Definition 3.8.1. The dual code of C, written C⊥, is the set of vectors in Fn
q which are orthogonal

to all vectors of C, using the standard dot product. That is,

C⊥ = {v ∈ Fn
q : u · v = 0 for all u ∈ C}.

Remark 3.8.2. The term dual code here has nothing to do with the term dual space from linear

algebra. A dual code is usually referred to in linear algebra as a perpendicular space or an orthogonal

complement.

Remark 3.8.3. The Hamming weight is a vector-space norm, if one defines |c| on Fq to have value

0 when c = 0, 1 otherwise. If the standard dot product is used, then Fn
q satisfies all the axioms for

an inner product space except for the positive-definiteness of the dot product. For example, if Fq has

characteristic 2, the non-zero vector (1, 1) dotted with itself is 1 + 1 = 0. Note that the Hamming

weight is computed in Z: it is the number of non-zero coordinates in a vector. However, the dot

product is computed in Fq. Thus the Hamming weight and Hamming distance are positive definite,

while the dot product is not. This means that inner-product-space results such as Fn
q = C ⊕C⊥ do

not apply: the intersection of a subspace and its perpendicular space may contain more than just
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the zero vector. In fact, a code may be self dual, i.e. C = C⊥. For example, {00, 11} is a self-dual

subspace of F2
2. As is shown in proposition 3.8.4, a self-dual code must have even n, and k must be

n/2.

Proposition 3.8.4. If C is a k-dimensional subspace of V = Fn
q , then dim(C⊥) = n− k.

Proof. The proof uses systematic and equivalent matrices, two concepts which are not developed in

this paper since they are not needed outside this proof. See [VvO], theorem 3.3.

Proposition 3.8.5. If C is a k-dimensional subspace of V = Fn
q , then (C⊥)⊥ = C.

Proof. Let C be a k-dimensional subspace of V = Fn
q . First, let u ∈ C. For u to be in (C⊥)⊥, u · v

must be 0 for all v ∈ C⊥. Let v be arbitrary in C⊥. Then v · c = 0 for all c ∈ C. In particular, this

holds for c = u. Thus u ∈ (C⊥)⊥ and therefore C ⊆ (C⊥)⊥.

For the reverse inclusion, since dim(C) = k, dim(C⊥) = n − k by proposition 3.8.4, and

likewise dim((C⊥)⊥) = k. Since the vector space C is contained in (C⊥)⊥ and they both have the

same dimension, they are equal.

Since G is already obtained, it remains to actually compute a matrix for H . Suppose that

the problem were reversed, i.e. if H were already obtained, how would G be computed? Since the

kernel of H is the image of G, which is C, one could just compute the kernel basis of H . This is a

standard elementary linear algebra problem: G would have rows equal to the elements of that basis.

The following proposition shows that the generator matrix of C⊥ is H and the parity-check

matrix of C⊥ is G. That is, C⊥’s G and H are swapped from C’s. Also (C⊥)⊥ is just C by

proposition 3.8.5. G is given, which is C’s generator matrix as well as C⊥’s parity-check matrix.

The kernel basis of G is the generator matrix for C⊥, which is also the parity-check matrix for C.

This means that not only can G be obtained by computing a kernel basis of an H , but vice versa as

well.

Proposition 3.8.6 (GH-perp). Let C have generator matrix G and parity-check matrix H. Then

C⊥ has generator matrix H and parity-check matrix G.
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Proof. Recall the convention that a generator matrix acts by post-multiplication and that a parity-

check matrix acts by pre-multiplication. So in this role, H maps Fn−k
q to Fn

q by sending z to zH ,

and G maps Fn
q to Fk

q by sending v to Gv. To avoid confusion (only for the duration of this proof)

the notation ·G is used for the linear transformation G : Fk
q → Fn

q acting by post-multiplication and

G· for G : Fn
q → Fk

q acting by pre-multiplication. Likewise, H · represents H : Fn
q → Fn−k

q and ·H

for H : Fn−k
q → Fn

q . Plain G and H refer to the matrices without respect to a linear transformation.

The following short exact sequences are desired:

0→ Fk
q

·G→ Fn
q

H·→ Fn−k
q → 0

0← Fk
q

G·← Fn
q

·H← Fn−k
q ← 0

with im(·G) = C = ker(H ·) and im(·H) = C⊥ = ker(G·). The short exactness means that ·G and

·H are 1-1, while H · and G· are onto. Thus, it suffices to show: (1) im(·H) = C⊥; (2) ·H is 1-1,

(3) ker(G·) = C⊥, and (4) G· is onto. Now, it has already been seen that the matrix G has rank k

and H has rank n− k. Since row rank equals column rank, (4) follows from (3) by the rank-nullity

theorem. Likewise, (2) follows from (1) since C⊥ has dimension n− k.

To prove (3), first let v ∈ C⊥. The rows of G form a basis for C; let gi be the ith row of G,

for i = 1, . . . , k, where each gi is a vector of length n (since it is in Fn
q ). Also let v = (v1, . . . , vn).

The matrix-times-vector multiplication G · v consists of dot products of v with the rows of G:

G · v =















g1

...

gk





























v1

...

vn















=















g1 · v
...

gk · v















.

Since each gi is in C and since v is in C⊥, all the dot products are zero and so G · v = 0.

Conversely, let v ∈ ker(G·). Then G · v = 0. Again, this product consists of dot products of

rows of G with v, so gi · v = 0 for all gi’s. Let c be an arbitrary element of C. Since the gi’s are a

basis for C, c =
∑k

i=1 cigi for some ci’s in Fq. Then

v · c = v ·
k

∑

i=1

cigi =

k
∑

i=1

ci(v · gi) = 0.

Therefore v ∈ C⊥.
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To prove that im(·H) = C⊥, notice in general that when a matrix X acts on a standard

basis by Xεi, the image of that basis consists of the columns of X . Likewise, when X acts on a

standard basis by εiX , the image of that basis consists of the rows of X . It suffices to show that

the rows of H are a basis for C⊥. Remember that H was set up to check the elements of C, and

since G has rows forming a basis for C, necessarily

HGt = 0.

This means that the rows of H are orthogonal to the rows of G, which shows that the rows of H

are in C⊥. Since H has rank n− k, the image of the standard basis for Fn−k
q under ·H is linearly

independent, and im(·H) must be all of C⊥.

Example 3.8.7. The 5-bit repetition code has generator matrix

G =

[

1 1 1 1 1

]

.

Then the kernel basis, in row-echelon form, is computed to be

H =























1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1























.

Intuitively, this makes sense: recalling that arithmetic here is being done mod 2, this means that

Hv is 0 only when v has all coordinates the same. The two possible cases are 00000 and 11111,

which are precisely the code words of the 5-bit repetition codes.

Example 3.8.8. The 5-bit parity-check code has generator matrix

G =























1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1























.
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One then computes

H =

[

1 1 1 1 1

]

.

Intuitively, this also makes sense: pre-multiplying v by H just adds up the bits of v mod 2. The

result is zero precisely when v has even parity, which is the case iff v is in C.

As an added bonus, since the firstG is the same as the secondH and vice versa, the repetition

and parity-check families are now seen by example to be duals of one another.

3.9. Decoding

One may think of a transmission error as a vector e which is added to the code word u,

resulting in a received word v. It is the task of the decoding algorithm to compute an estimate ê

for e, as illustrated in figure 5 (taken from [MS]). Once ê has been computed, one then computes

û = v̂ − ê. Then, m̂ may be found by solving the linear system of equations û = m̂G for m̂.

Sender - Encoder - Channel - Decoder - Recipient

m = m1 · · ·mk

Message

u = u1 · · ·un

Codeword

e = e1 · · · en

6

6

��
��

Error vector

v = u + e

Received

vector

ê = ê1 · · · ên

Estimate

of error

m̂ = m̂1 · · · m̂k

Estimate

of message

Figure 5. The coding theorist’s coat of arms

Definition 3.9.1. A decoding error occurs when the decoder computes e 6= ê. A decoding failure

occurs when the decoder fails to compute ê.

The simplest decoding algorithm is to tabulate, as in figures 1 and 2, the nearest code

word to each possible message word. Since the amount of storage space required is proportional

to the number of code words, this technique is practical only for very small codes. Other simple
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algorithms include the standard-array and step-by-step decoding algorithms. See [MS], [VvO] for

more information.



CHAPTER 4

Algebraic Geometry

Algebraic geometry is a large subject. Here, the definitions necessary for chapters 5-8 are

collected. For more information see [Wal], [Pre], [Sch], appendix A of [ST], and chapters I-II of [Sil].

Note that the latter three have no particular emphasis on finite fields.

4.1. Algebraic Closure of Fq

Algebraic geometry is largely concerned with algebraically closed fields. The algebraic closure

of Fq is ([DF], § 14.3)

Fq =
∞
⋃

i=1

Fqi .

Computation in this infinite field requires embedding finite smaller fields into larger ones. For

example, given α ∈ Fr
q and β ∈ Fs

q , one may compute t = lcm(r, s) and find the images of α, β in

Ft
q. Then, α+β, αβ, etc. may be computed in Ft

q as described in section 2.2. The embeddings may

be quickly done as described in remark 2.2.1, using root charts such as those in table 6. However,

Fq is used only for theoretical reasons in this paper; explicit computations in this paper are done

using only finite extensions of Fq.

4.2. Affine and Projective Spaces

Let K be a field with algebraic closure K. For most of this paper, K = Fq and K = Fq .

However, some motivating examples are given using K = K = C, or K = Q,K = Q.
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Definition 4.2.1. Affine n-space, written An(K), consists of all ordered n-tuples of elements of K.

In the literature, a plain An stands for An(K); this paper always uses the explicit latter

notation.

Definition 4.2.2. Let S = An+1(K) \ {(0, . . . , 0)} consist of all ordered n + 1-tuples of elements

of K with not all elements zero. Form the equivalence relation ∼ by (a0, . . . , an) ∼ (b0, . . . , bn) iff

(a0, . . . , an) = λ(b0, . . . , bn) for some λ ∈ K. Projective n-space, written Pn(K), is S/ ∼.

Intuitively, Pn(K) consists of all distinct straight lines through the origin in (n + 1)-

dimensional affine space.

Notation 4.2.3. The equivalence class of a point (a0, . . . , an) in Pn(K) is written [a0, . . . , an].

Note that λ-scaling is up to elements of K, not just K. For example, [1, 1] and [
√

2,
√

2] are

both elements of P1(Q). For this paper, however, it is assumed that elements of Pn(K) are written

with all coordinates in K. This is always possible for the following reason.

Convention 4.2.4. Since there may be more than one representative for each equivalence class in

Pn(K), unique representations are obtained by forcing the rightmost non-zero coordinate to be a 1.

For example, [2, 3, 5] in P2(F8) is written, dividing through by 5, as [4, 6, 1].

Example 4.2.5. A2(F2) consists of the following four elements:

(0, 0), (0, 1), (1, 0), (1, 1).

P2(F2) consists of the following seven elements:

[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1],

[0, 1, 0], [1, 1, 0],

[1, 0, 0].

In general, An(Fq) has qn elements, while Pn(Fq) has an additional qn−1+. . .+q+1 elements.

Observe that Pn(K) contains a copy of An(K) along with a copy of Pn−1(K). In the above example,

the former are the elements for which a 1 appears in the final coordinate; the latter are the elements
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for which a 0 appears in the final coordinate. The same criterion could be applied, however, to any

coordinate. For example, the elements of P2(F2) might be written

[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 1, 0],

[0, 0, 1], [1, 0, 1],

[1, 0, 0].

This motivates the following definition.

Definition 4.2.6. Fix a coordinate position i of Pn(K). The elements in the copy of An(K) with

non-zero ith coordinate are called affine points ; the elements in the copy of Pn−1(K) with zero ith

coorindate are called points at infinity.

Unless otherwise specified, it is assumed that the last coordinate position is the one used to

distinguish the affine points from the points at infinity.

Definition 4.2.7. The n + 1 copies of An(K) obtained by dehomogenizing with respect to each

coordinate are called the affine components of Pn(K).

Remark 4.2.8. Let P = [a0, . . . , an] ∈ Pn(K). For any ai = 0, P is a point at infinity with respect

to dehomogenization at the ith coordinate. For any ai 6= 0, of which there is at least one since

projective points have at least one non-zero coordinate, P is an element of the affine component

with respect to dehomogenization at the ith coordinate. In particular, if all ai’s are non-zero, then

P appears in all affine components.

4.3. Polynomials and Rational Functions

Definition 4.3.1. Let f(x0, . . . , xn−1) ∈ K[x0, . . . , xn−1]. The homogenization of f inK[x0, . . . , xn]

is F (X0, . . . , Xn) = Xd
nf(X0/Xn, . . . , Xn−1/Xn) where d = deg(f).

Intuitively, F is obtained from f by capitalizing, then inserting Xn’s to bring each monomial

up to the degree of f .

Example 4.3.2. If f(x, y) = x+ xy + y3, then F (X,Y, Z) = XZ2 +XY Z + Y 3.
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Definition 4.3.3. A polynomial F (X0, . . . , Xn) ∈ K[X0, . . . , Xn] is said to be homogeneous if all

its terms have the same degree.

Note that this implies F (λX0, . . . , λXn) = 0 iff λF (X0, . . . , Xn) = 0. Observe that the

homogenization of a polynomial is homogeneous. Likewise, a homogeneous rational function is the

quotient of homogeneous polynomials, of the same degree. The numerator and denominator must

have the same degree in order to preserve the scaling property for projective points, i.e. to ensure

that F ([a0, . . . , an]) = F ([λa0, . . . , λan]) for all non-zero λ ∈ K.

Definition 4.3.4. Given a polynomial F (X0, . . . , Xn) ∈ K[X0, . . . , Xn], the dehomogenization of

F with respect to Xi is the polynomial f(x0, . . . , xi−1, xi+1, . . . , xn) obtained by setting Xi to 1 and

replacing the remaining Xj ’s with xj ’s.

For example, if F (X,Y, Z) = XZ2+XYZ+Y 3, then the dehomogenization of F with respect

to Z is f(x, y) = x+xy+y3. The dehomogenization of F with respect to Y is f(x, z) = xz2 +xz+1.

Remark 4.3.5. The zeroes of f are the same as those of F on the corresponding affine component.

The zeroes at infinity are missing from the dehomogenization, but these may be obtained by setting

Xi = 0 in F .

Definition 4.3.6. An ideal I of K[X0, . . . , Xn] is said to be a homogeneous ideal if it is generated

by homogeneous polynomials.

By the Hilbert basis theorem ([Sil]), any ideal of K[X0, . . . , Xn] is finitely generated. A

rational expression F (X0, . . . , Xn) = G(X0, . . . , Xn)/H(X0, . . . , Xn) is simply an element of the

field K(X0, . . . , Xn). However, F (X0, . . . , Xn) may also be thought of as a rational function from

Pn(K) to P1(K) ∪ {0}, via the evaluation homomorphism.

4.4. Curves

Much of this chapter is owed to [Sil], but this section in particular is almost verbatim from

[Sil].
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Definition 4.4.1. Given a homogeneous ideal I of K[X0, . . . , Xn], VI is the set of all points of

Pn(K) which are zeroes of all polynomials in I . Any such VI is called a algebraic set.

Definition 4.4.2. The homogeneous ideal I(V ) of an algebraic set V is the set of all polynomials

in K[X0, . . . , Xn] which have value zero on all points of V . Additionally, one writes I(V/K) =

I(V ) ∩K[X0, . . . , Xn].

Definition 4.4.3. An algebraic set V is said to be defined over K if I(V ) may be generated by

homogeneous polynomials in K[X0, . . . , Xn].

Definition 4.4.4. If V is defined over K, then the set of K-rational points of V , written V (K),

consists of those points in V with coordinates in K. That is, V (K) = V (K) ∩ Pn(K).

Definition 4.4.5. A variety is an algebraic set whose homogeneous ideal I(V ) is a prime ideal in

K[X0, . . . , Xn].

This is technically the definition of a projective variety; affine varieties may be defined

similarly. For this paper, the projective kind is used everywhere unless stated otherwise, so the

terminology is shortened.

Informally, this means the following: algebraically, the ideal I(V ) does not factor non-trivally.

In particular, when a variety is defined by a single polynomial F , as is the case in this paper, F

does not factor non-trivially over K. Geometrically, the graph of zeroes is not the union of two

curves. For example (x2 + y2− 1)yx factors over R into the product of three polynomials; the graph

of zeroes of this polynomial consists of the union of the unit circle, the x axis, and the y axis. Thus,

the zeroes of this polynomial do not form a variety.

Recall that K[X0, . . . , Xn] is a unique factorization domain, hence its polynomials are prime

iff they are irreducible. In the case where I(V ) is generated by a single polynomial F (in which

case V may be written as VF ), in the literature F is often said to be absolutely irreducible. The

“absolute” part of this term arises since F is irreducible not only in K[X0, . . . , Xn], but also in

K[X0, . . . , Xn]. A sufficient condition for absolute irreducibility is shown in proposition 4.10.3.
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Remark 4.4.6. In [Sil], the dimension of a variety V is defined to be the transcendence degree of

the function field K(V ), defined below, over K. In particular, if V consists of the zeroes of a single

non-constant homogeneous polynomial F (X0, . . . , Xn), then the dimension of V is n− 2.

Definition 4.4.7. A curve is a variety of dimension one.

Definition 4.4.8. A plane curve is a curve whose homogeneous ideal is an ideal of K[X,Y, Z].

From remark 4.4.6, a plane curve is necessarily defined by a single equation. The curves

considered in this paper satisfy a final property, namely, smoothness.

Definition 4.4.9. A curve V is non-singular at a point P if the Jacobian matrix (∂Fi/∂Xj),

evaluated at P , has rank n − dimV , where F1, . . . , Fm is a finite generating set for I(V ). If V is

non-singular at every point P of Pn(K), then V is said to be non-singular or smooth. In the case

when V is defined by a single polynomial F (which is the case for this paper), then a point P of V

is singular iff all its partials vanish at P .

For example, the circle in A2(R) given by x2 + y2− 1 = 0 homogenizes to X2 +Y 2−Z2 = 0

in P2(R). This has dimension 1, and is a curve. The partial derivatives are 2X , 2Y , and −2Z,

respectively. These can be all zero only when X = Y = Z = 0, which is not a projective point.

Thus, the circle is smooth over R. Over a field with characteristic 2, it is not a variety since the

defining polynomial is reducible: x2 + y2 − 1 = x2 + y2 + 1 = (x+ y + 1)2. On the other hand, the

ball in A3(R) given by x2 + y2 + z2 − 1 = 0 homogenizes to X2 + Y 2 + Z2 −W 2 = 0. This is a

variety of dimension 2 as long as char(K) 6= 2, but it is not a curve.

The genus of a curve is a non-negative integer associated to the curve, as defined in [Sil].

Computation of the genus is in general non-trivial; however, the following formula suffices for this

paper. Let V be a smooth curve defined by a single polynomial F of degree d. The genus g of V

satisfies the Plücker formula:

g =
(d− 1)(d− 2)

2
.
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4.5. Enumeration of Points

Throughout this paper it is necessary to obtain a list of points on a curve over F2 or some

extension field thereof. This enumeration may be done analytically, as is shown by the following

example.

Example 4.5.1. Let E be defined by f(x, y) = y2 + y + x3 + x + 1 over F2, with homogenization

F (X,Y, Z) = Y 2Z+Y Z2 +X3+XZ2+Z3. Then ∂F
∂X

= X2+Z2, ∂F
∂Y

= Z2, and ∂F
∂Z

= Y 2 +Z2. For

∂F
∂Y

to be zero forces Z = 0, which in turn forces X = Y = 0. This remains true for any extension

field of F2. Since no projective point has all coordinates equal to zero, E is non-singular. By the

Plücker formula, E has genus 1. Since it visibly has the F2-rational point [0, 1, 0], E is in fact an

elliptic curve.

The points of E(F2) are computed as follows. As discussed in remark 4.3.5, the points at

infinity are found by setting Z = 0; the affine points are found by setting Z = 1. The former yields

X3 = 0, regardless of the degree of the extension Fq of F2. It remains to compute the affine points,

given the dehomogenization f(x, y) = y2 + y + x3 + x + 1. The y part y2 + y = y(y + 1) has value

0 at y = 0, 1, while the x part x3 + x + 1 has value 1 at x = 0, 1. Therefore, E(F2) has no affine

points.

x x3 1 x3 + x+ 1 y y + 1 y(y + 1)

0 0 1 1 0 1 0
1 1 1 1 1 0 0
2 1 1 2 2 3 1
3 1 1 3 3 2 1

Table 8. x and y parts for affine points of E(F4)

For curves in a small number of variables over a small finite field, instead of analyzing the

curve one may simply test each point of Pn(Fq). What this approach lacks in elegance it makes

up for in simplicity, and in particular it is easily automated. This method is used to list points of

E(F4) and E(F8). It was shown in the previous paragraph that [0, 1, 0] is the only point at infinity

on E(F2r ) for all positive r, so in fact one needs only to check the affine points. For affine points of
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x x3 1 x3 + x+ 1 y y + 1 y(y + 1)

0 0 1 1 0 1 0
1 1 1 1 1 0 0
2 3 1 0 2 3 6
3 4 1 6 3 2 6
4 5 1 0 4 5 2
5 6 1 2 5 4 2
6 7 1 0 6 7 4
7 2 1 4 7 6 4

Table 9. x and y parts for affine points of E(F8)

F4, one computes the x and y parts as shown in table 8, using the tables in section 2.2. For each

value of x, one may simply tick off the values of y, if any, for which the x part equals the y part.

For x = 0, y = 2, 3; for x = 1, y = 2, 3. These result in the projective points

[0, 2, 1], [0, 3, 1], [1, 2, 1], [1, 3, 1], [0, 1, 0].

For affine points of F8, one proceeds similarly, as shown in table 9. The projective points are

[2, 0, 1], [2, 1, 1], [3, 2, 1], [3, 3, 1], [4, 0, 1], [4, 1, 1],

[5, 4, 1], [5, 5, 1], [6, 0, 1], [6, 1, 1], [7, 6, 1], [7, 7, 1], [0, 1, 0].

4.6. Bounds on Point Counts

As discussed in section 3.6, better codes are obtained for curves with large numbers of

rational points, which is possible only for curves of higher genus. The Hasse-Weil theorem ([Wal],

chapter 7) in fact gives the following: Let V be a smooth curve of genus g over Fq, and write

N = #(Fq). Then

|N − q − 1| ≤ 2g
√
q.

A result of Serre [Ser] improves this slightly to

|N − q − 1| ≤ gb2√qc

where bxc, the floor function of x, denotes the largest integer less than or equal to x. Note in

particular that the bounds of Hasse-Weil and Serre provide an exact point count, namely q + 1, for
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curves of genus 0. In general, one may view the Hasse-Weil and Serre bounds in the following way:

The number of points on a curve over Fq is approximately q + 1, plus or minus an amount which

is small when g is small; the amount of uncertainty allowed by these bounds grows with the genus.

Further discussion of bounds for the number of points on curves over finite fields may be found in

[Iha] and [Lau].

Example 4.6.1. The curve given by the zeroes of Y 2Z + Y Z2 +X3 +XZ2 +Z3 over F2 was seen

to have genus g. The actual point counts are compared to the Serre bound in table 10.

L #P2(L) #E(L) Serre minimum Serre maximum

F2 7 1 1 5
F4 21 5 1 9
F8 73 13 4 14
F16 273 25 9 25
F32 1057 41 22 44
F64 4161 65 49 81
F128 16513 113 107 151
F256 65793 225 225 289
F512 262657 481 468 558
F1024 1049601 1025 961 1089

Table 10. Point counts vs. Serre bounds for E

4.7. Point Classes

Let L be a Galois extension of K, and let σ be an element of G = Gal(L/K). Let V be a

curve with coefficients in a field K. Then V (L) may have more points than does V (K). For example,

the circle x2 + y2 + 1 = 0 has no points at all over K = R, but it has infinitely many points over

L = C.

Notation 4.7.1. Let P = [a0, . . . , an] ∈ Pn(L). Then σ(P ) denotes [σ(a0), . . . , σ(an)].

Note that if P = [α0, . . . , αn] is a zero of F , then σ(P ) = [σ(α0), . . . , σ(αn)] is also a zero of

F .

Definition 4.7.2. The orbit of P under the action of G is called a point class. The cardinality of

a point class is called the degree of the point class.
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Example 4.7.3. The points on E(F4) as shown in section 4.5 cluster into point classes

{[0, 2, 1], [0, 3, 1]}, {[1, 2, 1], [1, 3, 1]}, {[0, 1, 0]}.

The points on E(F8) cluster into point classes

{[2, 0, 1], [4, 0, 1], [6, 0, 1]}, {[2, 1, 1], [4, 1, 1], [6, 1, 1]},

{[3, 2, 1], [5, 4, 1], [7, 6, 1]}, {[3, 3, 1], [5, 5, 1], [7, 7, 1]}, {[0, 1, 0]}.

For future reference, some of these point classes are named as follows:

Q2 = {[0, 2, 1], [0, 3, 1]}, Q3 = {[2, 0, 1], [4, 0, 1], [6, 0, 1]}.

4.8. Function Fields

Definition 4.8.1. Let V be a variety defined over a field K. The coordinate ring of V/K is

K[V ] =
K[X0, . . . , Xn]

I(V/K)
.

This is simply the set of all polynomials, modulo the polynomial(s) defining V . Note that

the coordinate ring is an integral domain since I(V/K) is assumed to be prime. Thus it is possible

to form a field of quotients.

Definition 4.8.2. The function field K(V ) of a curve V over K is the field of quotients of its

coordinate ring.

The definition means that K(V ) is the subfield of K(X0, . . . , Xn) consisting of G(x)/H(x)

such that:

(i) G, H are homogeneous of the same degree, so that the λ-scaling property applies.

(ii) Division by zero mod I(V/K) is disallowed: H 6∈ I(V/K).

(iii) Equality of fractions mod I(V/K): G/H ∼ G′/H ′ ⇐⇒ GH ′ −G′H ∈ I(V ).
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4.9. Intersection Multiplicity

Bezout’s theorem is presented in section 4.10. This key result shows that two non-overlapping

projective plane curves over an algebraically closed field intersect in exactly de points, where d and

e are the degrees of the polynomials defining the curves. However, this only works correctly when

intersection points are counted with multiplicity. For example, one would expect the parabola

y = x2 and the line y = 0, which are Y Z = X2 and Y = 0 in projective coordinates, to have

a double intersection point at the origin. Intersection multiplicity may be defined quite generally

[Har], but here all that is needed is intersection multiplicity for plane projective curves, one of

which is a line. In contrast to the rest of this paper, the affine approach is taken here: intersection

multiplicity for projective plane curves is accomplished by examining each affine component. This

is done in order to facilitate a particular computation shown below. By remark 4.2.8, all points of

the projective plane are contained in some affine component.

Affine varieties are defined over affine spaces in a manner analogous to projective varieties

(section 4.4). Let V and W be projective plane curves, defined by polynomials Φ[X,Y, Z] and

Ψ[X,Y, Z]. Let v, defined by φ(x, y), and w, defined by ψ(x, y), be the affine components of V and

W after dehomogenization with respect to one variable, which without loss of generality is taken to

be Z.

Definition 4.9.1. Let p be a point on v. Define

Op =
{

f =
g

h
∈ K(x, y) : h(p) 6= 0

}

.

This is a local ring, the localization of K[x, y] at p, which contains all of K(x, y) except those

functions whose denominator is zero at p.

Definition 4.9.2. The intersection multiplicity of v and w at a point p is defined ([ST], appendix

A) to be

IM(v ∩ w, p) =

(

dimK

( Op

〈φ, ψ〉p

))

where the subscript on 〈φ, ψ〉p indicates an ideal of Op.
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This is computed by first considering K[x, y]/〈φ, ψ〉, then localizing at p afterward. The

computation is particularly simple if w is a line. For the moment, this special case is all that is

needed. Let ` be a line, defined by λ(x, y). Since φ is a polynomial in two variables and λ contains

a term of degree 1, one variable, say y, may be eliminated. The ideal 〈φ, λ〉 is then singly generated

as 〈u(x)〉. Over a splitting field S of K, where S ⊂ K, u(x) factors as

u(x) =

n
∏

j=1

(x− αj)
ej .

For each αj , the other coordinate βj may be computed using λ, yielding a point p = (αj , βj). In the

localization at p, the x− αi factors become units wherever i 6= j, and

Op

〈φ, λ〉p
=

Op

〈(x− αj)ej 〉

which is a vector space of dimension ej over K. Intersection multiplicities are thus reduced to

multiplicities of roots of univariate polynomials.

Note that a projective line may not become an affine line when dehomogenized. For example,

the projective line X = 0 becomes the empty set upon dehomogenization at X . More generally, [Sil],

there are only two possibilities for a projective variety: (1) dehomogenization produces an empty

affine variety, or (2) dehomogenization followed by rehomogenization recovers the original projective

variety entirely.

Definition 4.9.3. Let V be a projective plane curve and L be a projective plane line. If the

dehomogenization of L fails to remain a plane line upon dehomogenization with respect to a variable,

then that affine component is said to be inadmissible for L.

Example 4.9.4. Let K = Q, let V defined by Y Z2 = X3 − XZ2, i.e. the homogenization of

y = x3 − x, and let L be defined by Y = 2X + 2Z, i.e. the homogenization of y = 2x + 2. By

elementary calculus, L is seen to be tangent to V at [−1, 0, 1], and intersects V additionally at

[2, 6, 1]. One would expect multiplicity two at the former point and multiplicity one at the latter

point. Both points appear in dehomogenization with respect to Z since they have final coordinate

1, and so one does not need to dehomogenize with respect to X or Y . The affine plane curve v is
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defined by φ(x, y) = y − x3 + x and ` is defined by λ(x, y) = y − 2x− 2. Then

〈φ, λ〉 = 〈y − x3 + x, y − 2x− 2〉 = 〈x3 − 3x− 2〉 = 〈(x + 1)2(x− 2)〉.

Zeroes of this last polynomial are x = −1, 2, corresponding to y = 0, 6 on v. In the localization

at p = (−1, 0), x − 2 is permissible in the denominator of elements of Op but x + 1 is not, and so

x − 2 is a unit. Thus, 〈φ, λ〉p = 〈(x + 1)2〉. In the localization at q = (2, 6), x + 1 is a unit and so

〈φ, λ〉q = 〈x− 2〉. Then Op/〈(x+ 1)2〉p is generated as a K-vector space by {1, x} and Oq/〈x− 2〉q

is generated as a K-vector space by {1}. Thus the intersection multiplicities are in fact 2 and 1,

respectively, as expected.

Example 4.9.5. Let V be defined by Y Z − X2 and L by X . Dehomogenization with respect

to Z gives φ(x, y) = y − x2 and λ(x, y) = x, leading to the intersection point [0, 0, 1]. Likewise,

dehomogenization with respect to Y yields the other intersection point [0, 1, 0]. However, dehomog-

enization with respect to X gives φ(y, z) = yz − 1 and λ(y, z) = 1. The latter has no zeroes at all,

so dehomogenization with respect to X is inadmissible for L.

The above discussion is summarized in the following pair of algorithms.

Algorithm 4.9.6. Let v be an affine plane curve and ` be an affine plane line, defined by φ(x, y)

and λ(x, y), respectively. To compute the intersection points and multiplicities for v and `:

• Use λ to eliminate one variable. Since λ has degree 1, it may be solved for one variable or the

other, say y. Then a polynomial u(x) is obtained.

• Split u(x) into linear factors over some extension field of K, i.e. u(x) =
∏n

j=1(x− αj)
ej .

• For each linear factor αj , compute βj using λ(αj , βj). Then (αj , βj) is an intersection point

with multiplicity ej .

Algorithm 4.9.7. Let V be a projective plane curve and L be a projective plane line, defined by

Φ(X,Y, Z) and Λ(X,Y, Z), respectively. To compute the intersection points and multiplicities for V

and L:
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• Dehomogenize with respect to each admissible affine component.

• Compute the intersection points and multiplicities for each affine component, as described in

algorithm 4.9.6.

• If the dehomogenization was done with respect to Z, homogenize each affine intersection

point (αj , βj) to obtain the projective point [Aj , Bj , 1], and likewise for the other possible

dehomogenizations. Take the multiplicity ej from the affine intersection point.

• As discussed in remark 4.2.8, a given projective intersection point may be found via more than

one affine component. Retain only one copy of each projective intersection point. Use the

unique representation described in convention 4.2.4 to facilitate comparison of points.

4.10. Bezout’s Theorem

The curves considered in this paper are plane curves, due in large part to the following key

theorem which provides insight into their behavior.

Theorem 4.10.1 (Bezout). If F and G are relatively prime homogeneous polynomials in

K[X,Y, Z], then F and G intersect in exactly deg(F ) deg(G) points of P2(K), when intersections

are counted with multiplicity.

Proof. See [ST], § A.4.

Remark 4.10.2. Algorithm 4.9.7 calls for dehomogenizing at all variables. This often finds a given

projective intersection point in more than one affine component. Using Bezout’s theorem, one may

reduce the amount of computation by instead trying one affine component at a time, stopping when

the full number of intersection points is found.

The following provides a sufficient condition for absolute irreducibility.

Proposition 4.10.3. A smooth projective plane curve defined by a single equation is absolutely

irreducible.
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Proof. The proof is by contrapositive. Let C be a projective plane curve defined by F (X,Y, Z) ∈

K[X,Y, Z]. First suppose F (X,Y, Z) = G(X,Y, Z)H(X,Y, Z) for relatively prime G,H ; let d =

degF and e = degG. Then d, e ≥ 1 since the factorization is non-trivial. By Bezout’s theorem

(4.10.1), G and H intersect in at least one point P . By the chain rule,

∂F

∂X
(P ) =

∂G

∂X
(P )H(P ) +G(P )

∂H

∂X
(P ) = 0

∂F

∂Y
(P ) =

∂G

∂Y
(P )H(P ) +G(P )

∂H

∂Y
(P ) = 0

∂F

∂Z
(P ) =

∂G

∂Z
(P )H(P ) +G(P )

∂H

∂Z
(P ) = 0

showing that C is not smooth at P .

Now suppose F factors non-trivially, but that there is no relatively prime factorization. Thus

F (X,Y, Z) = Gm(X,Y, Z) for some irreducible G(X,Y, Z) and m > 1. Let P be a point on the

curve defined by F . Then F (P ) = 0 = G(P )m implies G(P ) = 0. Again using the chain rule,

∂F

∂X
(P ) = mG(P )m−1 ∂G

∂X
(P )

∂F

∂Y
(P ) = mG(P )m−1 ∂G

∂Y
(P )

∂F

∂Z
(P ) = mG(P )m−1 ∂G

∂Z
(P )

If the characteristic of K divides m, then all the partials are zero. Otherwise, the factor G(P )m−1,

where m > 1, makes them all zero at P . Thus in this case, the curve is singular at all points.

4.11. Zeroes and Poles

Definition 4.11.1. Let p be a point on an affine variety v. Define

Op,v =
{ g

h
∈ K(v) : h(p) 6= 0

}

,

Mp,v =
{ g

h
∈ K(v) : h(p) 6= 0, g(p) = 0

}

.

Define νp,v : Op,v → Z≥0 ∪ {∞} by

νp,v(ψ) = max{d : ψ ∈Md
p,v}.
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It is shown in [HvLP] that νp,v is a discrete valuation, and that Op,v is a discrete valuation

ring with Mp,v as its unique maximal ideal. The property of a discrete valuation which is key to

the current discussion is that

νp,v(ψ1ψ2) = νp,v(ψ1) + νp,v(ψ2).

Computations may be done using the intersection multiplicity defined above.

Proposition 4.11.2. Let p be a point on an affine plane curve v defined by a polynomial φ, and let

` be an affine line defined by a polynomial λ. Then νp,v(λ) = IM(v ∩ `, p).

Proof. Let e = νp,v(λ). Then λ ∈ 〈x − a〉e, λ 6∈ 〈x − a〉e+1, which implies e = dimK(Op,v/〈λ〉p,v),

which is the same as dimK(Op/〈φ, λ〉p).

Finally, extend discrete valuations to projective curves by νP,V (Ψ) = νp,v(ψ) using some

admissible affine component for Ψ. One may now easily compute the intersection multiplicity of a

projective plane curve with a product or quotient of lines.

Definition 4.11.3. Let Ψ ∈ K(V ) and P ∈ V ; let d = νP,V (Ψ). Then P is said to be a zero of

multiplicity d of Ψ if d > 0; P is said to be a pole of order −d of Ψ if d < 0.

4.12. Divisors

Definition 4.12.1. Let V be a variety defined over a field K. The divisor group DivK(V ), or simply

Div(V ), is the free abelian group on points of V (K). A divisor on V is any element of the divisor

group, and is written as
∑

P∈V

nPP . The integer nP is called the coefficient of P in D. The identity

element of the divisor group is written 0. A divisor is said to be K-rational if it is invariant under

the action of Gal(K/K), where the Galois group acts by σ(D) = σ(
∑

nPP ) =
∑

nPσ(P ). The set

of K-rational divisors of V forms the subgroup DivK(V ) of Div(V ).

For example, 3P∞ − 2[5, 5, 1] is a divisor on the sample curve E(F8). Recall that from the

definition of free abelian group, only finitely many nP ’s are non-zero. Also, note that the nP ’s are
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nothing more than integer prefixes; in particular, they are not to be reduced mod p where p is the

characteristic of Fq .

Let L be a Galois extension of K. As discussed in section 4.7, points of V (K) that are

contained in Pn(L) but not contained in Pn(K) cluster into point classes. In this case, a point P

in a divisor D of V (L) is taken to include all the points in the class. For this paper, non-singleton

point classes are usually written P ; singleton point classes are written P . In this paper, in nearly

all cases the point classes discussed are taken to be singletons by extension of the base field. For

example, as shown in section 4.7, the points [2, 0, 1], [4, 0, 1], [6, 0, 1] form a single class over F2. Over

F8, they form three singleton classes.

Definition 4.12.2. Let P be a point class. The notation deg(P) represents the cardinality of P .

Definition 4.12.3. Let D =
∑

P∈V

nPP . The degree of D, written degD, is
∑

P∈V

nP degP , where

degP = 1 if P is a point, or deg(P ) as defined above if P is a point class.

Note that the degree function is a group homomorphism from Div(V ) to Z.

Definition 4.12.4. Let D =
∑

P∈V

nPP . If nP ≥ 0 for all P ∈ V , then D is said to be an effective

divisor, written D < 0.

For example, since −2 is negative, 3P∞− 2[5, 5, 1] is a non-effective divisor on E(F8). It has

degree 1.

Definition 4.12.5. Let D =
∑

P∈V

nPP . The support of D, written supp(D), is {P ∈ V : nP 6= 0}.

Since by definition only finitely many nP ’s are non-zero for any divisor D, supp(D) is always a finite

set.

Definition 4.12.6. A one-point divisor is one whose support consists of a single point P . Such a

divisor is often written in the form rP .

Divisors are a handy way to track points of intersection of curves, counting multiplicity. This

motivates the following definition.
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Definition 4.12.7. Let F ∈ K(V ). The intersection divisor of F with respect to the variety V is

∑

P∈V νP,V (F )P .

Remark 4.12.8. If G(P ) = 0 and H(P ) = 0, and if P is a smooth point of V , and if V is one-

dimensional, then [Sil] there is another rational function F ′ ∼ F in K(V ) such that either F ′ is

defined at P , or P is a pole of F ′. That is, 0/0 situations are removable at smooth points.

Proposition 4.12.9 (Zeroes and poles). Suppose that V is defined by a single polynomial M

and that G/H is non-zero. Then deg div(G/H) = 0.

Remark 4.12.10. Informally, G/H has as many zeroes as poles. The condition that V be defined

by a single polynomial is in fact the case for curves studied in this paper. Also note that Bezout’s

theorem applies to polynomials, while this proposition applies to rational functions in a function

field.

Proof. Since V is a variety, M is prime. Also, since K[X0, . . . , Xn] is a unique factorization domain,

G and H may be assumed to be relatively prime. Since H in the denominator is non-zero mod M ,

it is not a multiple of M and so is relatively prime to M . Also, G is not a multiple of M , since if it

were, G/H would be zero mod M . Thus, M is relatively prime to both G and H . Since G and H

are assumed to be of the same degree, by Bezout’s theorem M and G intersect in as many points as

M and H do. Therefore,
∑

degP =
∑

degQ, i.e. deg div(G/H) = 0.

4.13. Associated Vector Spaces

Definition 4.13.1. For each K-rational divisor D of V (K), one associates a vector space L(D)

over K:

L(D) = {F ∈ K(V ) : div(F ) +D < 0} ∪ {0}.

One may form an analogous vector space over K rather than K, as discussed in section 2.7

of [HvLP]. The key property of L(D) is that all rational functions in L(D) have poles confined to

the points with positive coefficients in D. This property is used starting in chapter 5 to construct

sets of rational functions and sets of points where division by zero does not occur.
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The following proposition is for use in section 5.2 of chapter 5.

Proposition 4.13.2. If deg(D) < 0, then L(D) = {0}.

Proof. Let F be non-zero in K(V ). From the zeroes-and-poles proposition (4.12.9), deg div(F ) = 0.

Thus

deg div(F ) + deg(D) = deg(div(F ) +D) < 0 =⇒ div(F ) +D 6< 0 =⇒ F 6∈ L(D).

It can be shown ([Sil], [HvLP]) that L(D) is in fact finite-dimensional overK. The dimension

of L(D) is written `(D). This is the code dimension for algebraic-geometry codes as defined below.

The Riemann-Roch theorem [Sil] in some cases permits quick computation of `(D). It also plays a

central role in obtaining information about the parameters of algebraic-geometry codes, as discussed

in chapter 5.

Theorem 4.13.3 (Riemann-Roch). Let V be a smooth curve of genus g, defined over K, and let

D be a divisor on V . Then

`(D) ≥ degD − g + 1.

Furthermore, if degD > 2g − 2, then

`(D) = degD − g + 1.

Proof. See [Pre], chapter 11.

The case degD > 2g−2 is referred to as the exact case of the Riemann-Roch theorem, since

it exactly specifies `(D).

4.14. Bases for One-Point Divisors

The goal of this section is to provide a technique to compute a basis for divisors of the form

L(rP ), r ≥ 0.
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Definition 4.14.1. For a point P on V , a gap of P is a non-negative integer i such that `(iP ) =

`(i− 1)P ). A non-gap of P is a non-negative integer such that `(iP ) 6= `((i− 1)P ).

See [HvLP] for justification of the following assertions: A non-negative integer i is a non-gap

of P iff there is an F ∈ K(V ) with a pole of order i in P , and poles at no other point of V . The

number of gaps is g. The sum of non-gaps m1,m2 is another non-gap m1 +m2. The non-gaps form

the Weierstrass semigroup.

Proposition 4.14.2. Let (γi : i ∈ Z+) be an enumeration of the non-gaps of P , with 0 = γ1 < γ2 <

. . .. Let Fi ∈ L(γiP ) be such that νP (F ) = −γi. Then {F1 . . . , Fr} is a basis for L(γrP ).

Proof. [Pre], proposition 4.6; [HvLP], section 2.6.

Proposition 4.14.2 permits computation of a basis for a one-point divisor as follows.

• Let D = rP .

• All gaps are at 0 ≤ r ≤ 2g− 2. Of those 2g− 1 values of r, g are gaps and g− 1 are non-gaps.

• Obtain functions with various pole orders.

• If g − 1 different functions are found with pole orders at different r, 0 ≤ r ≤ 2g − 2, then the

gaps are at the remaining r values.

• For r > 2g − 2, a function may be found with pole order r at P .

4.15. Example Bases

Consider the curve E as shown above, and let D = rP∞ for some positive integer r. Then

degD = r.

The intersection divisor div(X) consists of the points of E, i.e. zeroes of Y 2Z+Y Z2 +X3 +

XZ2 +Z3, where additionally X = 0. Thus Y 2Z + Y Z2 +Z3 = Z(Y 2 + Y Z +Z2). This splits into

two cases, Z = 0 or Z 6= 0. If Z = 0, then X = 0 and the only infinite point is P∞ = [0, 1, 0]. If

Z 6= 0, then let Z = 1. This is possible since each projective point has one arbitrary coordinate via
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λ-scaling. Then Y 2 + Y + 1 = 0. This quadratic is irreducible over F2, so it has two single roots in

F4. Using the notation of section 2.2, Y = 2, 3, and so the remaining points are [0, 2, 1] and [0, 3, 1].

Using the notation of section 4.7,

div(X) = P∞ +Q2.

Note that X is not required to have as many poles as zeroes, since it is not a rational function.

The intersection divisor div(Y ) consists of the points of E where Y = 0. ThusX3+XZ2+Z3.

If Z = 0, then X = 0. However, [0, 0, 0] is not a projective point. If Z 6= 0, then again let Z = 1.

Points are roots of X3 +X + 1, which is a cubic irreducible over F2. Using the notation of section

2.2, the three distinct roots are X = 2, 4, 6. Then

div(Y ) = Q3

The intersection divisor div(Z) consists of the points of E where Z = 0. Thus X3 = 0. This

forces Y = 1, but here with multiplicity three. Then

div(Z) = 3P∞.

Now that these three intersection divisors have been computed, it is possible to write down

a basis for L(rP∞). Note that

div(X iY j/Zi+j) = i(P∞ +Q2) + j(Q3)− (i+ j)(3P∞)

= iP∞ + iQ2 + jQ3 − 3iP∞ − 3jP∞

= (−2i− 3j)P∞ + iQ2 + jQ3.

For r = 0, trivially the rational function 1 forms a linearly independent set. Since E has

genus 1, 2g−2 = 0 and thus the exact case of the Riemann-Roch theorem (4.13.3) applies whenever

deg(rP∞) = r ≥ 1. In particular, for r = 1, `(P∞) = 1. However, L(P∞) already contains F = 1.

Therefore, L(1P∞) = L(0P∞), and 0 is a gap of E. Since g(E) = 1, this is the only gap.

For r = 2, take i = 1 and j = 0. Then div(X/Z) + 2P∞ = Q2, which is in L(2P∞) but

not L(P∞), hence linearly independent from 1. For higher r, equate r with −2i − 3j as shown in

table 11. As in the case r = 2, one obtains for each r an element of L(rP∞) which was not in
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L((r − 1)P∞), hence linearly independent from the previous set. To summarize, bases for the first

few L(rP∞) are shown in table 12.

i j F = X iY j/Zi+j div(F ) r div(F ) + rP∞

0 0 1 0P∞ + 0Q2 + 0Q3 0, 1 0
1 0 X/Z −2P∞ + 1Q2 + 0Q3 2 Q2

0 1 Y/Z −3P∞ + 0Q2 + 1Q3 3 Q3

2 0 X2/Z2 −4P∞ + 2Q2 + 0Q3 4 2Q2

1 1 XY/Z2 −5P∞ + 1Q2 + 1Q3 5 Q2 +Q3

0 2 Y 2/Z2 −6P∞ + 0Q2 + 2Q3 6 2Q3

2 1 X2Y/Z3 −7P∞ + 2Q2 + 1Q3 7 2Q2 +Q3

1 2 XY 2/Z3 −8P∞ + 1Q2 + 2Q3 8 Q2 + 2Q3

0 3 Y 3/Z3 −9P∞ + 0Q2 + 3Q3 9 3Q3

2 2 X2Y 2/Z4 −10P∞ + 2Q2 + 2Q3 10 2Q2 + 2Q3

1 3 XY 3/Z4 −11P∞ + 1Q2 + 3Q3 11 Q2 + 3Q3

0 4 Y 4/Z4 −12P∞ + 0Q2 + 4Q3 12 4Q3

2 3 X2Y 3/Z5 −13P∞ + 2Q2 + 3Q3 13 2Q2 + 3Q3

1 4 XY 4/Z5 −14P∞ + 1Q2 + 4Q3 14 Q2 + 4Q3

0 5 Y 5/Z5 −15P∞ + 0Q2 + 5Q3 15 5Q3

2 4 X2Y 4/Z6 −16P∞ + 2Q2 + 4Q3 16 2Q2 + 4Q3

1 5 XY 5/Z6 −17P∞ + 1Q2 + 5Q3 17 Q2 + 5Q3

0 6 Y 6/Z6 −18P∞ + 0Q2 + 6Q3 18 6Q3

Table 11. Selected function divisors for E

r Basis for L(rP∞)
1 {1}
2 {1, X/Z}
3 {1, X/Z, Y/Z}
4 {1, X/Z, Y/Z, X2/Z2}
5 {1, X/Z, Y/Z, X2/Z2, XY/Z2}
6 {1, X/Z, Y/Z, X2/Z2, XY/Z2, Y 2/Z2}
7 {1, X/Z, Y/Z, X2/Z2, XY/Z2, Y 2/Z2 X2Y/Z3}
8 {1, X/Z, Y/Z, X2/Z2, XY/Z2, Y 2/Z2, X2Y/Z3, XY 2/Z3}

Table 12. Bases for L(rP∞), r = 1, . . . , 8



CHAPTER 5

Construction and Encoding of Goppa Codes

Let V be a smooth curve defined over Fq . Let P = (P1, . . . , Pn) ∈ Fn
q where the Pj ’s are n

distinct Fq-rational points of V . Let D be a divisor on V , with 0 < degD < n. Further, assume

that none of the Pj ’s appear in the support of D. This is so that no Pj is a pole of any F ∈ L(D):

F (Pj) ∈ Fq for all Pj ’s and for all F ∈ L(D).

Typically, D is a one-point divisor on a particular point selected from the curve, while P

includes some or all of the remaining points on the curve. Making P larger or smaller permits

variation of the code length n.

5.1. The Goppa Primary Code

Definition 5.1.1. Define

F (P ) = (F (P1), . . . , F (Pn))

to be the componentwise application of F .

Definition 5.1.2. Given v ∈ Fn
q , the syndrome of v with respect to F and P is the dot product

F (P ) · v =
n

∑

j=1

F (Pj)vj .

Definition 5.1.3. The Goppa primary code (or Goppa residue code) for V , P and D is

Cp(V,P , D) = {v ∈ Fn
q : F (P ) · v = 0 for all F ∈ L(D)}.
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The parameters for these codes are as follows. By construction, the length of Cp is n, and q

is a given from Fq.

Proposition 5.1.4. The dimension k of Cp is

k = n− deg(D) + g − 1

Proof. Proposition 5.2.2 in the following section shows that the dual code to Cp has dimension

deg(D)−g+1. From the GH-perp proposition (3.8.6), the dimension of Cp is n minus the dimension

of its dual, which is the desired result.

Proposition 5.1.5. Let d be the minimum distance of the Goppa primary code Cp(V,P , D); let g

be the genus of V . If deg(D) > 2g − 2, then d ≥ deg(D)− 2g + 2.

Proof. Since Cp is a linear code, from the observation in definition 3.2.3 it suffices to show the result

for the minimum weight over all non-zero code words of C. Following [Pre], let u be a non-zero code

word of Cp, of weight w > 0. Without loss of generality, suppose the Pj ’s of P and the uj ’s are

numbered such that uj 6= 0 for j = 1, . . . , w and uj = 0 for j = w+1, . . . , n. Seeking a contradiction,

suppose 1 ≤ w < deg(D)− 2g + 2. Let

Dw = D − P1 − . . .− Pw , Dw−1 = D − P1 − . . .− Pw−1.

Then

w < deg(D)− 2g + 2 =⇒ deg(D)− w = deg(Dw) > 2g − 2

and thus deg(Dw−1) > 2g − 2 as well. By the Riemann-Roch theorem,

`(Dw) = deg(D)− w − g + 1, `(Dw−1) = deg(D)− w − g + 2.

Thus there exists an F in L(Dw−1) which is not in L(Dw). This implies F (Pj) = 0 for j =

1, . . . , w − 1, and F (Pw) 6= 0. Since Dw−1 4 D, F ∈ L(D) and F (P ) · u = F (Pw)uw 6= 0,

contradicting the assumption that u ∈ C.

Definition 5.1.6. The lower bound deg(D)− 2g + 2 is called the designed minimum distance of a

Goppa code. A code’s actual minimum distance is called the true minimum distance.
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In general, to compute the true minimum distance of a code requires a brute-force iteration

over all the code words. For large codes, this is impractical. By constrast, the designed minimum

distance for Goppa codes is easily computed using the above formula. Goppa codes are not the only

family of codes for which this is the case [MS].

For linear codes in general, one has

0 < k < n

as discussed in chapter 3. As a consequence of proposition 5.1.5, however, there do not exist Goppa

codes over curves of higher genus with dimension too close to 0 or n.

Corollary 5.1.7. The dimension k of a Goppa code is related to the genus by

g − 1 < k < n− g + 1.

Proof. For the lower bound,

k = n− degD + g − 1

degD = n− k + g − 1

n− k + g − 1 < n since degD < n

k − g + 1 > 0

k > g − 1.

For the upper bound, we need degD > 2g − 2 in order to guarantee a minimum distance d. Thus

k = n− degD + g − 1

degD = n− k + g − 1 > 2g − 2

k < n− g + 1.

Proposition 5.1.5 provides a lower bound on d; the Singleton bound (3.5.1) provides an easily

computed upper bound on d. Tighter upper bounds are available [MS], but are not necessary for

the short codes defined in this paper.
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The question of why algebraic-geometry codes are of interest to the coding-theory community

is not addressed here. It is possible to use algebraic geometry to produce sequences of codes which

are good in the sense of section 3.6. See, for example, chapter 5 of [Wal] and section 1 of [HvLP] for

a discussion of connections between AG codes and the Gilbert-Varshamov bound. See also [Gop]

for the original presentation of Goppa codes.

5.2. The Goppa Dual Code

Definition 5.2.1. Let V , P and D be as in section 5.1 and let F ∈ L(D). The Goppa dual code

(or Goppa function code) for V , P and D is

Cd(V,P , D) = {F (P ) : F ∈ L(D)} ⊂ Fn
q .

That is, Cd is the image of the evaluation map

ε : L(D)→ Fn
q given by F 7→ F (P )

and therefore Cd is a linear code over Fq. Thus, the Goppa primary code Cp(V,P , D) is now seen

to be

Cp(V,P , D) = {v ∈ Fn
q : F (P ) · v = 0 for all F ∈ L(D)}

= {v ∈ Fn
q : F (P ) · v = 0 for all F (P ) ∈ Cd}

= {v ∈ Fn
q : u · v = 0 for all u ∈ Cd}

which is precisely the dual code of Cd. The primaries get their name because they are easier to

decode, and decoding is where most of the work is. The dual codes are used because it is easy to

compute the generator matrix for a dual code. Then, one may use the GH-perp proposition (3.8.6)

to obtain a generator matrix for the corresponding primary code.

The code parameters for Goppa dual codes are as follows. By construction, the length of Cd

is n, and q is a given from Fq . It remains to find the dimension n− k and the minimum distance d.

Once the dimension n− k of the dual code is obtained, the GH-perp proposition (3.8.6) shows the

dimension of the primary code to be k.
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Proposition 5.2.2. Let V , P , and D be defined as above, and let g be the genus of V . If deg(D) >

2g − 2, then Cd(V,P , D) has dimension degD − g + 1.

Proof. Since deg(D) > 2g − 2, the Riemann-Roch theorem (theorem 4.13.3) gives `(D) = degD −

g + 1. Since Cd is the image of L(D) under ε, it suffices to show that ε is one-to-one, for which

it suffices in turn to show that ε has trivial kernel. Following [Wal], suppose ε(F ) = 0 for some

F ∈ L(D). This means F (P1) = . . . = F (Pn) = 0. Since each Pj is a zero of F , the coefficient

nPj
of each Pj in the divisor div(F ) is positive. Since the Pj ’s were chosen to lie outside supp(D),

div(F ) +D − P1 − . . .− Pn < 0. Since it is assumed that deg(D) < n, deg(D − P1 − . . .− Pn) < 0.

By proposition 4.13.2, L(D − P1 − . . .− Pn) = {0}. This forces F = 0 which proves the claim.

Proposition 5.2.3. Let V , P , and D be defined as above. If 2g−2 < degD < n, then Cd(V,P , D)

has minimum distance d ≥ n− degD.

Proof. Following [Wal], let ε(F ) = F (P ) ∈ Cd be a code word of minimum non-zero weight d. Then

exactly d coordinates of ε(F ) are non-zero. Without loss of generality, assume F (Pd+1) = . . . =

F (Pn) = 0. This implies that div(F )+D−Pd+1− . . .−Pn ≥ 0. By the contrapositive to proposition

4.13.2, the divisor D− Pd+1 − . . .− Pn has non-negative degree, i.e. deg(D)− (n− d) ≥ 0, which is

to say d ≥ n− degD.

5.3. Encoding

Let k = n − `(D), that is, n − k = `(D). Using notation as above, let {F1, . . . , Fn−k} be

a basis for L(D). From linear algebra it is well known that {ε(F1), . . . , ε(Fn−k)} is a basis for Cd.

Thus a generator matrix for Cd is given by the matrix having entries

Fi(Pj)

for i = 1, . . . , n− k and j = 1, . . . , n. Here the matrix is used to map from Fn−k
q to Fn

q , not from

L(D). The (n− k)-dimensional Fq-vector space L(D) is identified with the (n− k)-dimensional Fq-

vector space Fn−k
q . Given a generator matrix for Cd, one computes a basis for its kernel to obtain a
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parity-check matrix for Cd. This is a generator matrix G for Cp by the GH-perp proposition (3.8.6),

and thus one encodes a message word m ∈ Fk
q by forming the product mG.

Example 5.3.1. The sample curve E is defined over K = F2, but one may work over L = F8. Let

V = E(F8) and D = 8P∞. Let P be taken from E(F8) \ {P∞} as shown in example 4.5.1, namely,

P = ([2, 0, 1], [4, 0, 1], [6, 0, 1], [2, 1, 1], [4, 1, 1], [6, 1, 1],

[3, 2, 1], [5, 4, 1], [7, 6, 1], [3, 3, 1], [5, 5, 1], [7, 7, 1]).

Then for k = 7, n = 12, a generator matrix for Cd, hence a parity-check matrix H for Cp, is

H =































1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 2 4 6 3 5 7 3 5 7

0 0 0 1 1 1 2 4 6 3 5 7

4 6 2 4 6 2 5 7 3 5 7 3

0 0 0 2 4 6 6 2 4 5 7 3































.

If k were smaller, one would use the first k rows of this matrix. For the case k = 1, one obtains the

n-bit repetition code (example 3.1.2) as a special case.

Computing a kernel basis for H gives a parity-check matrix for Cd, hence a generator matrix

G for Cp:

G =













































6 7 1 6 7 1 0 0 0 0 0 0

3 4 4 4 6 0 1 0 0 0 0 0

1 0 4 7 3 0 0 1 0 0 0 0

5 7 5 3 5 0 0 0 1 0 0 0

1 7 4 6 5 0 0 0 0 1 0 0

2 2 4 4 1 0 0 0 0 0 1 0

0 3 5 6 1 0 0 0 0 0 0 1















































CHAPTER 6

SV Decoding

Using the notation from section 3.9 and chapter 5, let Cp(V,P , D) be a Goppa primary code

with dimension k, length n, and minimum distance d over Fq. Suppose that a message word m ∈ Fk
q

has been encoded as a code word u ∈ Fn
q , then corrupted with error word e to form a received word

v = u + e. The task of a decoding algorithm is to estimate the error as ê. Once this is done, an

estimation of the code word û is simple: since v = u+e = û+ ê, û = v− ê. The estimated message

word m̂ may then be obtained by solving the linear system of equations û = m̂G for m̂.

The Skorobogatov-Vlǎduţ (SV) decoding algorithm originates in [SV], but is presented here

as in [Pre]. The algorithm proceeds in four steps: (1) Calculate a syndrome. (2) Obtain a rational

function λ in K(V ) which may be used to find the locations of the non-zero elements of the vector ê.

(3) Use λ to find the error locations. (4) Find the values êj at the error locations of ê. Throughout

this section, it is assumed that the error word e is decodable, so e is written in place of ê.

6.1. Error Locators

Definition 6.1.1. Write e = (e1, . . . , en) and P = (P1, . . . , Pn). The point Pj is called an error

location of e if ej 6= 0.

Notation 6.1.2. Given n-tuples u = (u1, . . . , un) and v = (v1, . . . , vn), let u ∗ v denote the

elementwise vector product (u1v1, . . . , unvn).

Definition 6.1.3. A non-zero λ ∈ K(V ) is called an error locator for e when (1) λ(Pj) = 0 for all

error locations of e, and (2) λ has no poles among P1, . . . , Pn.
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Notation 6.1.4. Given P and e as above, let Z be the vector consisting of the elements Pj of P

such that ej is non-zero. Likewise, given an error locator λ for e, let z be the vector consisting of

elements ej of e such that λ(Pj) = 0.

Given this terminology, equivalent conditions for an error locator λ are that λ(P ) ∗ e = 0,

and that λ is pole-free on P and λ(Z) = 0.

First, existence of error locators is established.

Proposition 6.1.5. Let e be an error word of weight at most t. Let A be a divisor of V such that

(1) supp(A) contains none of the Pj ’s in P and (2) `(A) > t. Then L(A) contains an error locator

for e.

Remark. Since the divisor A is needed for SV decoding but is not needed to construct the code

itself, it is called an auxiliary divisor.

Proof. Since A is a divisor on V , L(A) is finite dimensional. Choose a basis λ1, . . . , λ`(A) of L(A).

As discussed in the proof of proposition 5.2.3, the evaluation homomorphism λi 7→ λi(P ) is 1-1.

Thus {λ1(P ), . . . , λ`(A)(P )} is a linearly independent set. Then

`(A)
∑

i=1

ciλi(Z) = 0

is a homogeneous system of at most t independent equations in `(A) unknowns. Since t < `(A)

by hypothesis, a non-zero solution c = (c1, . . . , c`(A)) exists. Choose one such solution and let

λ =
∑`(A)

i=1 ciλi. Since λ(Z) = 0, λ is an error locator for e.

Now that existence of an error locator is guaranteed, the following proposition permits the

explicit computation of an error locator. It requires another auxiliary divisor.

Lemma 6.1.6. Let e have weight at most t. Let R be a divisor on V such that (1) the support of

R contains none of the Pj ’s in P , and (2) deg(R) ≥ t+ 2g− 1. Then a rational function λ ∈ K(V )

without poles in P is an error locator for e if and only if (ρλ)(P ) · e = 0 for all ρ ∈ L(R).
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Proof, following [Pre]. First suppose λ is an error locator for e without poles in P , and let ρ ∈ L(R).

Since the support of R contains none of the Pj ’s in P , ρ has no poles on the Pj ’s in P . Then

0 = λ(P ) ∗ e

=⇒ (0, . . . , 0) = (λ(P1)e1, . . . , λ(Pn)en)

= (ρ(P1)λ(P1)e1, . . . , ρ(Pn)λ(Pn)en)

=⇒ 0 = ρ(P1)λ(P1)e1 + . . .+ ρ(Pn)λ(Pn)en

= (ρλ)(P1)e1 + . . .+ (ρλ)(Pn)en

= (ρλ)(P ) · e.

Now suppose (ρλ)(P ) · e = 0 for all ρ ∈ L(R). Then

0 = (ρλ)(P ) · e

= ((ρλ)(P1), . . . , (ρλ)(Pn)) · (e1, . . . , en)

= (ρλ)(P1)e1 + . . .+ (ρλ)(Pn)en

= ρ(P1)λ(P1)e1 + . . .+ ρ(Pn)λ(Pn)en

= (ρ(P1), . . . , ρ(Pn)) · (λ(P1)e1, . . . , λ(Pn)en

= ρ(P ) · (λ(P ) ∗ e)

Thus the vector λ(P )∗e is a code word of Cp(V,P , R). Since by assumption deg(R) ≥ t+2g−1, by

proposition 5.1.5 the minimum distance of Cp(V,P , R) is greater than or equal to t + 1. Since the

Goppa codes are linear, the minimum distance of Cp(V,P , R) is the same as its minimum weight.

Since e = (e1, . . . , en) and λ is pole-free on P , λ(P ) ∗ e has weight at most t. Thus λ(P ) ∗ e = 0

and therefore λ is an error locator for e.

Proposition 6.1.7. Let R be as above, and suppose A is a divisor on V such that L(A) contains an

error locator for e. Let {ρ1, . . . , ρ`(R)} and {λ1, . . . , λ`(A)} be bases for L(R) and L(A), respectively.

Let S be the `(R)× `(A) matrix of syndromes given by

Sij = (ρiλj)(P ) · e.
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Then λ =
∑`(A)

j=1 cjλj is an error locator for e in L(A) if and only if c = (c1, . . . , c`(A)) is a solution

of the homogeneous linear system

Sc = 0.

Proof. First, observe that Sc = 0 means that for i = 1, . . . , `(R),

0 =

`(A)
∑

j=1

cj(ρiλj)(P ) · e =

`(A)
∑

j=1

cj

n
∑

k=1

ρi(Pk)λj(Pk)ek

=

n
∑

k=1

ρi(Pk)

`(A)
∑

j=1

cjλj(Pk)ek =

n
∑

k=1

ρi(Pk)λ(Pk)ek = (ρiλ)(P ) · e

Thus it suffices to show that λ is an error locator for e iff (ρiλ)(P ) · e = 0 for all ρi in the basis for

L(R). First suppose the former. By the lemma, (ρλ)(P ) · e = 0 for all ρ ∈ L(R), which applies in

particular to each ρi. Now suppose the latter. Let ρ =
∑`(R)

i=1 biρi ∈ L(R). Then

(ρiλ)(P ) · e = 0, i = 1, . . . , `(R) =⇒ bi(ρiλ)(P ) · e = 0, i = 1, . . . , `(R)

=⇒ 0 =

`(R)
∑

i=1

bi (ρiλ) (P ) · e =

`(R)
∑

i=1

bi

n
∑

j=1

ρi(Pj)λ(Pj)ej =

n
∑

j=1

`(R)
∑

i=1

biρi(Pj)λ(Pj)ej

=

n
∑

j=1

ρ(Pj)λ(Pj )ej = (ρλ)(P ) · e

6.2. Error Locations and Error Values

Next, error locators are put to use to calculate the errors in a received word. The construction

requires a third and final auxiliary divisor.

Lemma 6.2.1. Let A be a divisor of V such that (1) supp(A) contains none of the Pj ’s in P , (2)

`(A) > t, and (3) deg(A) < deg(D)− 2g+2− t. Let λ be an error locator in L(A) for e. Let Ẑ and

ẑ consist of the Pj ’s in P and the ej’s in e, respectively, such that λ(Pj) = 0. (Then Ẑ contains

all t error locations of e, as well as perhaps some non-error locations.) Let M be a divisor of V

such that (1) supp(M) contains none of the Pj ’s in P , and (2) deg(M) > deg(A) + 2g − 2. Then

ẑ is uniquely determined by any error locator λ ∈ L(A) and the syndromes µ(P ) · v with respect to

functions µ ∈ L(M).
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Proof, following [Pre]. Since poles of λ are confined to the support of A, which is disjoint from the

Pj ’s in P , the zeroes-and-poles theorem (4.12.9) requires that the number of elements of Ẑ is at

most deg(D)− 2g + 2− t. By linearity of the dot product when one of the operands is held fixed,

µ(P ) · v = µ(P ) · (u + e) = µ(P ) · u + µ(P ) · e = µ(P ) · e.

This replaces the unknown quantity e with the known quantity v. Thus for any word e with λ as

an error locator and any function µ without poles in P , e.g. for any µ ∈ L(M),

µ(P ) · e = µ(P ) · v = µ(Ẑ) · ẑ.

For uniqueness, suppose ẑ1 and ẑ2 are two words such that µ(P ) · ẑ1 = µ(P ) · ẑ2 for all

µ ∈ L(M). Then µ(P ) · (ẑ1 − ẑ2) = 0 for all µ ∈ L(M). Therefore ẑ1 − ẑ2 is a codeword of

Cp(V, Ẑ,M). Let dM be the minimum distance of Cp(V, Ẑ,M). By proposition 5.1.5,

dM ≥ deg(M)− 2g + 2

> deg(A) + 2g − 2− 2g + 2

= deg(A)

Then ẑ1 − ẑ2 has at most deg(D) − 2g + 2 − t entries. Thus dist(ẑ1, ẑ2) ≤ deg(D) − 2g + 2 − t.

Since dM > degD − 2g + 2− t, dist(ẑ1, ẑ2) = 0, which implies ẑ1 = ẑ2.

Proposition 6.2.2. Let M be as in the previous lemma and let µ1, . . . , µ`(M) be a basis of L(M).

Then ẑ is the unique solution of the system of equations

µi(Ẑ) · ẑ = µi(P ) · v

Proof. Let m = `(M) and c = #Ẑ, and write µ =
∑m

i=1 aiµi. Then the system of equations expands

to















µ1(Ẑ1) . . . µ1(Ẑc)

...
...

µm(Ẑ1) . . . µm(Ẑc)





























ẑ1

...

ẑc















=















µ1(P ) · v
...

µm(P ) · v















.
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Premultiplying by the coefficients for µ gives

[

a1 . . . am

]















µ1(Ẑ1) . . . µ1(Ẑc)

...
...

µm(Ẑ1) . . . µm(Ẑc)





























ẑ1

...

ẑc















=

[

a1 . . . am

]















µ1(P ) · v
...

µm(P ) · v















µ(Ẑ) · ẑ = µ(P ) · v.

Thus if ẑ is a solution the system of equations, it is a solution of the equation in the lemma as

well.

Remark 6.2.3. Auxiliary divisors R and M satisfying the hypotheses of lemmas 6.1.6 and 6.2.1

may be obtained by

R = D −A, M = D

if D, A, M , and R are one-point divisors on a common point.

For the first claim, due to the commonality of D and A, deg(D − A) = deg(D) − deg(A).

Then

deg(D)− deg(A) ≥ t (constraint on A)

deg(D)− deg(A) ≥ t+ 2g − 1 since g ≥ 0

deg(D −A) ≥ t+ 2g − 1 as necessary for R.

For the second claim, the conditions of lemma 6.2.1 require that

deg(D) > deg(A) + 2g − 2 + t,

which implies

deg(D) > deg(A) + 2g − 2

since t is non-negative.

6.3. Choice of Parameters

Construction of a Goppa code requires the following steps.
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1. Choose a field K = Fq , e.g. F2.

2. Choose a smooth curve V .

3. Compute the genus g of V .

4. Choose an extension field L of Fq , e.g. F2r .

5. Choose an array of distinct points P on V (L).

6. Choose a divisor D.

7. Compute `(D).

8. Compute a basis for L(D).

9. Compute a generator matrix for the dual code, with matrix elements Fi(Pj). This is a parity-

check matrix for the primary code.

10. Compute a basis for the kernel of the parity-check matrix. Form a matrix whose rows are the

basis vectors. This is a generator matrix for the primary code.

SV decoding further requires the selection of the auxiliary divisors A, M and R. In practice,

these choices must be related to the desired code parameters n, k, and d. Furthermore, since the SV

algorithm decodes only up to a minimum error weight t, perhaps less than the maximum possible

bd−1
2 c as discussed in section 3.3, t must here be treated as a fifth code parameter in addition to n,

k, d and q.

The relationships between Goppa parameters and code parameters are as follows:

• The code length n is taken from the choice of P . Since the elements of P are required to be

distinct, n is bounded above by the number of Fq-rational points on V , e.g. the Serre bound

as discussed in section 4.6.

• The code dimension k and deg(D) are related by proposition 5.1.4, namely, k = n− deg(D) +

g − 1.
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• The minimum distance d is bounded below by the proposition 5.1.5 and above by the Singleton

bound (proposition 3.5.1). That is, deg(D)− 2g + 2 ≤ d ≤ n− k + 1.

• The maximum SV-correctable error weight t is related to the auxiliary divisor A by t < `(A)

and deg(A) < deg(D)− 2g + 2− t.

• The auxiliary divisors R and M may be chosen simply by R = D −A and M = D, as shown

in remark 6.2.3.

Given the Serre bound discussed in section 4.6, curves of higher genus can yield more rational

points, which permits longer codes as discussed in section 3.6. However, the SV algorithm decodes

closer to half the minimum distance for curves of lower genus.

For the sample curve E(F8) with the 12 points of P taken from E(F8) \ {P∞}, and with

D and L(D) chosen from table 11, the choices of D, A and t admit the possibilities shown in table

13. The code to be presented in section 6.5 is chosen to be the highest-dimension code in table 13

capable of correcting triple errors. The entries in table 13 corresponding to the sample code are

marked in boldface.

Table 13 shows all possible parameter choices permitting construction of a code. For a fixed

k, however, t is to be maximimized, so that the code may correct many errors. For each t, deg(A) is

to be minimized, to reduce the operations count in the computation of error locations. These design

constraints allow exclusion of most of the possible values of t and deg(A), resulting in the simpler

table 14. Rows where t and deg(A) are marked with “-” indicate Goppa codes that are constructible,

but not SV-decodable.

Figures 6 and 7 give a graphical representation of these optimal parameter choices for curves

of degree 5 and 8 respectively. The divisor degrees deg(D) and deg(A) are shown, along with t,

Goppa-minimum bd−1
2 c, and Singleton-maximum b d−1

2 c, plotted against code dimension k. The

code length is held fixed at n = 200. Note that the plot depends only on the genus, namely 6 for a

smooth quintic and 21 for a smooth octic, and the code length, except for the precise locations of

the Weierstrass gaps.
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deg(D) k bd−1
2 c bounds t deg(A)

4 8 1-2 1 2
5 7 2 1 2 3
6 6 2-3 1 2 3 4

2 3
7 5 3 1 2 3 4 5

2 3 4
8 4 3-4 1 2 3 4 5 6

2 3 4 5
3 4

9 3 4 1 2 3 4 5 6 7
2 3 4 5 6
3 4 5

10 2 4-5 1 2 3 4 5 6 7 8
2 3 4 5 6 7
3 4 5 6
4 5

11 1 5 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8
3 4 5 6 7
4 5 6

Table 13. Parameter choices for a curve of genus 1, n = 12.

n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

12 2 2 10 2 3 0 1 - -
12 3 3 9 3 4 1 1 - -
12 4 4 8 4 5 1 2 1 2
12 5 5 7 5 6 2 2 1 2
12 6 6 6 6 7 2 3 2 3
12 7 7 5 7 8 3 3 2 3
12 8 8 4 8 9 3 4 3 4
12 9 9 3 9 10 4 4 3 4
12 10 10 2 10 11 4 5 4 5
12 11 11 1 11 12 5 5 4 5

Table 14. Optimal parameter choices for a curve of genus 1, n = 12.
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The exact case of the Riemann-Roch theorem applies for k ≤ 128. For k > 128, the gaps

are visible for the values of deg(A) in the lower right-hand corner of the plot. These gaps are more

easily visible in figure 7 due to the higher genus. Observe that values of k are bounded away from

1 and n − 1, in accordance with corollary 5.1.7. As well, the spacing between t and the designed

minimum distance bd−1
2 c widens as g increases. This is a limitation of the SV algorithm; see [Pre],

[HvLP] for more powerful decoding techniques.
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6.4. The SV Algorithm

The selection of parameters in chapter 6.3 constitutes the off-line portion, or design phase,

of the SV algorithm. That is, the steps in that section may be performed before any message words

are received. In this section the on-line portion of the SV algorithm is presented. The steps here

simply summarize the propositions already proved.

Algorithm 6.4.1 (On-line portion of SV decoding algorithm).

1. Compute S:

For i = 1, . . . , `(R)

for j = 1, . . . , `(A)

Sij = (ρi(P ) ∗ λj(P )) · v.

If S is the zero matrix,

ê = 0; stop.

2. Compute λ:

Compute a basis for the kernel of S.

If basis is empty

decoding failure; stop.

Let c be the first basis vector.

3. Compute the error locations:

For j = 1, . . . , n

if λ(Pj) = 0 (i.e. if
∑`(A)

i=1 ciλi(Pj) = 0)

append Pj to Ẑ.

4. Compute the error values:

For i = 1, . . . , `(M)

for j = 1, . . . ,#Ẑ

Tij = µi(Pj).

For i = 1, . . . , `(M)
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bi = µi(P ) · v.

Let ẑ be the unique solution of T ẑ = b.

If no such solution exists,

decoding failure; stop.

For each index j of ẑ

ej = ẑj .

For each non-index j

ej = 0.

Note the ρi(P j)’s, λi(P j)’s, and µi(P )’s may be precomputed. In fact, given the common

one-point construction described in remark 6.2.3, these three matrices may be obtained by simply

taking the first `(R), `(A), and `(M) rows of H , respectively. Thus the decoding circuitry does not

need to know about P , and does not need to be able to evaluate rational functions.

Let R be the `(R)× n matrix (ρi(P j))i,j , let A be the `(A)× n matrix (λi(P j))i,j , and let

M be the `(M)× n matrix (µi(P j))i,j . Also, given a matrix B, let the notation Bi denote the ith

row of B. Then the decoding algorithm is as follows.

Algorithm 6.4.2 (Optimized on-line portion of SV decoding algorithm).

1. Compute S:

For i = 1, . . . , `(R)

for j = 1, . . . , `(A)

Sij = (Ri ∗ Aj) · v.

If S is the zero matrix,

ê = 0; stop.

2. Compute λ:

Compute a basis for the kernel of S.

If basis is empty
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decoding failure; stop.

Let c be the first basis vector.

3. Compute the error locations:

Compute the length-n vector y = cA.

For j = 1, . . . ,#Z

if yj = 0

j is an error-location index.

4. Compute the error values:

Form T by taking the jth column of M for each error-location index j.

Let b =Mv.

Let ẑ be the unique solution of T ẑ = b.

If no such solution exists,

decoding failure; stop.

For each index j of ẑ

ej = ẑj .

For each non-index j

ej = 0.

6.5. Example

Define a linear code C1 over F8 as follows. As discussed in section 6.3, let V = E(F8) which

was found in example 4.5.1 to have genus 1. Let P be the twelve affine points from example 4.5.1,

reproduced for convenience in table 15. Let D = 8P∞ as chosen in section 6.3, with basis shown in

table 12. Let A = 4P∞ as chosen in section 6.3; choose R = D − A = 4P∞ and M = D = 8P∞.

Then D and the auxiliary divisors R, A, and M have bases as shown in table 17.

This code has length n = 12, from the length of P . By proposition 5.1.4, the code has

dimension k = n − deg(D) + g = 1 = 12 − 8 = 4. As discussed in section 6.3, the maximum
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P1 [2, 0, 1]
P2 [4, 0, 1]
P3 [6, 0, 1]
P4 [2, 1, 1]
P5 [4, 1, 1]
P6 [6, 1, 1]
P7 [3, 2, 1]
P8 [5, 4, 1]
P9 [7, 6, 1]
P10 [3, 3, 1]
P11 [5, 5, 1]
P12 [7, 7, 1]

Table 15. Curve points for sample [12, 4, 8]8 code on E(F8).

correctable error weight is t = 3. Since #C1 = qk = 84 = 4096, it is feasible to enumerate all code

words of C1 and compute the weight distribution shown in table 16. To perform this computation,

loop over all of Fk
q = F4

8, encode each vector, and compute the weight of the resulting code word.

Then take the minimum non-zero weight. In particular, C1 has minimum distance d = 8, fitting

within the Goppa and Singleton bounds 8 − 9 as shown in table 17. Thus C1 is a [12, 4, 8]8 linear

code.

w 0 1 2 3 4 5 6 7 8 9 10 11 12
# 1 0 0 0 0 0 0 0 273 448 1176 1344 854

Table 16. Empirical weight distribution for sample [12, 4, 8]8 code on E(F8).

L(D): 1, X/Z, Y/Z, X2/Z2, XY/Z2, Y 2/Z2, X2Y/Z3 XY 2/Z3

L(R): 1, X/Z, Y/Z, X2/Z2

L(A): 1, X/Z, Y/Z, X2/Z2

L(M): 1, X/Z, Y/Z, X2/Z2, XY/Z2, Y 2/Z2, X2Y/Z3, XY 2/Z3

Table 17. Basis functions for sample [12, 4, 8]8 code on E(F8).
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The generator and parity-check matrices for C1 are computed as shown in chapter 5:

H =





















































1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 2 4 6 3 5 7 3 5 7

0 0 0 1 1 1 2 4 6 3 5 7

4 6 2 4 6 2 5 7 3 5 7 3

0 0 0 2 4 6 6 2 4 5 7 3

0 0 0 1 1 1 4 6 2 5 7 3

0 0 0 4 6 2 1 1 1 4 6 2

0 0 0 2 4 6 7 3 5 4 6 2





















































G =























3 2 6 7 7 7 4 5 1 0 0 0

7 2 4 7 2 4 1 0 0 1 0 0

6 3 4 6 3 4 0 1 0 0 1 0

5 0 3 1 5 2 4 5 0 0 0 1























.

The auxiliary matrices R, A, andM are taken from the first 4, 4, and 8 rows of H , respectively.

Let

m = (1, 1, 1, 1).

This encodes to

mG = u = (7, 3, 5, 7, 3, 5, 1, 1, 1, 1, 1, 1).

Let the error be

e = (0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0)

such that the received word is

v = (7, 3, 5, 7, 3, 4, 3, 2, 1, 1, 1, 1)
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Then

S =























0 4 2 1

4 1 7 5

2 7 3 3

1 5 3 4























which is






















1 0 0 3

0 1 0 1

0 0 1 7

0 0 0 0























in row-echelon form, with kernel basis

{(3, 1, 7, 1)}.

Thus

λ(P ) = 3λ1(P ) + λ2(P ) + 7λ3(P ) + λ4(P )

is the row vector (3, 1, 7, 1) times the first four rows of H , namely,

λ(P ) = (5, 1, 7, 2, 6, 0, 0, 0, 3, 7, 7, 4).

The error locations are then P6, P7, and P8. Likewise, T is read off from columns 6, 7, and 8 of the

first 8 rows of H :

T =





















































1 1 1

6 3 5

1 2 4

2 5 7

6 6 2

1 4 6

2 1 1

6 7 3





















































, b = (0, 4, 2, 1, 7, 3, 3, 6).
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The augmented matrix

T | b =





















































1 1 1 0

6 3 5 4

1 2 4 2

2 5 7 1

6 6 2 7

1 4 6 3

2 1 1 3

6 7 3 6





















































row-reduces to




















































1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















































with solution

ẑ = (1, 2, 3).

Putting these values at positions 6, 7, and 8 of ê and zeroes elsewhere gives

ê = (0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0).

which exactly matches the original error word e.

For another example, choose m as before, but let

e = (0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0),

This is an error of weight 4, whereas C1 is designed to handle only at most t = 3 errors. The
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syndrome matrix is found to be

S =























4 5 7 6

5 6 1 6

7 1 0 7

6 6 7 6























which row-reduces to






















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1























which has no non-zero solutions. Thus, the algorithm produces a decoding failure.



CHAPTER 7

Data

7.1. Construction of Curves and Code Parameters

In this chapter, parameters are computed and displayed for codes over several curves. The

curve E discussed in previous chapters is from an exercise of [Wal]; the Klein quartic (section 7.3)

is used in [Pre] and [HvLP]. The Reed-Solomon codes (section 7.4) are well-known to be a special

case of Goppa codes, as discussed in [Wal], [HvLP]. The sextic curve (section 7.5) was selected

arbitrarily. The Hermitian curve (section 7.6) is discussed in [HvLP].

For each curve V , the following are presented: smoothness, genus, point counts vs. the Serre

bounds for q = 2, 4, . . . , 1024, Weierstrass gaps, and a basis for L(D). For the resulting codes, the

code length n is taken from a choice of P which is in turn selected from V (Fq) for one or more

choices of q. The code dimension k is selected within the constraints of section 6.3. The maximum

SV-correctable error weight t also follows from section 6.3.

The results of chapter 5 specify precisely the parameters n, k, and q for Goppa codes, but

only give bounds on the minimum distance d. If a weight distribution is computed, the true minimum

distance d is obtained as a result. Recall that a k-dimensional code over Fq has qk elements, and that

for linear codes the minimum distance is equal to the minimum non-zero weight. Thus, for small q

and k one may simply iterate over all qk elements of Fk
q , multiplying each by a generator matrix to

obtain a complete list of code words, then take the minimum non-zero weight. Likewise, if k is large

but qn−k is small, then the MacWilliams identities ([MS], [Sud]) permit the weight distribution of

the primary code to be obtained from that of the dual code, which in turn may be done using the
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technique just described. If qk and qn−k are both large — say, greater than a million — then this

approach is prohibitive. This applies in particular to curves of higher genus, as shown in corollary

5.1.7.

7.2. Automation

Computations were performed using SPFFL, a C++ small-prime finite-field library devel-

oped by the author. The off-line portion of the algorithm was partially automated, as is explained

in greater detail in the following paragraph; computation of G and H , along with all of the on-line

portion of the algorithm including encoding and decoding, is an exercise in simple computational

linear algebra and was fully automated.

Smoothness was checked by hand. Computation of the genus is easy for smooth curves using

the Plücker formula. However, in general, computation of genus for non-smooth curves of higher

degree is one of the harder problems in the theory of AG codes [Pre]. All curves considered in

this paper are defined over F2; codes presented are in some low-degree extension. Given a chosen

extension field Fq of F2, listing of points was automated as described in section 4.5, although the

partition of points between the single point forming D and the points forming P was manual. The

intersection multiplicities necessary for divisors was were computed manually. Weight distributions

were computed automatically.

7.3. The Klein Quartic

Let V4 be defined by the Klein quartic,

F (X,Y, Z) = X3Y + Y 3Z + Z3X

Partial derivatives are

∂F

∂X
= X2Y + Z3,

∂F

∂Y
= Y 2Z +X3,

∂F

∂Z
= Z2X + Y 3.
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If there is a singular point, it is either infinite or affine. In the former case Z = 0 which requires

X3 = Y 3 = 0, whence X = Y = Z = 0 which is not a projective point. In the latter case Z = 1,

and for F and its partials to all be zero requires

X3Y + Y 3 +X = 0, X2Y = 1, Y 2 = X3, X = Y 3.

Substituting X2Y = 1 into the first condition yields X + Y 3 +X = Y 3 = 0 which implies Y = 0.

Then the original equation requires X = 0, but X2Y = 1 requires X 6= 0. This contradiction shows

that the Klein quartic is smooth when defined over F2. Since the degree of defining polynomial is 4,

the genus of the curve is 3. Point-counting results are shown in tables 18 and 19.

F2 F4 F8 F16

[1, 0, 0] [1, 0, 0] [1, 0, 0] [6, 1, 1] [5, 5, 1] [1, 0, 0] [6, 9, 1]
[0, 1, 0] [0, 1, 0] [0, 1, 0] [2, 4, 1] [7, 7, 1] [0, 1, 0] [7, d, 1]
[0, 0, 1] [0, 0, 1] [0, 0, 1] [4, 6, 1] [3, 4, 1] [0, 0, 1] [6, e, 1]

[2, 3, 1] [1, 2, 1] [6, 2, 1] [5, 6, 1] [2, c, 1] [7, b, 1]
[3, 2, 1] [1, 4, 1] [2, 5, 1] [7, 2, 1] [4, f, 1] [8, 6, 1]

[1, 6, 1] [4, 7, 1] [3, 7, 1] [3, a, 1] [c, 7, 1]
[2, 1, 1] [6, 3, 1] [5, 3, 1] [5, 8, 1] [f, 6, 1]
[4, 1, 1] [3, 3, 1] [7, 5, 1] [6, 7, 1] [a, 7, 1]

[7, 6, 1]

Table 18. Points on the Klein quartic for F2, F4, F8, and F16

L #P2(L) #V4(L) Serre minimum Serre maximum

F2 7 3 -3 9
F4 21 5 -7 17
F8 73 24 -6 24
F16 273 17 -7 41
F32 1057 33 0 66
F64 4161 38 17 113
F128 16513 129 63 195
F256 65793 257 161 353
F512 262657 528 378 648
F1024 1049601 1025 833 1217

Table 19. Point counts vs. Serre bounds for the Klein quartic.

Let

P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1].
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The intersection divisor of X is obtained by setting X = 0 in F , to obtain Y 3Z = 0.

This forces either Y = 0 or Z = 0. In the former case, P3 = [0, 0, 1] is an intersection point;

dehomogenization at Z gives multiplicity 3. Likewise, P2 = [0, 1, 0] has intersection multiplicity 1.

Thus div(X) = 3P3 + P2. Similarly, div(Y ) = 3P1 + P3 and div(Z) = 3P2 + P1. Thus

div(X iY j/Zi+j) = (−i+ 2j)P1 + (−2i− 3j)P2 + (3i+ j)P3

This permits a single-point divisor on P2 as long as −i+ 2j ≥ 0, i.e. for 2j ≥ i.

Even though such X iY j/Zi+j are pole-free at all points other than P2, including P1, an

annoyance arises at P1 which has Z coordinate 0. This 0/0 situation is removable as described

in remark 4.12.8, provided one is willing to search for an equivalent function in the function field

Fq(V4). Alternatively, one may prefer not to make that effort, and instead simply exclude P1 from

P . The latter is the approach taken here. That is to say, all points on the curve are included

in the intersection-divisor analysis, as is necessary for the Riemann-Roch theory to work correctly.

However, not all points other than D need to be included in P . In general, when using functions of

the form X iY j/Zi+j , 0/0 situations only arise when Z = 0, which are points at infinity with respect

to Z. Such points are intersections of the curve with the line at infinity Z = 0, and the number of

such points is constrained by Bezout’s theorem. Thus, omitting these troublesome points from P

does not significantly affect code length.

With the choice of n = 15, i.e. with P consisting of all points on V4(F16) other than the

infinite points P1 and P2, the formulas of section 6.3 permit code parameters shown in table 21.

As before, rows where t and deg(A) are marked with “-” indicate constructible codes that are not

SV-decodable. Selecting the last row gives a code with n = 15, k = 3, q = 16, and d in the range

10 to 13. Since qk = 4096 which is small, the weight distribution is readily computed as shown in

table 23. Thus a [15, 3, 11]16 code is obtained.

Over F256 there are 255 non-infinite points, so n may be as high as 255. Table 22 shows the

optimal code parameters in this case. Even for the smallest k, namely 3, qk = 2563 = 16, 777, 216

so brute-force weight enumeration is infeasible: each of these 16,777,216 code words is a vector of

length 255, so there are approximately 4 billion weights to compute; also, generation of each code
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word requires a 3× 255 matrix-times-vector multiplication.

r i j i+ j φ −i+ 2j −2i− 3j 3i+ j

0,1,2 0 0 0 1 0 0 0
3,4 0 1 1 Y/Z 2 −3 1

5 1 1 2 XY/Z2 1 −5 4
6 0 2 2 Y 2/Z2 4 −6 2
7 2 1 3 X2Y/Z3 0 −7 7
8 1 2 3 XY 2/Z3 3 −8 5
9 0 3 3 Y 3/Z3 6 −9 3

10 2 2 4 X2Y 2/Z4 2 −10 8
11 1 3 4 XY 3/Z4 5 −11 6
12 3 2 5 X3Y 2/Z5 1 −12 11
13 2 3 5 X2Y 3/Z5 4 −13 9
14 4 2 6 X4Y 2/Z6 0 −14 14
15 3 3 6 X3Y 3/Z6 3 −15 12

Table 20. Selected function bases for the Klein quartic.

n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

15 4 2 13 0 3 0 1 - -
15 5 3 12 1 4 0 1 - -
15 6 4 11 2 5 0 2 - -
15 7 5 10 3 6 1 2 - -
15 8 6 9 4 7 1 3 - -
15 9 7 8 5 8 2 3 1 3
15 10 8 7 6 9 2 4 1 3
15 11 9 6 7 10 3 4 1 3
15 12 10 5 8 11 3 5 2 5
15 13 11 4 9 12 4 5 2 5
15 14 12 3 10 13 4 6 3 6

Table 21. Code parameters for the Klein quartic over F16.

7.4. Reed-Solomon Codes

Let VR be defined by the line Y = 0. The partial derivative ∂F
∂Y

is 1, so VR is smooth; it has

genus 0. Points on VR are the projective line P1(Fq) contained in P2(Fq), namely, the q affine points

[α, 0, 1] for all α ∈ Fq , along with the single point at infinity P∞ = [1, 0, 0]. Thus #VR = q+1. This

is in agreement with the exact point count prescribed by the Serre bounds as discussed in section

4.6.
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n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

255 4 2 253 0 3 0 1 - -
255 5 3 252 1 4 0 1 - -
255 6 4 251 2 5 0 2 - -
255 7 5 250 3 6 1 2 - -
255 8 6 249 4 7 1 3 - -
255 9 7 248 5 8 2 3 1 3
255 10 8 247 6 9 2 4 1 3
255 11 9 246 7 10 3 4 1 3
255 12 10 245 8 11 3 5 2 5
255 13 11 244 9 12 4 5 2 5
255 14 12 243 10 13 4 6 3 6
255 15 13 242 11 14 5 6 3 6
255 16 14 241 12 15 5 7 4 7

...
...

...
...

...
...

...
...

...
...

255 247 245 10 243 246 121 122 119 122
255 248 246 9 244 247 121 123 120 123
255 249 247 8 245 248 122 123 120 123
255 250 248 7 246 249 122 124 121 124
255 251 249 6 247 250 123 124 121 124
255 252 250 5 248 251 123 125 122 125
255 253 251 4 249 252 124 125 122 125
255 254 252 3 250 253 124 126 123 126

Table 22. Code parameters for the Klein quartic over F256.

wt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 1 0 0 0 0 0 0 0 0 0 0 270 555 1650 1620

Table 23. Weight distribution for the Klein quartic over F16.
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The intersection divisor div(X) is obtained from X = Y = 0, namely, 1P0 where P0 =

[0, 0, 1]. All points on the curve VR appear in div(Y ); the support of div(Z) is Y = Z = 0, i.e.

div(Z) = 1P∞. Then

div(X i/Zi) = iP0 − iP∞

and a basis for L(rP∞) is as shown in table 24. Code parameters are shown in table 25.

Let P be all of VR(F16) except the point at infinity, which is used for the one-point divisor,

and arbitrarily exclude [0, 0, 1] to get n = 15 as in the Klein-quartic example. Then take k = 3,

again matching the Klein-quartic example. The resulting code has weight distribution as shown

in table 26. Thus a [15, 3, 13]16 code is obtained. Call this a geometric Reed-Solomon code. This

minimum distance, 13, is better than that of the code constructed using the Klein quartic using the

same n and k, namely, d = 11. The duals of the geometric Reed-Solomon codes are equivalent to the

classical Reed-Solomon codes ([Wal], [MS]). It can be shown [Wal] that in fact the Reed-Solomon

codes always have minimum distance meeting the Singleton bound as discussed in section 3.5. Codes

with minimum distance meeting this bound are called maximum distance separable, or MDS. While

this is a strength of Reed-Solomon codes, their weakness is that their code length is limited to q+1.

This motivates one of the reasons for study of Goppa codes, as was mentioned in section 3.6. See

also [HvLP] section 2.8 for further comparison of Reed-Solomon and Goppa codes. The code over

the Klein quartic presented in section 7.3 is no longer than the Reed-Solomon code presented here;

much longer Goppa codes are discussed in section 7.6.

7.5. A Sextic Curve

Let V6 be defined by X6 +XY Z4 + Y 5Z + Z6 = 0. Partial derivatives are

∂F

∂X
= Y Z4,

∂F

∂Y
= XZ4 + Y 4Z,

∂F

∂Z
= Y 5.

The third requires Y = 0, so any singular points are common zeroes of X6 +Z6 and XZ4. If X = 0,

then Z = 0 and vice versa, but [0, 0, 0] is not a projective point. Therefore V6 is smooth, and since

it is sextic it has genus 10. Point counts are summarized in table 27.
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r i φ

0 0 1
1 1 X/Z
2 2 X2/Z2

3 3 X3/Z3

4 4 X4/Z4

5 5 X5/Z5

6 6 X6/Z6

7 7 X7/Z7

8 8 X8/Z8

9 9 X9/Z9

Table 24. Selected function bases for the Reed-Solomon curve

n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

15 2 3 12 4 4 1 1 1 1
15 3 4 11 5 5 2 2 1 1
15 4 5 10 6 6 2 2 2 2
15 5 6 9 7 7 3 3 2 2
15 6 7 8 8 8 3 3 3 3
15 7 8 7 9 9 4 4 3 3
15 8 9 6 10 10 4 4 4 4
15 9 10 5 11 11 5 5 4 4
15 10 11 4 12 12 5 5 5 5
15 11 12 3 13 13 6 6 5 5
15 12 13 2 14 14 6 6 6 6
15 13 14 1 15 15 7 7 6 6
15 14 15 0 16 16 7 7 7 7

Table 25. Code parameters for the Reed-Solomon curve over F16.

wt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# 1 0 0 0 0 0 0 0 0 0 0 0 0 1575 675 1845

Table 26. Weight distribution for the Reed-Solomon curve over F16.
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For the divisor div(X), X = 0 gives

0 = Y 5Z + Z6 = Z(Y 5 + Z5)

If Z = 0, then P2 = [0, 1, 0] is a zero; else, there are [0, 1, 1] and the four points [0, 8, 1], [0, c, 1],

[0, f, 1], and [0, a, 1] in F16. By Bezout’s theorem, the line X = 0 intersects V6 at each of these six

points with multiplicity 1. For div(Y ), Y = 0 gives

0 = X6 + Z6 = (X3 + Z3)2

with zeroes [1, 0, 1], and the pair [2, 0, 1], [3, 0, 1] in F4, each with multiplicity 2. For div(Z), Z = 0

gives X6 = 0, with P2 a zero of multiplicity 6. Then

div(X iY j/Zi+j) = (−5i− 6j)P2 + iQ1 + iQ2 + iQ3 + iQ4 + iQ5 + 2jQ6 + 2jQ7 + 2jQ8.

Code parameters are shown in table 29. Weight distributions are impractical to compute by corollary

5.1.7.

L #P2(L) #V4(L) Serre minimum Serre maximum

F2 7 4 -17 23
F4 21 8 -35 45
F8 73 10 -41 59
F16 273 24 -63 97
F32 1057 24 -77 143
F64 4161 68 -95 225
F128 16513 88 -91 349
F256 65793 304 -63 577
F512 262657 424 63 963
F1024 1049601 1008 385 1665

Table 27. Point counts vs. Serre bounds for the sextic.

7.6. A Hermitian Curve

Let V17 be defined by X16Y +XY 16 + Z17. Partial derivatives are

∂F

∂X
= Y 16,

∂F

∂Y
= X16,

∂F

∂Z
= Z17
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r i j i+ j φ −i+ 4j 4i− j −i− j
0,1,2,3,4 0 0 0 1 0 0 0

5 1 0 1 X/Z -5 1 0
6,7,8,9 0 1 1 Y/Z -6 0 2

10 2 0 2 X2/Z2 -10 2 0
11 1 1 2 XY/Z2 -11 1 2

12,13,14 0 2 2 Y 2/Z2 -12 0 4
15 3 0 3 X3/Z3 -15 3 0
16 2 1 3 X2Y/Z3 -16 2 2
17 1 2 3 XY 2/Z3 -17 1 4

18,19 0 3 3 Y 3/Z3 -18 0 6
20 4 0 4 X4/Z4 -20 4 0
21 3 1 4 X3Y/Z4 -21 3 2
22 2 2 4 X2Y 2/Z4 -22 2 4
23 1 3 4 XY 3/Z4 -23 1 6
24 0 4 4 Y 4/Z4 -24 0 8
25 5 0 5 X5/Z5 -25 5 0
26 4 1 5 X4Y/Z5 -26 4 2
27 3 2 5 X3Y 2/Z5 -27 3 4

Table 28. Selected function bases for the sextic

with simultaneous solutions only at [0, 0, 0] which is not a projective point. Therefore V17 is smooth,

and has genus 120.

Point counts are as shown in table 30. Note that due to the high genus, the upper Serre

bound is not tight with respect to the Serre lower bound. Yet, the number of points over F256 meets

the upper Serre bound. As discussed in more detail in [Wal], chapter 5, for q = s2, a Hermitian

curve is defined by XsY +XY s +Zs+1 and has s3 +1 points over Fq . Thus, the family of Hermitian

curves gives rise to long codes in the sense of definition 3.6.5. See also [HvLP], section 2.1, for

another parameterized family of codes.

Intersection divisors are as follows. Let P1 = [1, 0, 0] and P2 = [0, 1, 0]. For X = 0, one has

Z17 = 0, so div(X) = 17P2. Likewise, div(Y ) = 17P1. For Z = 0, one has

XY (X15 + Y 15) = 0.

The line Z = 0 intersects V17 if X = 0 or Y = 0, so P1 and P2 are intersection points. When

X,Y 6= 0, X15 + Y 15 = 0, from which X15 = Y 15 since the characteristic is 2. Since α15 = 1 for all

α ∈ F×
16, there are 15 more intersection points, of the form [α, 1, 0] for α ∈ F×

16. This is a total of 17
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n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

64 18 9 55 0 10 0 4 - -
64 19 10 54 1 11 0 5 - -
64 20 11 53 2 12 0 5 - -
64 21 12 52 3 13 1 6 - -
64 22 13 51 4 14 1 6 - -
64 23 14 50 5 15 2 7 - -
64 24 15 49 6 16 2 7 - -
64 25 16 48 7 17 3 8 1 5
64 26 17 47 8 18 3 8 1 5
64 27 18 46 9 19 4 9 2 6
64 28 19 45 10 20 4 9 2 6
64 29 20 44 11 21 5 10 2 6
64 30 21 43 12 22 5 10 2 6
64 31 22 42 13 23 6 11 2 6
64 32 23 41 14 24 6 11 3 10

...
...

...
...

...
...

...
...

...
...

64 56 47 17 38 48 18 23 13 23
64 57 48 16 39 49 19 24 14 24
64 58 49 15 40 50 19 24 14 24
64 59 50 14 41 51 20 25 15 25
64 60 51 13 42 52 20 25 15 25
64 61 52 12 43 53 21 26 16 26
64 62 53 11 44 54 21 26 16 26
64 63 54 10 45 55 22 27 17 27

Table 29. Code parameters for the sextic over F8.

L #P2(L) #V17(L) Serre minimum Serre maximum

F2 7 3 -237 243
F4 21 5 -475 485
F8 73 9 -591 609
F16 273 17 -943 977
F32 1057 33 -1287 1353
F64 4161 65 -1855 1985
F128 16513 129 -2511 2769
F256 65793 4097 -3583 4097
F512 262657 513 -4887 5913
F1024 1049601 1025 -6655 8705

Table 30. Point counts vs. Serre bounds for the Hermitian curve.
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intersection points; by Bezout’s theorem, each has multiplicity one. Let Q be shorthand for each of

the non-infinite intersection points with Z = 0. Then div(Z) = P1 + P2 + Q. All of the Q points

have non-zero X and Y coordinate; P1 and P2 each have one or the other non-zero; all 17 of them

have Z coordinate 0. Therefore one may use a single-point divisor on either P1 or P2; the former is

selected. One then has

div(X iZj/Y i+j) = (−17i− 16j)P1 + (17i+ j)P2 + jQ.

Since 17i+ j and j assume non-negative values and −17i− 16j assumes non-positive values when

i, j ≥ 0, the entire family X iZj/Y i+j is in L(rP1) for various r. Since div(Y ) = 17P1, by Bezout’s

theorem no other points of V17 have Y coordinate 0 and thus there are no 0/0 situations for any of

the rational functions X iZj/Y i+j .

Code parameters are shown in table 29. Weight distributions are impractical to compute by

corollary 5.1.7. The true minimum distance is loosely bounded by the Goppa and Singleton bounds.

If it were to lie closer to the upper Singleton bound, the SV algorithm would not be able to take

advantage of it. See [Pre], chapter 7, for the full error-processing algorithm.
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n deg(D) `(D) k d min. d max. b d−1
2 c min. bd−1

2 c max. t deg(A)

4096 238 119 3977 0 120 0 59 - -
4096 239 120 3976 1 121 0 60 - -
4096 240 121 3975 2 122 0 60 - -

...
...

...
...

...
...

...
...

...
...

4096 253 134 3962 15 135 7 67 - -
4096 254 135 3961 16 136 7 67 - -
4096 255 136 3960 17 137 8 68 - -
4096 256 137 3959 18 138 8 68 1 16
4096 257 138 3958 19 139 9 69 1 16
4096 258 139 3957 20 140 9 69 2 17
4096 259 140 3956 21 141 10 70 2 17
4096 260 141 3955 22 142 10 70 2 17
4096 261 142 3954 23 143 11 71 2 17

...
...

...
...

...
...

...
...

...
...

4096 4090 3971 125 3852 3972 1925 1985 1865 1985
4096 4091 3972 124 3853 3973 1926 1986 1866 1986
4096 4092 3973 123 3854 3974 1926 1986 1866 1986
4096 4093 3974 122 3855 3975 1927 1987 1867 1987
4096 4094 3975 121 3856 3976 1927 1987 1867 1987
4096 4095 3976 120 3857 3977 1928 1988 1868 1988

Table 31. Code parameters for the Hermitian curve over F256.



CHAPTER 8

Further Directions

This paper has described bivariate Goppa codes with one-point divisors over smooth curves,

along with a simple decoding algorithm, while using a minimum amount of graduate abstract algebra.

See [HvLP] for a more thorough mathematical treatment; see [Pre], part II, for a function-field

approach. The restriction to one-point divisors appears not to be seen as a liability; as shown

in section 4.14, they ease the otherwise difficult computation of `(D). See [Pre], chapter 15, for

more information on non-smooth curves and the difficulty of computing their genuses. The SV

algorithm does not decode up to half the minimum distance; see [Pre], [HvLP] for the full error-

processing algorithm. Good codes in the sense of definition 3.6.4 are not obtainable using the

technique presented in this paper; see [GS] and [TVZ], and see [SAKSD] for an efficient method to

construct such codes. The computation of the genuses of the curves in [GS] is an open problem, as

is the development of more efficient decoding algorithms.
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Plücker formula . . . . . . . . . . . . . . . . . . . . . . . . . . 27



86

plane curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

point class . . . . . . . . . . . . . . . . . . . . . . . . . . . .30, 38

points at infinity . . . . . . . . . . . . . . . . . . . . . . . . . 24

pole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

primary code . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

R

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

rational divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

rational function . . . . . . . . . . . . . . . . . . . . . . . . . 25

rational points . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

received word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . 72

relative minimum distance . . . . . . . . . . . . . . . 13

repetition code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

residue code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Riemann-Roch theorem . . . . . . . . . . . . . . . . . . 40

root charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S

scaling property . . . . . . . . . . . . . . . . . . . . . . . . . . 25

self dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

T

true minimum distance . . . . . . . . . . . . . . . . . . . 45

V

variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

W

Weierstrass semigroup . . . . . . . . . . . . . . . . . . . .41

weight distribution . . . . . . . . . . . . . . . . . . . . . . . . 8

Z

zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

zeroes-and-poles proposition . . . . . . . . . . . . . .39


