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Coding Theory

Originates in the engineering problem of digital com-
munication over noisy channels.

Work over [Fg: low-degree extensions of o, say, g <
256.

Definition. A block code is a subset of Fg. A linear
block code is a subspace of IF"(}.

Encode k-tuples (blocks) by embedding F’; into a k-
dimensional subspace C of IFQ.



Encoding, Transmission, Decoding
Message word m € FZ.
Code word u € Fy: w = mG (encoding).
Error word e € Fy (transmission).
Received word v € 1 v =u +e.
Estimated error word & (decoding).
Estimated received word u = v — e.

Estimated message word m: solve linear system
mG = u.



The matrix G is called a generator matrix. There is
a corresponding parity-check matrix H such that the
following sequence is exact:

0o —- F S m L ot o0

Thus, C =im(G) = ker(H). Compute rows of H from
a kernel basis for G.

Perpendicular space:

CLz{’vEFZ:v-u:OforalluEC’}.

Dot product is not positive definite. Example: (1,0,1)
is self-perpendicular in F3.

The G, H for C are the same as the H, G for C+.
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Hamming weight: wt : IF’g — 7, by
wt(u) = #{u; 1 u; # 0}.

This is a vector-space norm.

Hamming distance: dist : IE‘Z; X ]Fg — 7, by

dist(u,v) = wt(u — v).

Minimum distance:
d(C) = min{dist(u,v) : u,v € C; u # v}
For a linear code, all differences are in the subspace, so

d(C) = min{wt(u) : u € C;u #* 0}



Code parameters: length n, dimension k£, minimum dis-
tance d, alphabet size gq. A linear block code is described
as an [n, k,d]; code. Example: [7,3,4]>.

One may think of k£ of the n symbols in each block as
pavload, and the remaining n—k symbols as redundancy.
Data rate: R=k/n.

T he basic engineering problem: correct many errors at
low transmission redudancy.

Maximum correctable errors per block: Ld_TlJ.
Mathematical problem statement for linear block codes:

construct subspaces maximizing d, maximizing k, and/or
minimizing n.



Subspace packings:

Fo

1 010

0 000
3

01 11

00 10

Fy inside F3

d=1

011

110

001

100

d=2
111 011
010 110
101 001
000 100
2 ingi 3
F5 inside I3
d=1
011 111
010 110
001 101
000 100

F» inside F3

111

101

Fs inside F3

d=3
011 111
010 110
001 101
000 100
2 ingi 3
F5 inside I3
d=2
011 111
010 110
001 101
000 100




Algebraic Geometry

Consider projective plane curves V: points of P?(F,)
which are zeroes of a single homogeneous equation
o(X,Y,Z) e K[IX,Y, Z].

Restrict attention to smooth curves, i.e. ¢ and its par-
tials simultaneously vanish nowhere.

Result: V smooth implies ¢ is absolutely irreducible.

Plucker formula for genus g: for smooth plane curves,
with d = deg(¢),
(d—1)(d—2)
g = > -




Let I(V/K) = (¢) € K[X,Y,Z]. Coordinate ring:
K[X,Y, Z]

I(V/K)
Function field K(V'): quotient field of K[V].

K[V] =

Divisor group: free abelian group on points of V, e.q.
D = Y pcynpP. Support of D: P such that np # 0.
A divisor D is effective, written D = 0, if np > 0 for all

PeV.

Intersection divisor of F':

diV(F) = ZTLPP — ZTLQQ
where P's are zeroes of F', Q's are poles of F', np's are
zero multiplicities, nQ'S are pole orders.
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Vector space associated to a divisor:
L(D)={F e K(V):div(F)+ D =0} u{0}.
Dimension over K: 4(D).

Key property of £(D): for all F € L(D), poles are con-
fined to the point(s) of D.

Theorem (Riemann-Roch). If deg(D) > 2g — 2, then

¢(D) = deg(D) —g+ 1.
Always:
¢(D) > deg(D) — g+ 1.
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Definition. If 4(rP) = 4((r — 1)P), r is a Wejerstrass
gap of P.

Results: A non-negative integer r is a non-gap of P iff
there is an F ¢ K(V) with a pole of order r in P, and
poles at no other point of V. The number of gaps is g.
By Riemann-Roch, gaps are at or below 2g — 2.

Proposition. Let (v; : i € Z4) be an enumeration of the
non-gaps of P, with 0 = v <~y < .... Let F; € L(v;P)
be such that vp(F) = —~;. Then {Fy...,F;} is a basis
for L(v-P).

Find non-gaps by finding g — 1 functions with distinct
pole orders at rP, 0 <r < 2g — 2.
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Klein quartic example: X3Y +Y3Z 4+ Z3X = 0. Label
some points P; = [1,0,0], P, = [0,1,0], P3 = [0,0,1].
Intersection divisors:

diV(X) = 3P3+ P
diV(Y) = 3P + P3
diV(Z) = 3P+ P

(=t +2j)P1 + (=2 - 3j) P> + (3 + j) 5.

(XY
div it
Let D =rP>. With —: 4+ 25 > 0, poles are confined to
P>, and X'YJ/Z'TJ span L(D).
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The Klein quartic has degree 4, hence genus 3. There
are 3 gaps, between O and 2g — 2 = 4.

rl i) li+3 Fl—i+2j[-2i—3j[3i+
0,1,2]0]0 0 1 0 0 0
34|01 1 Y/Z 2 -3 1
5|11 2| XY/Z? 1 -5 4
602 2| Y?/Z? 4 —6 2
71201 3| X2Y/Z3 0 —7 7
8|12 3| Xy?2/73 3 —8 5
9|03 3| y3/z3 6 -9 3

Since g — 1 = 2 functions have been found with pole
order between 0 and 4, namely, O and 3, gaps for the
Klein quartic are at 1, 2, and 4.
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Code Construction

Let V be a smooth projective plane curve defined over
F,. Let P = (Py,...,P,) be a vector of distinct Fg-
rational points of V. Let D be a divisor on V, with
0 < deg(D) < n, with support disjoint from P. Thus
all ' in L(D) are pole-free on P. Here, D is always a
one-point divisor: P is most or all of the other points.

Definition. The Goppa primary code for V, P, D is
Cp(V,P,D) ={v e€F;: F(P)-v=0 for all e L(D)}.
Definition. The Goppa dual code for V, P, D is

Cy(V,P,D) ={F(P) : F € L(D)} =e(L(D))
where ¢ is the evaluation map ¢ : F — F(P). Thus,

Cp={veF!: u-v=0 forall ueCy} =C7.
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Lemma. If deg(D) < 0O, then L(D) = {0}.

Proof. Let F' be non-zero in K(V). From the zeroes-
and-poles proposition, degdiv(F') = 0. Thus

deg div(F') 4+ deg(D) = deg(div(F) + D) <0
— div(F)+ D %0
—— F &L(D).
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Theorem. If deg(D) > 2g — 2, the dimension of Cy is
n —deg(D) 4+ g — 1.

Proof. Let k = dim(Cp). Then dim(Cy) = dim(Cy) =
n — k. Prove that the latter is deg(D) — g+ 1. By
Riemann-Roch, ¢(D) = degD — g+ 1. Show ¢ is 1-1
since Cy; = e(L(D)). Let e(F) = 0 for some F € L(D).
Then all F(P;) = 0, so all np, > O in div(F'). Since all
P; & supp(D), div(F)+ D —P; —... — P, = 0. Since
deg(D) < n, deg(D—- Py —...— P,) < 0. By the lemma,
L(D—P—...—P,) ={0}. ]
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Theorem. If deg(D) > 2g — 2, then d(Cyp) > deg(D) —
29 + 2.

Proof. Show minimum weight since Cy is linear. Let u
be of minimum weight w > 0. WLOG renumber P;'s
and u;'s such that the first w of the u;'s are non-zero.
Seeking a contradiction, suppose w < deg(D) — 2g + 2.
Let Dy = D —-Py —...— Py and Dy,_1 = D — Py —
...— P,_1. Since w < deg(D) — 29+ 2, deg(D) —w =
deg(Dy) > 2g — 2 and thus deg(D,,_1) > 2g — 2 as well.
By Riemann-Roch, ¢(Dy) = deg(D) —w — g+ 1 and
¢(Dy_1) =deg(D) —w—g—+2. Thus 3 F € L(Dy,_1),
F & L(Dy). This implies F(P;) =0 for 1 <j <w, and
F(Py)#0. SinceD,_1<D, Fe L(D)and F(P) - u=
F(Py)uw # 0, contradicting u € C)p. L]
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Encoding

Let £k = n —4(D). Let {Fy,...,F,,_1} be a basis for
L(D). A G for Cy, hence an H for Cp, is F;(Pj).

Compute a kernel basis to get a G for (). Encode

mG = u.
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Decoding

Received word is v = u-+e. Error location: Pj such that
e; 7 0. Errorlocator: A € K(V') such that A(P;) = 0 for
all error locations of e, and pole-free on P. Minimum
correctable error weight: t.

Proposition. Let A be a divisor on V with support dis-
joint from P such that ¢(A) >t. Then an error locator
exists in L(A). (Here, A < D, i.e. one-point divisor on
the same point.)

Proposition. Let R be a divisor on V. with support dis-
joint from P such that deg(R) > t+ 29 — 1. Then
A € K(V), pole-free on P, locates e iff (pA)(P)-e=0
for all p € L(R).
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Proposition. Let the /(R) x £(A) matrix S be given by
Sij = (piX;)(P) - e. Then X\ = Zﬁ(:Al) cjAj € L(A) locates
e Iff ¢ solves Sec = 0.

Proposition. Let A have support disjoint from P, ¢(A) >
t, and deg(A) < deg(D) —2g+2—t. Let A € L(A) lo-
catee. Let Z, z be P;’s, e;'s such that A(P;) = 0. Let
M be a divisor of V. with support disjoint from P such
that deg(M) > deg(A) +2g — 2. Let pa,...,pyp) be a
basis of L(M). Then z is uniquely determined by any
error locator A € L(A) and the syndromes u(P) -v with
respect to functions p € L(M). Specifically, z is the

unique solution of the system of equations

ui(Z) -z = pi(P)-v
Remark. Take R=D - A, M = D.
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Received word v = (, *, *, %, %, *, *).

Solve homogeneous system Sc =0 to get A =3 c;A;.
Apply XA to P: (x,%,0,%,0,0,*).

Error locations: 3,5,6.

Solve inhomogenous system:

p1(P3) p1(Ps) n1(Pe)| ro 1 p1(P)-v
po(P3) po(FPs) pa(Fs) 23 _ |p2(P) v
p3(P3) p3(Ps) pa(Ps) 25 p3(P) - v
11a(P3) pa(Ps) pa(Pe)| V%4 [pua(P) v

Error word: (0,0, 23,0, z5, 25, 0).
22



Further Directions
Non-smooth curves, computation of genus.

Error processing up to [%51] (Duursma).

Higher-dimensional projective spaces are needed for

high-quality codes.

More efficient decoding algorithms.
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