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Overview

• Coding Theory

• Algebraic Geometry (key: Riemann-Roch)

• Construction and Encoding (Goppa)

• Decoding (Skorobogatov-Vlǎduţ)

• Further Directions

• References
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Coding Theory

Originates in the engineering problem of digital com-

munication over noisy channels.

Work over Fq: low-degree extensions of F2, say, q ≤
256.

Definition. A block code is a subset of Fn
q . A linear

block code is a subspace of Fn
q .

Encode k-tuples (blocks) by embedding Fk
q into a k-

dimensional subspace C of Fn
q .
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Encoding, Transmission, Decoding

• Message word m ∈ Fk
q .

• Code word u ∈ Fn
q : u = mG (encoding).

• Error word e ∈ Fn
q (transmission).

• Received word v ∈ Fn
q : v = u + e.

• Estimated error word ê (decoding).

• Estimated received word û = v − ê.

• Estimated message word m̂: solve linear system

m̂G = û.
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The matrix G is called a generator matrix. There is
a corresponding parity-check matrix H such that the
following sequence is exact:

0 → Fk
q

·G→ Fn
q

H·→ Fn−k
q → 0

Thus, C = im(G) = ker(H). Compute rows of H from
a kernel basis for G.

Perpendicular space:

C⊥ = {v ∈ Fn
q : v · u = 0 for all u ∈ C}.

Dot product is not positive definite. Example: (1,0,1)
is self-perpendicular in F3

2.

The G, H for C are the same as the H, G for C⊥.
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Hamming weight: wt : Fn
q → Z by

wt(u) = #{ui : ui 6= 0}.

This is a vector-space norm.

Hamming distance: dist : Fn
q × Fn

q → Z by

dist(u, v) = wt(u− v).

Minimum distance:

d(C) = min{dist(u, v) : u, v ∈ C;u 6= v}

For a linear code, all differences are in the subspace, so

d(C) = min{wt(u) : u ∈ C;u 6= 0}

6



Code parameters: length n, dimension k, minimum dis-
tance d, alphabet size q. A linear block code is described
as an [n, k, d]q code. Example: [7,3,4]2.

One may think of k of the n symbols in each block as
payload, and the remaining n−k symbols as redundancy.
Data rate: R = k/n.

The basic engineering problem: correct many errors at
low transmission redudancy.

Maximum correctable errors per block: bd−1
2 c.

Mathematical problem statement for linear block codes:
construct subspaces maximizing d, maximizing k, and/or
minimizing n.
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Subspace packings:
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Algebraic Geometry

Consider projective plane curves V : points of P2(Fq)

which are zeroes of a single homogeneous equation

φ(X, Y, Z) ∈ K[X, Y, Z].

Restrict attention to smooth curves, i.e. φ and its par-

tials simultaneously vanish nowhere.

Result: V smooth implies φ is absolutely irreducible.

Plücker formula for genus g: for smooth plane curves,

with d = deg(φ),

g =
(d− 1)(d− 2)

2
.
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Let I(V/K) = 〈φ〉 ∈ K[X, Y, Z]. Coordinate ring:

K[V ] =
K[X, Y, Z]

I(V/K)
.

Function field K(V ): quotient field of K[V ].

Divisor group: free abelian group on points of V , e.g.

D =
∑

P∈V nPP . Support of D: P such that nP 6= 0.

A divisor D is effective, written D < 0, if nP ≥ 0 for all

P ∈ V .

Intersection divisor of F :

div(F ) =
∑

nPP −
∑

nQQ

where P ’s are zeroes of F , Q’s are poles of F , nP ’s are

zero multiplicities, nQ’s are pole orders.
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Vector space associated to a divisor:

L(D) = {F ∈ K(V ) : div(F ) + D < 0} ∪ {0}.

Dimension over K: `(D).

Key property of L(D): for all F ∈ L(D), poles are con-

fined to the point(s) of D.

Theorem (Riemann-Roch). If deg(D) > 2g − 2, then

`(D) = deg(D)− g + 1.

Always:

`(D) ≥ deg(D)− g + 1.
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Definition. If `(rP ) = `((r − 1)P ), r is a Weierstrass

gap of P .

Results: A non-negative integer r is a non-gap of P iff

there is an F ∈ K(V ) with a pole of order r in P , and

poles at no other point of V . The number of gaps is g.

By Riemann-Roch, gaps are at or below 2g − 2.

Proposition. Let (γi : i ∈ Z+) be an enumeration of the

non-gaps of P , with 0 = γ1 < γ2 < . . .. Let Fi ∈ L(γiP )

be such that νP (F ) = −γi. Then {F1 . . . , Fr} is a basis

for L(γrP ).

Find non-gaps by finding g − 1 functions with distinct

pole orders at rP , 0 ≤ r ≤ 2g − 2.
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Klein quartic example: X3Y + Y 3Z + Z3X = 0. Label

some points P1 = [1,0,0], P2 = [0,1,0], P3 = [0,0,1].

Intersection divisors:

div(X) = 3P3 + P2

div(Y ) = 3P1 + P3

div(Z) = 3P2 + P1

div

(
XiY j

Zi+j

)
= (−i + 2j)P1 + (−2i− 3j)P2 + (3i + j)P3.

Let D = rP2. With −i + 2j ≥ 0, poles are confined to

P2, and XiY j/Zi+j span L(D).
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The Klein quartic has degree 4, hence genus 3. There

are 3 gaps, between 0 and 2g − 2 = 4.

r i j i + j F −i + 2j −2i− 3j 3i + j

0,1,2 0 0 0 1 0 0 0
3,4 0 1 1 Y/Z 2 −3 1

5 1 1 2 XY/Z2 1 −5 4
6 0 2 2 Y 2/Z2 4 −6 2
7 2 1 3 X2Y/Z3 0 −7 7
8 1 2 3 XY 2/Z3 3 −8 5
9 0 3 3 Y 3/Z3 6 −9 3
... ... ... ... ... ... ... ...

Since g − 1 = 2 functions have been found with pole

order between 0 and 4, namely, 0 and 3, gaps for the

Klein quartic are at 1, 2, and 4.
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Code Construction

Let V be a smooth projective plane curve defined over
Fq. Let P = (P1, . . . , Pn) be a vector of distinct Fq-
rational points of V . Let D be a divisor on V , with
0 < deg(D) < n, with support disjoint from P . Thus
all F in L(D) are pole-free on P . Here, D is always a
one-point divisor; P is most or all of the other points.

Definition. The Goppa primary code for V, P , D is

Cp(V, P , D) = {v ∈ Fn
q : F (P ) · v = 0 for all F ∈ L(D)}.

Definition. The Goppa dual code for V, P , D is

Cd(V, P , D) = {F (P ) : F ∈ L(D)} = ε(L(D))

where ε is the evaluation map ε : F 7→ F (P ). Thus,

Cp = {v ∈ Fn
q : u · v = 0 for all u ∈ Cd} = C⊥

d .
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Lemma. If deg(D) < 0, then L(D) = {0}.

Proof. Let F be non-zero in K(V ). From the zeroes-

and-poles proposition, degdiv(F ) = 0. Thus

degdiv(F ) + deg(D) = deg(div(F ) + D) < 0

=⇒ div(F ) + D 6< 0

=⇒ F 6∈ L(D).
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Theorem. If deg(D) > 2g − 2, the dimension of Cp is

n− deg(D) + g − 1.

Proof. Let k = dim(Cp). Then dim(C⊥
p ) = dim(Cd) =

n − k. Prove that the latter is deg(D) − g + 1. By

Riemann-Roch, `(D) = degD − g + 1. Show ε is 1-1

since Cd = ε(L(D)). Let ε(F ) = 0 for some F ∈ L(D).

Then all F (Pj) = 0, so all nPj
> 0 in div(F ). Since all

Pj 6∈ supp(D), div(F ) + D − P1 − . . . − Pn < 0. Since

deg(D) < n, deg(D−P1− . . .−Pn) < 0. By the lemma,

L(D − P1 − . . .− Pn) = {0}.
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Theorem. If deg(D) > 2g − 2, then d(Cp) ≥ deg(D) −
2g + 2.

Proof. Show minimum weight since Cp is linear. Let u

be of minimum weight w > 0. WLOG renumber Pj’s

and uj’s such that the first w of the uj’s are non-zero.

Seeking a contradiction, suppose w < deg(D)− 2g + 2.

Let Dw = D − P1 − . . . − Pw and Dw−1 = D − P1 −
. . . − Pw−1. Since w < deg(D) − 2g + 2, deg(D) − w =

deg(Dw) > 2g−2 and thus deg(Dw−1) > 2g−2 as well.

By Riemann-Roch, `(Dw) = deg(D) − w − g + 1 and

`(Dw−1) = deg(D) − w − g + 2. Thus ∃ F ∈ L(Dw−1),

F 6∈ L(Dw). This implies F (Pj) = 0 for 1 ≤ j < w, and

F (Pw) 6= 0. Since Dw−1 4 D, F ∈ L(D) and F (P ) · u =

F (Pw)uw 6= 0, contradicting u ∈ Cp.
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Encoding

Let k = n − `(D). Let {F1, . . . , Fn−k} be a basis for

L(D). A G for Cd, hence an H for Cp, is Fi(Pj).

Compute a kernel basis to get a G for Cp. Encode

mG = u.
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Decoding

Received word is v = u+e. Error location: Pj such that

ej 6= 0. Error locator : λ ∈ K(V ) such that λ(Pj) = 0 for

all error locations of e, and pole-free on P . Minimum

correctable error weight: t.

Proposition. Let A be a divisor on V with support dis-

joint from P such that `(A) > t. Then an error locator

exists in L(A). (Here, A 4 D, i.e. one-point divisor on

the same point.)

Proposition. Let R be a divisor on V with support dis-

joint from P such that deg(R) > t + 2g − 1. Then

λ ∈ K(V ), pole-free on P , locates e iff (ρλ)(P ) · e = 0

for all ρ ∈ L(R).
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Proposition. Let the `(R)× `(A) matrix S be given by

Sij = (ρiλj)(P ) · e. Then λ =
∑`(A)

j=1 cjλj ∈ L(A) locates

e iff c solves Sc = 0.

Proposition.Let A have support disjoint from P , `(A) >

t, and deg(A) < deg(D) − 2g + 2 − t. Let λ ∈ L(A) lo-

cate e. Let Ẑ, ẑ be Pj’s, ej’s such that λ(Pj) = 0. Let

M be a divisor of V with support disjoint from P such

that deg(M) > deg(A) + 2g − 2. Let µ1, . . . , µ`(M) be a

basis of L(M). Then ẑ is uniquely determined by any

error locator λ ∈ L(A) and the syndromes µ(P ) · v with

respect to functions µ ∈ L(M). Specifically, ẑ is the

unique solution of the system of equations

µi(Ẑ) · ẑ = µi(P ) · v

Remark. Take R = D −A, M = D.
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Received word v = (∗, ∗, ∗, ∗, ∗, ∗, ∗).

Solve homogeneous system Sc = 0 to get λ =
∑

cjλj.

Apply λ to P : (∗, ∗,0, ∗,0,0, ∗).

Error locations: 3,5,6.

Solve inhomogenous system:


µ1(P3) µ1(P5) µ1(P6)
µ2(P3) µ2(P5) µ2(P6)
µ3(P3) µ3(P5) µ3(P6)
µ4(P3) µ4(P5) µ4(P6)


ẑ3ẑ5
ẑ6

 =


µ1(P ) · v
µ2(P ) · v
µ3(P ) · v
µ4(P ) · v

 .

Error word: (0,0, ẑ3,0, ẑ5, ẑ6,0).
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Further Directions

• Non-smooth curves, computation of genus.

• Error processing up to bd−1
2 c (Duursma).

• Higher-dimensional projective spaces are needed for

high-quality codes.

• More efficient decoding algorithms.
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