CURVES AND CODES by John R. Kerl

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts

ARIZONA STATE UNIVERSITY April 2005

1

Overview

- Coding Theory
- Algebraic Geometry (key: Riemann-Roch)
- Construction and Encoding (Goppa)
- Decoding (Skorobogatov-Vlăduț)
- Further Directions
- References

Coding Theory

Originates in the engineering problem of digital communication over noisy channels.

Work over \mathbb{F}_q : low-degree extensions of \mathbb{F}_2 , say, $q \leq 256$.

Definition. A block code is a subset of \mathbb{F}_q^n . A linear block code is a subspace of \mathbb{F}_q^n .

Encode k-tuples (blocks) by embedding \mathbb{F}_q^k into a k-dimensional subspace C of \mathbb{F}_q^n .

Encoding, Transmission, Decoding

- Message word $oldsymbol{m} \in \mathbb{F}_q^k.$
- Code word $u \in \mathbb{F}_q^n$: u = mG (encoding).
- Error word $e \in \mathbb{F}_q^n$ (transmission).
- Received word $v \in \mathbb{F}_q^n$: v = u + e.
- Estimated error word \hat{e} (decoding).
- Estimated received word $\hat{u} = v \hat{e}$.
- Estimated message word \hat{m} : solve linear system $\hat{m}G = \hat{u}$.

The matrix G is called a *generator matrix*. There is a corresponding *parity-check matrix* H such that the following sequence is exact:

$$0 \quad \to \quad \mathbb{F}_q^k \quad \stackrel{\cdot G}{\to} \quad \mathbb{F}_q^n \quad \stackrel{H \cdot}{\to} \quad \mathbb{F}_q^{n-k} \quad \to \quad 0$$

Thus, C = im(G) = ker(H). Compute rows of H from a kernel basis for G.

Perpendicular space:

$$C^{\perp} = \{ oldsymbol{v} \in \mathbb{F}_q^n : oldsymbol{v} \cdot oldsymbol{u} = \mathsf{0} ext{ for all } oldsymbol{u} \in C \}.$$

Dot product is *not* positive definite. Example: (1,0,1) is self-perpendicular in \mathbb{F}_2^3 .

The G, H for C are the same as the H, G for C^{\perp} .

Hamming weight: wt : $\mathbb{F}_q^n \to \mathbb{Z}$ by

$$\mathsf{wt}(\boldsymbol{u}) = \#\{u_i : u_i \neq 0\}.$$

This is a vector-space norm.

Hamming distance: dist :
$$\mathbb{F}_q^n imes \mathbb{F}_q^n o \mathbb{Z}$$
 by ${
m dist}(u,v) = {
m wt}(u-v).$

Minimum distance:

$$d(C) = \min\{\operatorname{dist}(u, v) : u, v \in C; u \neq v\}$$

For a linear code, all differences are in the subspace, so

$$d(C) = \min\{\mathsf{wt}(u) : u \in C; u \neq 0\}$$

Code parameters: length n, dimension k, minimum distance d, alphabet size q. A linear block code is described as an $[n, k, d]_q$ code. Example: $[7, 3, 4]_2$.

One may think of k of the n symbols in each block as payload, and the remaining n-k symbols as redundancy. Data rate: R = k/n.

The basic engineering problem: correct many errors at low transmission redudancy.

Maximum correctable errors per block: $\lfloor \frac{d-1}{2} \rfloor$.

Mathematical problem statement for linear block codes: construct subspaces maximizing d, maximizing k, and/or minimizing n. Subspace packings:

Algebraic Geometry

Consider projective plane curves V: points of $\mathbb{P}^2(\mathbb{F}_q)$ which are zeroes of a single homogeneous equation $\phi(X, Y, Z) \in K[X, Y, Z].$

Restrict attention to *smooth curves*, i.e. ϕ and its partials simultaneously vanish nowhere.

Result: V smooth implies ϕ is absolutely irreducible.

Plücker formula for genus g: for smooth plane curves, with $d = \deg(\phi)$,

$$g = \frac{(d-1)(d-2)}{2}.$$

Let $I(V/K) = \langle \phi \rangle \in K[X, Y, Z]$. Coordinate ring: $K[V] = \frac{K[X, Y, Z]}{I(V/K)}.$

Function field K(V): quotient field of K[V].

Divisor group: free abelian group on points of V, e.g. $D = \sum_{P \in V} n_P P$. Support of D: P such that $n_P \neq 0$. A divisor D is effective, written $D \succeq 0$, if $n_P \ge 0$ for all $P \in V$.

Intersection divisor of *F*:

$$\operatorname{div}(F) = \sum n_P P - \sum n_Q Q$$

where P's are zeroes of F, Q's are poles of F, n_P 's are zero multiplicities, n_Q 's are pole orders.

Vector space associated to a divisor:

$$\mathcal{L}(D) = \{F \in K(V) : \operatorname{div}(F) + D \succeq 0\} \cup \{0\}.$$

Dimension over K: $\ell(D)$.

Key property of $\mathcal{L}(D)$: for all $F \in \mathcal{L}(D)$, poles are confined to the point(s) of D.

Theorem (Riemann-Roch). If deg(D) > 2g - 2, then

$$\ell(D) = \deg(D) - g + 1.$$

Always:

$$\ell(D) \ge \deg(D) - g + 1.$$

Definition. If $\ell(rP) = \ell((r-1)P)$, r is a Weierstrass gap of P.

Results: A non-negative integer r is a non-gap of P iff there is an $F \in K(V)$ with a pole of order r in P, and poles at no other point of V. The number of gaps is g. By Riemann-Roch, gaps are at or below 2g - 2.

Proposition. Let $(\gamma_i : i \in \mathbb{Z}_+)$ be an enumeration of the non-gaps of P, with $0 = \gamma_1 < \gamma_2 < \ldots$. Let $F_i \in \mathcal{L}(\gamma_i P)$ be such that $\nu_P(F) = -\gamma_i$. Then $\{F_1 \ldots, F_r\}$ is a basis for $\mathcal{L}(\gamma_r P)$.

Find non-gaps by finding g-1 functions with distinct pole orders at rP, $0 \le r \le 2g-2$.

Klein quartic example: $X^{3}Y + Y^{3}Z + Z^{3}X = 0$. Label some points $P_{1} = [1, 0, 0], P_{2} = [0, 1, 0], P_{3} = [0, 0, 1]$. Intersection divisors:

$$div(X) = 3P_3 + P_2$$

$$div(Y) = 3P_1 + P_3$$

$$div(Z) = 3P_2 + P_1$$

$$div\left(\frac{X^iY^j}{Z^{i+j}}\right) = (-i+2j)P_1 + (-2i-3j)P_2 + (3i+j)P_3.$$

Let $D = rP_2$. With $-i + 2j \ge 0$, poles are confined to P_2 , and $X^i Y^j / Z^{i+j}$ span $\mathcal{L}(D)$.

The Klein quartic has degree 4, hence genus 3. There are 3 gaps, between 0 and 2g - 2 = 4.

r	i	j	i+j	F	-i + 2j	-2i - 3j	3i+j
0,1,2	0	0	0	1	0	0	0
3,4	0	1	1	Y/Z	2	-3	1
5	1	1	2	XY/Z^2	1	-5	4
6	0	2	2	Y^{2}/Z^{2}	4	-6	2
7	2	1	3	$X^{2}Y/Z^{3}$	0	-7	7
8	1	2	3	XY^2/Z^3	3	-8	5
9	0	3	3	Y^{3}/Z^{3}	6	_9	3
:			:	:	:	:	:

Since g - 1 = 2 functions have been found with pole order between 0 and 4, namely, 0 and 3, gaps for the Klein quartic are at 1, 2, and 4.

Code Construction

Let V be a smooth projective plane curve defined over \mathbb{F}_q . Let $P = (P_1, \ldots, P_n)$ be a vector of distinct \mathbb{F}_q -rational points of V. Let D be a divisor on V, with $0 < \deg(D) < n$, with support disjoint from P. Thus all F in $\mathcal{L}(D)$ are pole-free on P. Here, D is always a one-point divisor; P is most or all of the other points.

Definition. The Goppa primary code for V, P, D is

 $C_p(V, \boldsymbol{P}, D) = \{ \boldsymbol{v} \in \mathbb{F}_q^n : F(\boldsymbol{P}) \cdot \boldsymbol{v} = 0 \text{ for all } F \in \mathcal{L}(D) \}.$

Definition. The Goppa dual code for V, P, D is

 $C_d(V, \boldsymbol{P}, D) = \{F(\boldsymbol{P}) : F \in \mathcal{L}(D)\} = \varepsilon(\mathcal{L}(D))$

where ε is the evaluation map $\varepsilon : F \mapsto F(\mathbf{P})$. Thus,

$$C_p = \{ \boldsymbol{v} \in \mathbb{F}_q^n : \boldsymbol{u} \cdot \boldsymbol{v} = 0 \text{ for all } \boldsymbol{u} \in C_d \} = C_d^{\perp}.$$

Lemma. If deg(D) < 0, then $\mathcal{L}(D) = \{0\}$.

Proof. Let F be non-zero in K(V). From the zeroesand-poles proposition, deg div(F) = 0. Thus

 $\deg \operatorname{div}(F) + \deg(D) = \deg(\operatorname{div}(F) + D) < 0$

$$\implies$$
 div $(F) + D \not\geq 0$

$$\implies F \notin \mathcal{L}(D).$$

Theorem. If deg(D) > 2g - 2, the dimension of C_p is n - deg(D) + g - 1.

Proof. Let $k = \dim(C_p)$. Then $\dim(C_p^{\perp}) = \dim(C_d) = n - k$. Prove that the latter is $\deg(D) - g + 1$. By Riemann-Roch, $\ell(D) = \deg D - g + 1$. Show ε is 1-1 since $C_d = \varepsilon(\mathcal{L}(D))$. Let $\varepsilon(F) = 0$ for some $F \in \mathcal{L}(D)$. Then all $F(P_j) = 0$, so all $n_{P_j} > 0$ in $\operatorname{div}(F)$. Since all $P_j \notin \operatorname{supp}(D)$, $\operatorname{div}(F) + D - P_1 - \ldots - P_n \succeq 0$. Since $\operatorname{deg}(D) < n$, $\operatorname{deg}(D - P_1 - \ldots - P_n) < 0$. By the lemma, $\mathcal{L}(D - P_1 - \ldots - P_n) = \{0\}$. **Theorem.** If deg(D) > 2g - 2, then $d(C_p) \ge deg(D) - 2g + 2$.

Proof. Show minimum weight since C_p is linear. Let \boldsymbol{u} be of minimum weight w > 0. WLOG renumber P_i 's and u_i 's such that the first w of the u_j 's are non-zero. Seeking a contradiction, suppose $w < \deg(D) - 2g + 2$. Let $D_w = D - P_1 - ... - P_w$ and $D_{w-1} = D - P_1 - ...$ $... - P_{w-1}$. Since $w < \deg(D) - 2g + 2$, $\deg(D) - w =$ $\deg(D_w) > 2g - 2$ and thus $\deg(D_{w-1}) > 2g - 2$ as well. By Riemann-Roch, $\ell(D_w) = \deg(D) - w - g + 1$ and $\ell(D_{w-1}) = \deg(D) - w - g + 2$. Thus $\exists F \in \mathcal{L}(D_{w-1})$, $F \notin \mathcal{L}(D_w)$. This implies $F(P_j) = 0$ for $1 \leq j < w$, and $F(P_w) \neq 0$. Since $D_{w-1} \preccurlyeq D$, $F \in \mathcal{L}(D)$ and $F(P) \cdot u =$ $F(P_w)u_w \neq 0$, contradicting $u \in C_p$.

Encoding

Let $k = n - \ell(D)$. Let $\{F_1, \ldots, F_{n-k}\}$ be a basis for $\mathcal{L}(D)$. A *G* for C_d , hence an *H* for C_p , is $F_i(P_j)$.

Compute a kernel basis to get a G for C_p . Encode mG = u.

Decoding

Received word is v = u + e. Error location: P_j such that $e_j \neq 0$. Error locator: $\lambda \in K(V)$ such that $\lambda(P_j) = 0$ for all error locations of e, and pole-free on P. Minimum correctable error weight: t.

Proposition. Let A be a divisor on V with support disjoint from **P** such that $\ell(A) > t$. Then an error locator exists in $\mathcal{L}(A)$. (Here, $A \preccurlyeq D$, i.e. one-point divisor on the same point.)

Proposition. Let R be a divisor on V with support disjoint from P such that $\deg(R) > t + 2g - 1$. Then $\lambda \in K(V)$, pole-free on P, locates e iff $(\rho\lambda)(P) \cdot e = 0$ for all $\rho \in \mathcal{L}(R)$.

Proposition. Let the $\ell(R) \times \ell(A)$ matrix S be given by $S_{ij} = (\rho_i \lambda_j)(P) \cdot e$. Then $\lambda = \sum_{j=1}^{\ell(A)} c_j \lambda_j \in \mathcal{L}(A)$ locates e iff c solves Sc = 0.

Proposition. Let A have support disjoint from P, $\ell(A) > t$, and deg $(A) < \deg(D) - 2g + 2 - t$. Let $\lambda \in \mathcal{L}(A)$ locate e. Let \hat{Z} , \hat{z} be P_j 's, e_j 's such that $\lambda(P_j) = 0$. Let M be a divisor of V with support disjoint from P such that deg $(M) > \deg(A) + 2g - 2$. Let $\mu_1, \ldots, \mu_{\ell(M)}$ be a basis of $\mathcal{L}(M)$. Then \hat{z} is uniquely determined by any error locator $\lambda \in \mathcal{L}(A)$ and the syndromes $\mu(P) \cdot v$ with respect to functions $\mu \in \mathcal{L}(M)$. Specifically, \hat{z} is the unique solution of the system of equations

$$\mu_i(\widehat{Z}) \cdot \widehat{z} = \mu_i(P) \cdot v$$

Remark. Take R = D - A, M = D.

21

Received word v = (*, *, *, *, *, *, *).

Solve homogeneous system Sc = 0 to get $\lambda = \sum c_j \lambda_j$.

Apply λ to P: (*,*,0,*,0,0,*).

Error locations: 3, 5, 6.

Solve inhomogenous system:

$$\begin{bmatrix} \mu_1(P_3) & \mu_1(P_5) & \mu_1(P_6) \\ \mu_2(P_3) & \mu_2(P_5) & \mu_2(P_6) \\ \mu_3(P_3) & \mu_3(P_5) & \mu_3(P_6) \\ \mu_4(P_3) & \mu_4(P_5) & \mu_4(P_6) \end{bmatrix} \begin{bmatrix} \hat{z}_3 \\ \hat{z}_5 \\ \hat{z}_6 \end{bmatrix} = \begin{bmatrix} \mu_1(P) \cdot v \\ \mu_2(P) \cdot v \\ \mu_3(P) \cdot v \\ \mu_4(P) \cdot v \end{bmatrix}$$

Error word: $(0, 0, \hat{z}_3, 0, \hat{z}_5, \hat{z}_6, 0)$.

Further Directions

- Non-smooth curves, computation of genus.
- Error processing up to $\lfloor \frac{d-1}{2} \rfloor$ (Duursma).
- Higher-dimensional projective spaces are needed for high-quality codes.
- More efficient decoding algorithms.

References

MacWilliams, F.J. and Sloane, N.J.A. The Theory of Error-Correcting Codes. Elsevier Science B.V., 1997.

Silverman, J. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

Goppa, V.D. (1977). *Codes associated with divisors*. Probl. Inform. Transmission, vol. 13, 22-26.

Skorobogatov, A.N. and Vlăduţ, S.G. *On the decoding of algebraic-geometric codes*. IEEE Trans. Inform. Theory, vol. 36, pp. 1051-1060, Nov. 1990.

Pretzel, O. Codes and Algebraic Curves. Oxford University Press, 1998.

Walker, J.L. Codes and Curves. American Mathematical Society, 2000.

Høholdt, T., van Lint, J.H., and Pellikaan, R. *Alge-braic Geometry Codes*. Handbook of Coding Theory, vol. 1, pp. 871-961 (Pless, V.S., Huffman, W.C. and Brualdi, R.A. Eds.). Elsevier, Amsterdam, 1998.