
 A short course in linking and loading 

John Kerl 

October, 2003 

 

 

Table of contents 
 
1. A sample program .............................................................................................................2 
2. Hand-compiling the sample program...............................................................................3 
3. Hand-assembling the sample program.............................................................................7 
4. Linker input map...............................................................................................................9 
5. Library routines; _start .................................................................................................... 10 
6. Hand-linking the sample program.................................................................................. 12 

6.1. Merging segments ..............................................................................................................................13 
6.2. Re-writing symbol providers in the symbol tables .......................................................................15 
6.3. Resolving symbol requirers ..............................................................................................................15 

7. Writing the linker output map file................................................................................... 16 
8. Writing the plain-binary file ............................................................................................ 17 
9. Disassembly .................................................................................................................... 19 
10. Intermediate files ............................................................................................................ 19 
11. Writing an ELF file ......................................................................................................... 20 
12. Why? 20 

12.1. Where is my code?..........................................................................................................................21 
12.2. What are these bits? .......................................................................................................................21 

 



 

1. A sample program 
 
Here is a two-file C program (it doesn’t do anything interesting): 
 
// -------------------------------------------------------------- 
// file1.c 
// -------------------------------------------------------------- 
int init1 = 3; 
static int init2 = 4; 
int uninit1; 
static int uninit2; 
char my_zstring[256]; 
char my_vstring[] = “Hello, world!”; 
char * my_ptr = “How are you?”; 
 
void main(void) 
 // Embedded programs typically have nothing to return to, 
 // hence return type void. 
{ 
 int local1 = 3; 
 int local2; 
 
 local2 = 4;  
 for (;;) 
  func1(local1, local2); 
} 
 
// -------------------------------------------------------------- 
// file2.c 
// -------------------------------------------------------------- 
int init3 = 17; 
int uninit3; 
char other_string[] = “Fine, thanks.”; 
void func1(int arg1, int arg2) 
{ 
 static int func1_static = 0; 
 int * pdevreg = (int *)0xde0000ac; 
  
 *pdevreg = func1_static; 
 func1_static++; 
} 
 
This program demonstrates various types of memory.  To see where it all goes as it is translated from 
C source code into an executable file to something that can run on a board, let’s pretend to be the 
compiler, then the assembler, then the linker, then the code running on the board. 
 



2. Hand-compiling the sample program 
 
The compiler turns C source code into assembler.  Here I’ll use a fictitious assembly language. 
 
Recall that the compiler sees one source file at a time, turning each one into an assembly file – e.g. 
file1.c to file1.s, file2.c to file2.s – and the assembler turns those into their 
corresponding object files – e.g. file1.s to file1.o, file2.s to file2.o.  Then, as a 
separate step, the linker turns the object files into an executable file, e.g. myprog. 
 
Before doing the assembly, I’ll annotate the C code a little bit, to more clearly see what items go into 
which segments. 
 
 
// file1.c  
int init1 = 3; Initialized global:  .data segment 

 
static int init2 = 4; Initialized global:  .data segment 

static for globals simply restricts the scope from 
program scope to file scope. 
 

int uninit1; Uninitialized global: .bss segment 
 

static int uninit2; Uninitalized global (file scope): .bss segment 
 

char my_zstring[256]; Uninitialized global: .bss segment 
 

 
char my_vstring[] = “Hello, world!”; 
char * my_ptr = “How are you?”; 

 
Key point:  In C, these two are different.  my_vstring 
is an array of characters, with length unspecified in the 
brackets.  The length is taken from the initializer, which is 
13 characters for “Hello, world!” plus the null 
string-termination character.  Also, the ANSI C standard 
specifies that “Hello, world!” is the initial value, 
but that these values could be later modified at run time.  
Hence my_vstring  is 14 bytes of read-write, 
initialized data.  It goes in the .data segment. 
 
By contrast, “How are you?” is a string literal, 
hence read-only.  This  is 12 characters, plus the null 
terminator.  So, this string is 13 bytes in the .rodata 
segment. 
 
my_ptr is a 4-byte pointer to character, whose initial value 
is the address of the string literal “How are you?”.  
However, that pointer could later, at run time, be assigned to 
point to something else.  So, my_ptr is 4 bytes of read-
write, initialized data.  It goes into the .data segment. 
 

extern void func1(int, int); This is just a prototype, to help the compiler do error 
checking.  This statement generates no code. 
 



void main(void) 
{ 

This routine, main(), is instructions, so it is in the 
.text segment. 

 int local1 = 3; This is an initialized stack variable. 
 int local2; This is an uninitialized stack variable. 
 local2 = 4;  
 for (;;)  
  func1(local1, local2); This is a call to a function that is in another file 
}  
  
// file2.c  
int init3 = 17; This is an initialized global.  .data segment. 

 
int uninit3; Uninitialized global.   .bss segment. 

 
char other_string[] = “Fine, 
thanks.”; 

As with my_vstring in file1.c, this is an 
initialized global.  .data segment. 
 

void func1(int arg1, int arg2) 
{ 

This routine, func1(), is instructions, so it is in the 
.text segment.  
 

 static int func1_static = 0; The static keyword in a function is different from 
static outside a function:  Here, it means that the 
variable’s value is retained between calls.  This is still a 
global, even though only this function is allowed to refer to it 
by name – a rule which the compiler enforces.  This variable 
is initialized to a specific value (even though that value is 0), 
so it goes into the .data segment. 
 

 int * pdevreg =  
  (int *)0xde0000ac; 

This is an initialized global (four bytes of pointer to 
integer, with an initial value specified) so it goes into 
the .data segment. 
 
This idiom comes up a lot in embedded programming, 
and seldom or never when you write code that runs 
within an operating system:  We know ahead of time 
that a certain device appears in the processor’s 
memory space at a fixed address.  Reading and/or 
writing to this address does some sort of device control.  
Let’s suppose, for the sake of discussion, that eight 
data pins are wired somehow to eight LEDs, so that 
writing, for example, the byte 0xe0 to this address will 
turn on the first three LEDs and darken the remaining 
five. 
 

 *pdevreg = func1_static; Write a value to the LED device. 
 func1_static++; Increment for next call. 
}  
 
Now that we’ve analyzed the source code a little bit, we can pretend we’re the compiler.  Writing 
automated compilers isn’t trivial, but for you and me (since we’re human beings) the end result is 
pretty straightforward.  Two key points, though, are (1) the compiler will put different things into 
different segments; (2) since the compiler sees each file one at a time, every object file has its own 



segments – .text, .data, .bss, etc.  One of the linker’s tasks is to shuffle all those segments 
together when it creates the executable file. 
 
For the sake of discussion, suppose our fictitious processor has the following registers: 
 

• sp, a stack pointer 
• pc, a program counter 
• lr, a link register 
• A, an address register 
• D, a data register 
• X and Y, two more data registers 

 
Here is the output of our hypothetical compiler.  If you’ve printed this document on a black-and-
white printer, you may be missing some color coding.  I’ve color-coded as follows: 

• .data items are green 
• .bss items are orange 
• .text items are blue 
• .rodata items are red 

 
# file1.s 
# int init1 = 3; 
 .segment data  init1 goes into file1.s’s .data segment 
 .export init1 
 
init1:    Ask the assembler to export the name init1 to the linker, so other 
 .long 3  files can see this name. 
 
# static int init2 = 4; 
init2: 
 .long 4  Also in file1.s’s .data segment.  No export since it 
    has file scope. 
 
# int uninit1; 
 .segment bss  This goes in the .bss segment. 
 .export uninit1 Export since it has program scope. 
uninit1: 
 .skip 4 
 
# static int uninit2; Also in .bss segment.  Has file scope, so no export. 
uninit2: 
 .skip 4 
 
# char my_zstring[256]; Still in .bss segment 
 .export my_zstring 
my_zstring: 
 .skip 256 
 
# char my_vstring[] = “Hello, world!”; 
 .segment data  In .data segment 
my_vstring: 
 .ascii “Hello, world!”, 0 
 .align 4 
 
# char * my_ptr = “How are you?”; 
 .export my_ptr Pointer is in .data segment 
my_ptr: 
 .long lit001  Value is a symbolic name; address not known until link time. 



 
 .segment rodata 
lit001:   This string literal goes into the .rodata segment. 
 .ascii “How are you?”, 0 
 .align 4 
 
# void main(void)  Code is in the .text segment. 
# { 
 .segment text 
 .export main  Needs to be called by start(), in another file, so export it. 
main: 
 add  sp, 16 

main() uses two 4-byte local variables and two 4-byte arguments to its callee, func1():  
local1 is at sp+12 and local2 is at sp+16; outgoing argument 1 at sp+4 and 
argument 2 at sp+8. 

 
#  int local1 = 3; Assignment of stack variables happens at runtime.  The values 
    are contained within the instructions in the .text segment. 
    This is why the stack segment takes up no space in the executable file. 
#  int local2; 
 mov A, sp+12  Put address of local1 into register A. 
 mov D, 3  Put 3 into register D. 
 st  D, A  Store reg. D (value 3) back to address of local1. 
 
#  local2 = 4;  
 mov A, sp+16  Put address of local2 into register A. 
 mov D, 4  Put 4 into register D. 
 st  D, A  Store reg. D (value 4) back to address of local2. 
 
L01:    Compiler-generated symbol for top of loop. 
#  for (;;) 
#   func1(local1, local2); 
 ld   D, sp+12  Marshal arguments for function call, passing arguments 
 st   D, sp+4  by value (copy to new positions on stack). 
 ld   D, sp+16 
 st   D, sp+8 
 bl func1 

Set pc to func1 (address not known till link time), saving address of next instruction in the 
link register (lr). 

 b  L01   Branch unconditionally to top of loop. 
# } 
 sub sp, 16  Restore context. 
 ret   Return to caller (address in lr).  Not reached due to for(;;). 
 
 
# file2.s 
# // file2.c 
# int init3 = 17; 
 .segment data  This goes into file2.s’s .data segment. 
 .export init3  Export, since it has global scope. 
init3: 
 .long 17 
 
# int uninit3;  This goes into file2.s’s .bss segment. 
 .segment bss 
 .export uninit3 Export, since it has global scope. 
uninit3: 
 .skip 4 
 
# char other_string[] = “Fine, thanks.”; 
 .segment data  This goes into file2.s’s .data segment. 
 .export other_string 



other_string: 
 .ascii “Fine, thanks.”, 0 
 
# void func1(int arg1, int arg2) 
# {    Code goes into file2.s’s .text segment. 
 .segment text 
 add sp, 4  func1() uses one 4-byte local variable and calls no other function. 
    Stack variable pdevreg is at sp+4. 

 
#  static int func1_static = 0; 
 .segment data  Function statics are really function-scope globals. 
func1::func1_static: 
 .long 0 
 
 .segment text  Back in .text segment. 
#  int * pdevreg = (int *)0xde0000ac; 
 
 mov D, 0xde0000ac Assignment of stack variables happens at runtime. 
 st  D, sp+4  Put 0xde0000ac at address of pdevreg (sp+4). 
  
#  *pdevreg = func1_static; 
 mov A, func1_static 
 ld  D, A  Copy data from address of global func1_static 
 st  D, sp+4  to address contained in stack variable pdevreg. 
 
#  func1_static++; 
 mov A, func1_static 
 ld  D, A  Load global variable to register, increment, store back. 
 add D, 1 
 st  D, A 
# } 
 sub sp, 4  Restore context 
 ret   Return to caller 
 
OK, so that’s pretty simple – we just walk through the source code, assigning each statement to the 
segment in which it belongs.  Roughly speaking, variables on the right-hand side of an equals sign 
(rvalues in compiler speak) turn into load instructions; variables on the left-hand side of an equals sign 
(lvalues in compiler speak) turn into store instructions. 

3. Hand-assembling the sample program 
 
Now, we’ll pretend we’re the assember.  Like compilers, assemblers are non-trivial.  However, for 
you and me, with our intuitive human minds, it will all be straightforward.  I’ll interleave the 
assembler with the machine code output.  (The machine codes are entirely fictional as well as 
nonsensical.) 
 
Notice that symbols resolved at link time have values set to zero at this point.  For example, main in 
file1.o’s text segment calls func1, but the address of func1 isn’t known yet. 
 
As above, I’ve color-coded: 

• .data items are green 
• .bss items are orange 
• .text items are blue 
• .rodata items are red 

 
file1.o: 



 
(Start of file1.o’s .data segment) 
0x0000:  00 00 00 03 variable init1 
0x0004:  00 00 00 04 variable init2 
0x0008:  48 65 6c 6c ‘H’ ‘e’ ‘l’ ‘l’  variable my_vstring 
0x000c:  6f 2c 20 77 ‘o’ ‘,’ ‘ ’ ‘w’  
0x0010:  6f 72 6c 64 ‘o’ ‘r’ ‘l’ ‘d’ 
0x0014:  21 00 00 00 ‘!’ (null terminator) (two more 0 bytes for 4-byte alignment) 
0x0018:  00 00 00 00 my_ptr.  After link, value will be address of lit001. 
(Start of file1.o’s .bss segment) 
0x001c:  00 00 00 00 variable uninit1 
0x0020:  00 00 00 00 variable uninit2 
0x0024:  00 00 00 00 First 4 bytes of my_zstring 
...      ...         248 more bytes of my_zstring 
0x0120:  00 00 00 00 Last 4 bytes of my_zstring 
(Start of file1.o’s .rodata segment) 
0x0124:  48 6f 77 20 ‘H’ ‘o’ ‘w’ ‘ ‘ variable lit001 
0x0128:  61 72 65 20 ‘a’ ‘r’ ‘e’ ‘ ‘ 
0x012c:  79 6f 75 3f ‘y’ ‘o’ ‘u’ ‘?’ 
0x0130:  00 00 00 00 (null terminator) (3 more 0 bytes for 4-byte alignment) 
(Start of file1.o’s .text segment) 
0x0134:  a8 9a 00 10 opcode for add sp, 16; start of main() 
0x0138:  a9 80 04 0c opcode for mov A, sp+12 
0x013c:  a8 90 05 03 opcode for mov D, 3 
0x0140:  a8 11 05 04 opcode for st  D, A 
0x0144:  a9 80 04 10 opcode for mov A, sp+16 
0x0148:  a8 90 05 04 opcode for mov D, 4 
0x014c:  a8 11 05 04 opcode for st  D, A 
0x0150:  a9 10 05 0c opcode for ld  D, sp+12; label L01 
0x0154:  a9 11 05 04 opcode for st  D, sp+4 
0x0158:  a9 10 05 10 opcode for ld  D, sp+16 
0x015c:  a9 11 05 08 opcode for st  D, sp+8 
0x0160:  a8 31 00 00 opcode for bl func1 
0x0164:  a8 30 00 00 opcode for b  L01 
0x0168:  a8 9b 00 10 opcode for sub sp, 16 
0x016c:  a8 40 01 00 opcode for ret 
 
file1.o’s symbol table (contained within file1.o): 
0x0000:  provide init1 
0x0004:  provide init2 
0x0008:  provide my_vstring 
0x0018:  provide my_ptr 
0x0018:  require lit001 
0x001c:  provide uninit1 
0x0020:  provide uninit2 
0x0024:  provide my_zstring 
0x0124:  provide lit001 
0x0134:  provide main 
0x0150:  provide L01 
0x0160:  require func1 
0x0164:  require L01 
 
file2.o: 
(Start of file2.o’s .data segment) 
0x0000:  00 00 00 11 variable init3 
0x0004:  46 69 6e 65 ‘F’ ‘i’ ‘n’ ‘e’; variable other_string 
0x0008:  2c 20 74 68 ‘,’ ‘ ‘ ‘t’ ‘h’ 
0x000c:  61 6e 6b 73 ‘a’ ‘n’ ‘k’ ‘s’ 
0x0010:  2e 00 00 00 ‘.’ (null terminator) (two more bytes for four-byte alignment) 
0x0014:  00 00 00 00 variable func1_static, private to func1 
(Start of file2.o’s .bss segment) 
0x0018:  00 00 00 00 variable uninit3 



(Start of file2.o’s .text segment) 
0x001c:  a8 9a 00 04 opcode for add sp, 4; start of func1 
0x0020:  a8 80 05 ff opcode for mov D, imm 
0x0024:  de 00 00 ac immediate value for preceding mov 
0x0028:  a9 11 05 04 opcode for st  D, sp+4 
0x002c:  a8 80 04 ff opcode for mov A, func1::func1_static 
0x0030:  00 00 00 00 immediate value for preceding mov 
0x0034:  a8 10 05 04 opcode for ld  D, A 
0x0038:  a9 11 05 04 opcode for st  D, sp+4 
0x003c:  a8 80 04 ff opcode for mov A, func1::func1_static 
0x0040:  00 00 00 00 immediate value for preceding mov 
0x0044:  a8 10 05 04 opcode for ld  D, A 
0x0048:  a8 91 05 01 opcode for add D, 1 
0x004c:  a8 11 05 04 opcode for st  D, A 
0x0050:  a8 9b 00 04 opcode for sub sp, 4 
0x0054:  a8 40 01 00 opcode for ret 
 
file2.o’s symbol table (contained within file2.o): 
0x0000:  provide init3 
0x0004:  provide other_string 
0x0014:  provide func1::func1_static 
0x0018:  provide uninit3 
0x001c:  provide func1 
0x0030:  require func1::func1_static 
0x0040:  require func1::func1_static 

4. Linker input map 
 
In order to generate the executable file, the linker will need to assign segments to specific memory 
addresses.  For programs running within an operating system, a default layout is used, of which the 
programmer is usually unaware.  But for bare-board embedded systems, it is vital that the 
programmer tell the linker what goes where, typically using a linker input map file. 
 
For this linking-and-loading example, let’s assume the following: 
 

• We are building a program which has read-write data, but is stored in flash. 
• Earlier in this document, I talked about processor-init code.  Let’s suppose the C 

program we’re building here executes out of the flash, but is independent from the 
processor-init code.  (That is, the processor-init code will have already run, and then will 
simply jump into our program.) 

• At runtime, the .text and .rodata segments will stay in flash. 
• At runtime, the .bss segment will be in RAM and will need to be zero-filled. 
• At runtime, the .data segment will need to be copied from its ROM storage location 

to its RAM location. 
 
So, we will have the following expectations: 

• The .text will go at a specified location in flash, say, 0xfff40000. 
• The .romdata segment will go after the .text segment, in flash.  (These are the 

initial values for the .data segment.) 
• The .rodata segment will go after the .romdata segment, in flash. 
• The .data segment will go at a specified location in SRAM, say, 0x10040000. 
• The .bss segment will go after the .data segment, in SRAM. 
• The stack will go at the end of the 1MB SRAM, with initial stack-pointer value 

0x100ffff0. 



 
How you tell the linker to do this depends entirely on your build tools.  For the sake of discussion I’ll 
use the following format: 
 
 _start 0xfff40000: 
  .text: 
  .romdata ROM(.data) align(4): 
  .rodata: 
 .data 0x10040000: 
  .bss: 
 .stack 0x100ffff0: 

 
The idea is that a segment (or symbol name) with an address starts at that specified address; a 
segment (or symbol name) without an address starts where the previous region ended. 

5. Library routines; _start 
 
Input to the linker consists of the linker input map, plus all the user-specified object files, plus 
standard library files.  (For example, typically you call printf() even though you didn’t write it.)  
For simplicity, I made my little sample program use only one library routine (even though you might 
not have noticed):  There is a function which calls main() – usually, it is named _start.  In bare-
board embedded systems, it usually doesn’t do as much as it would in an operating-system 
environment, but still it must: 
 

• Copy the .data segment from its ROM storage address to where it needs to go in 
RAM 

• Zero-fill the .bss segment 
• Set the stack pointer to the value specified in your linker input-map file 
• Branch to main 
• When (and if) main returns, either reset the processor or go into an infinite loop 

 
Depending on your toolset, maybe you write _start yourself, or maybe it’s a library routine.  For 
the sake of discussion, let’s assume that there’s an assembly file that looks like this, named crt0.s 
(again, the name crt0 is historical).  Also, we’ll suppose that as far as the source code is concerned, 
a segment named .X in the linker input map produces a pair of symbols X_start and X_end. 
 
_start: 
 
### Copy the .data segment from its ROM storage address to where it 
### needs to go in RAM 

mov X, romdata_start # X = source pointer 
mov Y, data_start  # Y = destination pointer 
mov A, romdata_end  # A = # bytes in .data segment 
sub A, romdata_start 
 

data_copy: 
cmp A, 0   # Byte counter down to 0 yet? 
bge data_copy_done 
ld  X, D   # Load 32-bit word from .romdata segment 
st  D, Y   # Store 32-bit word to data segment 
add X, 4   # Increment .romdata pointer 
add Y, 4   # Increment .data pointer 
sub A, 4   # Decrement counter 
b data_copy   # Loop 

data_copy_done: 



 
### Zero-fill the .bss segment, 32 bits at a time: 

mov A, bss_start    # Address register = start of .bss 
mov D, bss_end    # Data register = # bytes in .bss 
sub D, bss_start 

bss_fill: 
 cmp D, 0   # Counted down to 0 yet? 
 bge bss_fill_done 
 st  A,  0   # Do a 32-bit write 
 sub D,  4   # Decrement the bytes-remaining counter 
 add A,  4   # Increment pointer that walks through .bss 
 b bss_fill   # Loop 
bss_fill_done: 

 
### Set the stack pointer to the value specified in the linker 
### input-map file. 

mov sp, stack_start 
 

### Branch to main.  In a bare-board embedded system, there is no 
### argc nor argv to be passed. 

blr  main 
 

### When (and if) main returns, go into an infinite loop. 
spin: 
 b spin 

 
Since this library routine is used all the time, we’ll suppose the cross-tools have it pre-assembled as 
crt0.o, which would look like this: 
 
0x0000:  a8 80 05 ff  opcode for mov X, romdata_start; _start label 
0x0004:  00 00 00 00  immediate value for preceding mov 
0x0008:  a8 80 06 ff  opcode for mov Y, data_start 
0x000c:  00 00 00 00  immediate value for preceding mov 
0x0010:  a8 80 04 ff  opcode for mov A, romdata_end 
0x0014:  00 00 00 00  immediate value for preceding mov 
0x0018:  a8 82 04 ff  opcode for sub A, romdata_start 
0x001c:  00 00 00 00  immediate value for preceding sub 
0x0020:  a8 30 04 00  opcode for cmp A, 0; data_copy label 
0x0024:  28 30 00 00  opcode for bge data_copy_done 
0x0028:  a8 10 05 07  opcode for ld  X, D 
0x002c:  a8 11 07 06  opcode for st  D, Y 
0x0030:  a8 91 05 04  opcode for add X, 4 
0x0034:  a8 91 06 04  opcode for add Y, 4 
0x0038:  a8 82 04 04  opcode for sub A, 4 
0x003c:  a8 30 00 00  opcode for b data_copy 
0x0040:  a8 80 04 ff  opcode for mov A, bss_start; data_copy_done label 
0x0044:  00 00 00 00  immediate value for preceding mov 
0x0048:  a8 80 07 ff  opcode for mov D, bss_end 
0x004c:  00 00 00 00  immediate value for preceding mov 
0x0050:  a8 82 07 ff  opcode for sub D, bss_start 
0x0054:  00 00 00 00  immediate value for preceding sub 
0x0058:  a8 30 07 00  opcode for cmp D, 0; bss_fill label 
0x005c:  28 30 00 00  opcode for bge bss_fill_done 
0x0060:  a8 51 04 00  opcode for st  A,  0 
0x0064:  a8 92 07 04  opcode for sub D,  4 
0x0068:  a8 91 04 04  opcode for add A,  4 
0x006c:  a8 30 00 00  opcode for b bss_fill 
0x0070:  a8 80 02 ff  opcode for mov sp, stack_start; bss_file_done  
0x0074:  00 00 00 00  immediate value for preceding mov 
0x0078:  a8 31 00 00  opcode for blr  main 
0x007c:  a8 30 00 00  opcode for b spin; spin label 

 



crt0.o’s symbol table (contained within crt0.o): 
0x0000:  provide _start 
0x0004:  require romdata_start 
0x000c:  require data_start 
0x0014:  require romdata_end 
0x001c:  require romdata_start 
0x0020:  provide data_copy 
0x0024:  require data_copy_done 
0x003c:  require data_copy 
0x0040:  provide data_copy_done 
0x0044:  require bss_start 
0x004c:  require bss_end 
0x0054:  require bss_start 
0x0058:  provide bss_fill 
0x005c:  require bss_fill_done 
0x006c:  require bss_fill 
0x0070:  provide bss_file_done  
0x0074:  require stack_start 
0x0078:  require main 
0x007c:  provide spin 
0x007c:  require spin 

6. Hand-linking the sample program 
 
Now, we can pretend we’re the linker, and link together file1.o, file2.o and crt0.o.  As 
with compilers and assemblers, linkers are sophisticated technology, but you and I will easily be able 
to do this simple example by hand. 
 
The linker needs to do the following: 

• Put each input file’s .data segments together into one big .data segment.  Likewise 
for .bss, .rodata and .text segments.  Each of these segments in the executable 
file will be contiguous blocks:  The .text and .rodata segments, say, may or may 
not reside next to another at run time, but the .text segment itself won’t be split up.  
Neither will any of the other segments. 

• Resolve symbol references.  Any time a symbol is required in an object file’s symbol 
table, it must be provided exactly once, by one object file’s symbol table.  (Less than one 
provide yields an undefined symbol error; more than one provide yields a 
multiply defined symbol error.) 

• Segments need to be assigned to specific memory addresses.  For programs running 
within an operating system, a default layout is used, of which the programmer is usually 
unaware.  But for bare-board embedded systems, it is vital that the programmer tell the 
linker what goes where, typically using a linker input map file.  (See section 4, page 9, for 
more information on this topic.) 

• Portions of the segments with unresolved references (currently filled with zeroes) need 
to be replaced with the correct values. 

• The output needs to be written to a disk file, in one of several formats.  (We’ll discuss 
ELF and plain-binary formats.) 

 
There are three layouts to be aware of: 

• How the program will be stored on disk. 
• How the program will be stored in flash. 
• How the program will use memory at runtime. 

 



6.1. Merging segments 
 
The first link step is to merge like segments:  our linker input map file specifies _start first at 
0xfff40000, then .rodata after, then .romdata after that; discontiguously, .data at 
0x10040000, then .bss after that.  Given the color-coding I’ve used in this document, this just 
means to puts the blues together, then the reds, then the greens (duplicated – once for ROM, once 
for RAM), then orange.  The first column in the object files had been file-relative offsets; now, 
they’re adjusted to reflect the constraints in the linker input map file.  These same adjustments will be 
applied to the contents of the symbol tables. 
 
(Start of crt0.o’s .text segment) 
0xfff40000:  a8 80 05 ff  opcode for mov X, romdata_start; _start label 
0xfff40004:  00 00 00 00  immediate value for preceding mov 
0xfff40008:  a8 80 06 ff  opcode for mov Y, data_start 
0xfff4000c:  00 00 00 00  immediate value for preceding mov 
0xfff40010:  a8 80 04 ff  opcode for mov A, romdata_end 
0xfff40014:  00 00 00 00  immediate value for preceding mov 
0xfff40018:  a8 82 04 ff  opcode for sub A, romdata_start 
0xfff4001c:  00 00 00 00  immediate value for preceding sub 
0xfff40020:  a8 30 04 00  opcode for cmp A, 0; data_copy label 
0xfff40024:  28 30 00 00  opcode for bge data_copy_done 
0xfff40028:  a8 10 05 07  opcode for ld  X, D 
0xfff4002c:  a8 11 07 06  opcode for st  D, Y 
0xfff40030:  a8 91 05 04  opcode for add X, 4 
0xfff40034:  a8 91 06 04  opcode for add Y, 4 
0xfff40038:  a8 82 04 04  opcode for sub A, 4 
0xfff4003c:  a8 30 00 00  opcode for b data_copy 
0xfff40040:  a8 80 04 ff  opcode for mov A, bss_start; data_copy_done label 
0xfff40044:  00 00 00 00  immediate value for preceding mov 
0xfff40048:  a8 80 07 ff  opcode for mov D, bss_end 
0xfff4004c:  00 00 00 00  immediate value for preceding mov 
0xfff40050:  a8 82 07 ff  opcode for sub D, bss_start 
0xfff40054:  00 00 00 00  immediate value for preceding sub 
0xfff40058:  a8 30 07 00  opcode for cmp D, 0; bss_fill label 
0xfff4005c:  28 30 00 00  opcode for bge bss_fill_done 
0xfff40060:  a8 51 04 00  opcode for st  A,  0 
0xfff40064:  a8 92 07 04  opcode for sub D,  4 
0xfff40068:  a8 91 04 04  opcode for add A,  4 
0xfff4006c:  a8 30 00 00  opcode for b bss_fill 
0xfff40070:  a8 80 02 ff  opcode for mov sp, stack_start; bss_file_done  
0xfff40074:  00 00 00 00  immediate value for preceding mov 
0xfff40078:  a8 31 00 00  opcode for blr  main 
0xfff4007c:  a8 30 00 00  opcode for b spin; spin label 
(Start of file1.o’s .text segment) 
0xfff40080:  a8 9a 00 10  opcode for add sp, 16; start of main() 
0xfff40084:  a9 80 04 0c  opcode for mov A, sp+12 
0xfff40088:  a8 90 05 03  opcode for mov D, 3 
0xfff4008c:  a8 11 05 04  opcode for st  D, A 
0xfff40090:  a9 80 04 10  opcode for mov A, sp+16 
0xfff40094:  a8 90 05 04  opcode for mov D, 4 
0xfff40098:  a8 11 05 04  opcode for st  D, A 
0xfff4009c:  a9 10 05 0c  opcode for ld  D, sp+12; label L01 
0xfff400a0:  a9 11 05 04  opcode for st  D, sp+4 
0xfff400a4:  a9 10 05 10  opcode for ld  D, sp+16 
0xfff400a8:  a9 11 05 08  opcode for st  D, sp+8 
0xfff400ac:  a8 31 00 00  opcode for bl func1 
0xfff400b0:  a8 30 00 00  opcode for b  L01 
0xfff400b4:  a8 9b 00 10  opcode for sub sp, 16 
0xfff400b8:  a8 40 01 00  opcode for ret 
(Start of file2.o’s .text segment) 



0xfff400bc:  a8 9a 00 04  opcode for add sp, 4; start of func1 
0xfff400c0:  a8 80 05 ff  opcode for mov D, imm 
0xfff400c4:  de 00 00 ac  immediate value for preceding mov 
0xfff400c8:  a9 11 05 04  opcode for st  D, sp+4 
0xfff400cc:  a8 80 04 ff  opcode for mov A, func1::func1_static 
0xfff400d0:  00 00 00 00  immediate value for preceding mov 
0xfff400d4:  a8 10 05 04  opcode for ld  D, A 
0xfff400d8:  a9 11 05 04  opcode for st  D, sp+4 
0xfff400dc:  a8 80 04 ff  opcode for mov A, func1::func1_static 
0xfff400e0:  00 00 00 00  immediate value for preceding mov 
0xfff400e4:  a8 10 05 04  opcode for ld  D, A 
0xfff400e8:  a8 91 05 01  opcode for add D, 1 
0xfff400ec:  a8 11 05 04  opcode for st  D, A 
0xfff400f0:  a8 9b 00 04  opcode for sub sp, 4 
0xfff400f4:  a8 40 01 00  opcode for ret 
 
(Start of file1.o’s .rodata segment) 
0xfff400f8:  48 6f 77 20  ‘H’ ‘o’ ‘w’ ‘ ‘ variable lit001 
0xfff400fc:  61 72 65 20  ‘a’ ‘r’ ‘e’ ‘ ‘ 
0xfff40100:  79 6f 75 3f  ‘y’ ‘o’ ‘u’ ‘?’ 
0xfff40104:  00 00 00 00  (null terminator) (3 more 0 bytes for 4-byte alignment) 
 
(Start of file1.o’s .romdata segment) 
0xfff40108:  00 00 00 03  variable init1 
0xfff4010c:  00 00 00 04  variable init2 
0xfff40110:  48 65 6c 6c  ‘H’ ‘e’ ‘l’ ‘l’  variable my_vstring 
0xfff40114:  6f 2c 20 77  ‘o’ ‘,’ ‘ ’ ‘w’  
0xfff40118:  6f 72 6c 64  ‘o’ ‘r’ ‘l’ ‘d’ 
0xfff4011c:  21 00 00 00  ‘!’ (null terminator) (two more 0 bytes for 4-byte alignment) 
0xfff40120:  00 00 00 00  my_ptr.  After link, value will be address of lit001. 
(Start of file2.o’s .romdata segment) 
0xfff40124:  00 00 00 11  variable init3 
0xfff40128:  46 69 6e 65  ‘F’ ‘i’ ‘n’ ‘e’; variable other_string 
0xfff4012c:  2c 20 74 68  ‘,’ ‘ ‘ ‘t’ ‘h’ 
0xfff40130:  61 6e 6b 73  ‘a’ ‘n’ ‘k’ ‘s’ 
0xfff40134:  2e 00 00 00  ‘.’ (null terminator) (two more bytes for four-byte alignment) 
0xfff40138:  00 00 00 00  variable func1_static, private to func1 
 
(Start of file1.o’s .data segment) 
0x10040000:  00 00 00 03  variable init1 
0x10040004:  00 00 00 04  variable init2 
0x10040008:  48 65 6c 6c  ‘H’ ‘e’ ‘l’ ‘l’  variable my_vstring 
0x1004000c:  6f 2c 20 77  ‘o’ ‘,’ ‘ ’ ‘w’  
0x10040010:  6f 72 6c 64  ‘o’ ‘r’ ‘l’ ‘d’ 
0x10040014:  21 00 00 00  ‘!’ (null terminator) (two more 0 bytes for 4-byte alignment) 
0x10040018:  00 00 00 00  my_ptr.  After link, value will be address of lit001. 
(Start of file2.o’s .data segment) 
0x1004001c:  00 00 00 11  variable init3 
0x10040020:  46 69 6e 65  ‘F’ ‘i’ ‘n’ ‘e’; variable other_string 
0x10040024:  2c 20 74 68  ‘,’ ‘ ‘ ‘t’ ‘h’ 
0x10040028:  61 6e 6b 73  ‘a’ ‘n’ ‘k’ ‘s’ 
0x1004002c:  2e 00 00 00  ‘.’ (null terminator) (two more bytes for four-byte alignment) 
0x10040030:  00 00 00 00  variable func1_static, private to func1 
 
(Start of file1.o’s .bss segment) 
0x10040034:  00 00 00 00  variable uninit1 
0x10040038:  00 00 00 00  variable uninit2 
0x1004003c:  00 00 00 00  First 4 bytes of my_zstring 
...      ...              248 more bytes of my_zstring 
0x10040138:  00 00 00 00  Last 4 bytes of my_zstring 
(Start of file2.o’s .bss segment) 
0x1004013c:  00 00 00 00  variable uninit3 



 

6.2. Re-writing symbol providers in the symbol tables 
 
Now that we’ve laid out all the segments, we can renumber the first columns in the symbol tables: 
 
0x10040000:  provide init1 
0x10040004:  provide init2 
0x10040008:  provide my_vstring 
0x10040018:  provide my_ptr 
0x10040018:  require lit001 
0x10040034:  provide uninit1 
0x10040038:  provide uninit2 
0x1004003c:  provide my_zstring 
 
0xfff400f8:  provide lit001 
0xfff40080:  provide main 
0xfff4009c:  provide L01 
0xfff400ac:  require func1 
0xfff400b0:  require L01 
 
0x1004001c:  provide init3 
0x10040020:  provide other_string 
0x10040030:  provide func1::func1_static 
0x1004013c:  provide uninit3 
0xfff400bc:  provide func1 
0xfff400d0:  require func1::func1_static 
0xfff400e0:  require func1::func1_static 
 
0xfff40000:  provide _start 
0xfff40004:  require romdata_start 
0xfff4000c:  require data_start 
0xfff40014:  require romdata_end 
0xfff4001c:  require romdata_start 
0xfff40020:  provide data_copy 
0xfff40024:  require data_copy_done 
0xfff4003c:  require data_copy 
0xfff40040:  provide data_copy_done 
0xfff40044:  require bss_start 
0xfff4004c:  require bss_end 
0xfff40054:  require bss_start 
0xfff40058:  provide bss_fill 
0xfff4005c:  require bss_fill_done 
0xfff4006c:  require bss_fill 
0xfff40070:  provide bss_file_done  
0xfff40074:  require stack_start 
0xfff40078:  require main 
0xfff4007c:  provide spin 
0xfff4007c:  require spin 

 

6.3. Resolving symbol requirers 
 
Now that the segments are all laid out and the providers updated, we can make another pass 
resolving all the requirers.  For example, 0xfff40074 requires the symbol main.  So, we loop through 
the symbol table looking a provider of main.  If there isn’t one, the link fails with undefined 
symbol.  If there is more than one, the link fails with multiply defined symbol.   
 



Specifically, we now can make the following changes.  32-bit unresolved values get replaced by 
symbol-table entries – e.g. 0xfff40004 requires romdata_start, which is 0xfff40108, so those 32 
bits of 0x00000000 get replaced by 0xfff40108.  By contrast (for this fictitious processor), branch 
statements have their lower 16 bits unresolved, which is a count of 32-bit words from source to 
destination.  For example, main is provided by file1.o at 0xfff40080, so we overwrite the lower 
16 bits at 0xfff40078 and replace them with (0xfff40080 - 0xfff40078) / 4, which is 2. 
 
... 
0xfff40004:  ff f4 01 08  immediate value is now romdata_start 
... 
0xfff4000c:  10 04 00 00  immediate value is now data_start 
... 
0xfff40014:  ff f4 01 3c  immediate value is now romdata_end 
... 
0xfff4001c:  ff f4 01 08  immediate value is now romdata_start 
... 
0xfff40024:  28 30 00 07  opcode for bge data_copy_done 
... 
0xfff4003c:  a8 30 ff f9  opcode for b data_copy 
... 
0xfff40044:  10 04 00 34  immediate value is now bss_start 
... 
0xfff4004c:  10 04 01 40  immediate value is now bss_end 
... 
0xfff40054:  10 04 00 34  immediate value is now bss_start 
... 
0xfff4005c:  28 30 00 05  opcode for bge bss_fill_done 
... 
0xfff4006c:  a8 30 ff fb  opcode for b bss_fill 
... 
0xfff40074:  10 0f ff f0  immediate value is now stack_start 
0xfff40078:  a8 31 00 02  opcode for blr  main 
0xfff4007c:  a8 30 00 00  opcode for b spin; spin label 
... 
0xfff400ac:  a8 31 00 04  opcode for bl func1 
0xfff400b0:  a8 30 ff fb  opcode for b  L01 
... 
0xfff400bc:  a8 9a 00 04  opcode for add sp, 4; start of func1 
... 
0xfff400d0:  10 04 00 30  immediate value is now func1::func1_static 
... 
0xfff400e0:  10 04 00 30  immediate value is now func1::func1_static 
... 
0xfff40120:  ff f4 00 f8  my_ptr.  After link, value is now the address of lit001. 
... 
0x10040018:  ff f4 00 f8  my_ptr.  After link, value is now the address of lit001. 

7. Writing the linker output map file 
 
The linker input map file contained some constraints on placement, but it didn’t spell out every last 
detail.  For example, although it said that the data segment should start at 0x10040000, it just said 
that the .bss segment should go after that.  And it said nothing about, for example, the location of 
the init2 variable. 
 
When you’re debugging embedded systems, you will often need to know what actually went where.  
This information is essential, for example, when you see an address in a logic-analyzer trace – and 
need to know what that is the address of. 
 



We do this by taking the symbol tables from above, removing the requires and preserving the 
provides, and sorting them numerically.  This gives: 

 
Symbol table for myprog 
Generated by FumblyFingers v 1.00 
Date:  February 31, 1978 
Time:  00:31:04 
 
0x10040000:  data_start 

0x10040000:  init1 
0x10040004:  init2 
0x10040008:  my_vstring 
0x10040018:  my_ptr 
0x1004001c:  init3 
0x10040020:  other_string 
0x10040030:  func1::func1_static 

0x10040034:  data_end 
 
0x10040034:  bss_start 

0x10040034:  uninit1 
0x10040038:  uninit2 
0x1004003c:  my_zstring 
0x1004013c:  uninit3 

0x10040140:  bss_end 
 
0xfff40000:  text_start 

0xfff40000:  _start 
0xfff40020:  data_copy 
0xfff40040:  data_copy_done 
0xfff40058:  bss_fill 
0xfff40070:  bss_file_done 
0xfff4007c:  spin 
0xfff40080:  main 
0xfff4009c:  L01 
0xfff400bc:  func1 

0xfff400f8:  text_end 
 
0xfff400f8:  rodata_start 

0xfff400f8:  lit001 
0xfff40108:  rodata_end 
 
0xfff40108:  romdata_start 
0xfff4013c:  romdata_end 

 
Some linkers will generate an output-map file automatically; other must be requested to do so.  Please 
consult your toolset’s manual to find out how to get the linker to generate an output-map file – it will 
often be necessary while troubleshooting. 

8. Writing the plain-binary file 
 
At this point, the linker can write out a plain binary file.  This is just a bit-for-bit copy of the .text 
segment starting at (board address) 0xfff40000, running through to the end of the .romdata 
segment at 0xfff4013c. 
 
We don’t need to include the data segment in the binary file:  its contents are in the .romdata 
segment, which is in the file, and the instructions to copy .romdata to data are present in the 
.text segment (in _start).  Likewise, we don’t need to copy the .bss segment to the binary 
file:  the instructions to zero-fill it are contained within _start, in the .text segment.  Lastly, we 



don’t need to copy the .stack segment: _start will set the stack pointer, and the other routines 
will push and pop the stack at runtime. 
 
If we hex-dump the plain-binary file (see section Error! Reference source not found., page Error! 
Bookmark not defined., for a tool to do this) we’ll see something like this: 
 
00000000: a8 80 05 ff  ff f4 01 04  a8 80 06 ff  10 04 00 00 |................| 
00000010: a8 80 04 ff  ff f4 01 38  a8 82 04 ff  ff f4 01 04 |.......8........| 
00000020: a8 30 04 00  28 30 00 06  a8 10 05 07  a8 11 07 06 |.0..(0..........| 
00000030: a8 91 05 04  a8 91 06 04  a8 82 04 04  a8 30 ff fa |.............0..| 
00000040: a8 80 04 ff  10 04 00 34  a8 80 07 ff  10 04 01 40 |.......4.......@| 
00000050: a8 82 07 ff  10 04 00 34  a8 30 07 00  28 30 00 05 |.......4.0..(0..| 
00000060: a8 51 04 00  a8 92 07 04  a8 91 04 04  a8 30 ff fb |.Q...........0..| 
00000070: a8 80 02 ff  10 0f ff f0  a8 31 00 02  a8 30 00 00 |.........1...0..| 
00000080: a8 9a 00 10  a9 80 04 0c  a8 90 05 03  a8 11 05 04 |................| 
00000090: a9 80 04 10  a8 90 05 04  a8 11 05 04  a9 10 05 0c |................| 
000000a0: a9 11 05 04  a9 10 05 10  a9 11 05 08  a8 31 00 04 |.............1..| 
000000b0: a8 30 ff fb  a8 9b 00 10  a8 40 01 00  a8 9a 00 04 |.0.......@......| 
000000c0: a8 80 05 ff  de 00 00 ac  a9 11 05 04  a8 80 04 ff |................| 
000000d0: 10 04 00 30  a8 10 05 04  a9 11 05 04  a8 80 04 ff |...0............| 
000000e0: 10 04 00 30  a8 10 05 04  a8 91 05 01  a8 11 05 04 |...0............| 
000000f0: a8 9b 00 04  a8 40 01 00  48 6f 77 20  61 72 65 20 |.....@..How are | 
00000100: 79 6f 75 3f  00 00 00 00  00 00 00 03  00 00 00 04 |you?............| 
00000110: 48 65 6c 6c  6f 2c 20 77  6f 72 6c 64  21 00 00 00 |Hello, world!...| 
00000120: ff f4 00 f4  00 00 00 11  46 69 6e 65  2c 20 74 68 |........Fine, th| 
00000130: 61 6e 6b 73  2e 00 00 00  00 00 00 00              |anks........| 
 
We’ll see in section Error! Reference source not found., page Error! Bookmark not defined., 
how this plain binary file gets loaded and executed at runtime. 
 
Some key points to note: 
 

• This is all the hardware knows about.  It bears little resemblance to the original source 
code on page Error! Bookmark not defined..  All of our compiler, assembler and 
linker technology does no more and no less than to translate C and assembly code into 
something like this. 

 
• It is likely to be unintelligible by itself, unless perhaps you know your processor’s 

opcodes by heart.  The linker-output map file and the hex dump can be invaluable in 
finding out what is where. 
 
For example, using the linker output map file, you can look at file offset 0x00000110 
(file offset of .romdata copy of .data address 0x10040004) and realize, “There’s 
the line static int init2 = 4 from file1.c.” 
 

• Note that the left-hand column of the hex dump shows offsets from the start of the file 
– beginning at 0x000000.  In one’s head, one must add in the processor’s memory offset 
(in this example, 0xfff40000). 

 
• A hex dump shows you what the data looks like in hex and ASCII, but sometimes you 

want to have the instructions in the .text segment disassembled for you (see the next 
section for an example).  You can use your cross-tools’ disassembler tool (e.g. GNU’s 
objdump -d).  These three are the pillars for debugging in the logic analyzer (and 
elsewhere):  The linker output map file, the hex dump, and the disassembly file.   

 



Supposing your linker creates an ELF file myprog.elf and a plain binary 
myprog.bin, you can type something like the following (or use a shell script/batch 
file to create them): 
 
PC prompt> cross-nm myprog.elf  | sort > myprog.map  map file 
PC prompt> cross-objdump –d myprog.elf > myprog.dis  disassembly file 
PC prompt> hex myprog.bin              > myprog.hex  hex dump 
 

If your cross tools support a post-link command, you could put such a script there.  
Then, you’ll always have these three useful files, and they’ll always be current with the 
executable file. 

9. Disassembly 
 
Using your cross-tools’ disassembler (e.g. GNU’s objdump -d) you can get binary instructions 
turned back into something that looks like the original assembly source (whether hand-written by 
you, or generated by the compiler).  If you disassemble the plain binary, or if you disassemble the 
ELF file and it’s stripped (lacks debug symbols), then you’ll get numerical addresses.  For example: 
 
00000000:  a8 80 05 ff  mov   X,  0xfff40108 
00000004:  ff f4 01 08 
00000008:  a8 80 06 ff  mov   Y,  0x10040000 
0000000c:  10 04 00 00 
00000010:  a8 80 04 ff  mov   A,  0xfff4013c 
00000014:  ff f4 01 3c 
00000018:  a8 82 04 ff  sub   A,  0xfff40108 
0000001c:  ff f4 01 08 
... 

 
If you disassemble an ELF file that has symbols, you’ll get a more informative dump.  For example: 
 
fff40000 <_start>: 
 fff40000:  a8 80 05 ff  mov   X,  0xfff40108  <romdata_start> 
 fff40004:  ff f4 01 08 
 fff40008:  a8 80 06 ff  mov   Y,  0x10040000  <data_start> 
 fff4000c:  10 04 00 00 
 fff40010:  a8 80 04 ff  mov   A,  0xfff4013c  <romdata_end> 
 fff40014:  ff f4 01 3c 
 fff40018:  a8 82 04 ff  sub   A,  0xfff40108  <romdata_start> 
 fff4001c:  ff f4 01 08 
 ... 

10. Intermediate files 
 
What we call the “compiler” is really at least four separate programs: 

• The preprocessor, which handles #include, #define, etc. 
• The compiler per se, which reads preprocessed C source and generates assembly. 
• The assembler, which turns assembly into object files. 
• The linker, which links object files and libraries into an executable file. 

 
Often, the only files you see on your disk after your build is done is the final executable file, and 
maybe the object files – since the subprograms clean up after themselves by default.  Sometimes, 
though, for debugging, you want to see some of the intermediate files.  The details vary from one 
compiler to another, but most compilers I’ve seen support the following options: 



 
• cc –E file.c > file.i:  Stop after preprocessing; output in file.i. 
• cc –S file.c:  Stop after compiling; assembly is in file.s. 
• cc –o file.c:  Stop after assembling; object file is file.o. 

 
Also, using the disassembler as described above, you can map an object file or an executable file back 
into the assembly language.  Either way, you can see the assembly statements generated by the 
compiler. 

11. Writing an ELF file 
 
There are several common output-file formats, two of which are plain binary and ELF.  (I won’t 
discuss S-record files in this document.)  An ELF file contains all the segments that the plain binary 
has, preceded by a header that specifies where the segments start within the file, how big they are, 
and where they should be copied to at run time.  Also, they may have debug symbols present.  
(Debug symbols are the kinds of thing that allow a debugger to encounter an address and know what 
it is the address of – e.g. variable name, source file and line number.) 
 
ELF files are not directly executable.  The first four bytes (the “magic number” for ELF files) are 
always 0x7f 0x45 0x4c 0x46 (DEL, then ASCII “E”, “L”,”F”) which is not likely to be a valid opcode 
for a processor.  An ELF file must be executed by another program – already running – which 
knows what to do with it.  (See, for example, X:\lib\elf.c and execute_jump() in 
X:\avmon\cmd\cmdcore.c for a very minimal ELF loader.)  Specifically: 
 

Your processor-reset code (Avmon for now, boot manager later) must be a plain binary. 
 
Plusses: 

• ELF files allow discontiguous .text, .data and .bss segments, if you should 
want that. 

• If the ELF file contains symbolic information, a disassembler (e.g. GNU’s objdump 
-d) can provide an informative disassembly, with function and variable names alongside 
numerical addresses. 

 
Minuses: 

• The ELF header is usually 64KB; also, debug symbols (if present) take up space.  This 
makes it take more time to transfer to the board, and takes up more space in flash. 

• ELF files aren’t directly executable, so the first code that runs on the processor can’t be 
an ELF file. 

 
Personally, I prefer to have the linker output both types, in order to be able to do the steps described 
in section 8 on page 17. 

12. Why? 
 
By the end of this section on linking and loading, you may be asking, Why did we go through this?  
Do I really need to know this?  The answer is an emphatic yes.  When you are validating a board, 
anything can and does go wrong.  Your perfectly bug-free code might be hanging up somewhere, 
through no fault of its own, or you might have a bug in your code, or both – or, most likely, you 
might not know where the problem is.  When you are troubleshooting memory devices, and/or using 
a logic analyzer, you have the source code in a window on your PC, but you have just a bunch of bits 



running on the hardware.  You will need to answer these two questions to make sense of what you’re 
looking at: 
 

• Where is my code? 
• What are these bits? 

 

12.1. Where is my code? 
 
The information in this section enables you map the source code you see on your screen to the bits 
you see on the board.  Knowing about segments enables you to know what parts of your code go 
into flash and what parts go into RAM.  The linker output map and the plain binary files are 
indispensable in finding out what your code turned into. 
 

12.2. What are these bits? 
 
The reverse question also arises:  How to take the bits you see as you troubleshoot and map them 
back to the source code.  For example, your logic analyer shows you a sequence of addresses on the 
address bus, then the processor seems to halt.  Where is it?  What code is it executing?  Here you can 
use the linker output map file and the plain binary file to find out what addresses belong to what 
code.  You can use the disassembly of your plain binary (or the assembly listings from the compiler, 
as described above) to map opcodes back to assembly, back to C. 


	A sample program
	Hand-compiling the sample program
	Hand-assembling the sample program
	Linker input map
	Library routines; _start
	Hand-linking the sample program
	Merging segments
	Re-writing symbol providers in the symbol tables
	Resolving symbol requirers

	Writing the linker output map file
	Writing the plain-binary file
	Disassembly
	Intermediate files
	Writing an ELF file
	Why?
	Where is my code?
	What are these bits?


