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Preface

The art of doing mathematics consists in nding that specialcase which contains all the germs of
generality. | David Hilbert (1862-1943).

To Thales the primary question was not \What do we know?" but How do we know it?".
| Aristotle (384-322 B.C.).

The following is a novice's guide (written by a novice, in mid-journey!) for the often-twisting path from vector
calculus to smooth manifolds. The subject matter is roughlythat of the University of Arizona Mathematics
Department's rst-year graduate course in geometry/topology, 534A-B.

This is a supplement, rather than a standalone reference. Ommay consult Lang'sAlgebra, Spivak's Calculus
on Manifolds, Boothby's Introduction, Frankel's The Geometry of Physics Lee's Introduction to Topological
Manifolds and Introduction to Smooth Manifolds, and other sources as cited throughout.

My intention is to gather together precise de nitions and th orough examples in a form that is concise and
well-organized, or at least well-organized. | emphasize gzi c computations and examples that support
and motivate theorems which are proved elsewhere, spellingut important details which are all too easily
neglected in more formal treatments. It is precisely these mitted, taken-for-granted details which are the
primary stumbling block for the rst-year graduate student . | believe these stumbling blocks can be identi ed
and smoothed out, becoming paving stones on the student's & to success. (In part, this paper is an as-yet-
incomplete attempt to introduce the powerful techniques of reform calculus HHGM ], including the Rule
of Four, into the graduate environment.)

In particular:

This paper carefully revisits vector calculus, tying the known to the unknown.

Substantial attention is given to tensors on nite-dimensional vector spaces, before the development of
bundles, sections and forms.

Topology is put in its proper place before geometry.

Geometry is emphasized; | have given geometrical motivatin for symbolic manipulations whenever |
have found it possible to do so.

Exercises are worked through in full detail. Rigor is the moutwash of mathematics, not the meat and
bread: when we are new to a subject, whether we are six or sixtyve learn by imitation.

This document is a work perpetually in progress.

Goals for the course

We have two main goals in Math 534A-B:

(1) To put vector calculus on a more rigorous footing. In particular, expressions of the form

_ Of @f @f
d = @de+ @ydy+ @Zdz
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were historically de ned in terms of in nitesimals. Our goal is to rede ne these familiar symbols in a
rigorous way, in terms of linear approximations and vector paces. In particular, the grand goal is a
generalized Stokes Theorem.

(2) To be able to do calculus on non-linear spaces, e.g. the gace of a sphere or torus. In particular, the
latter arise as con guration spaces of physical systems.

That is, we are re-thinking everything we thought we understood about vector calculus,and we doing it on
a donut. As a student, | can attest that this dual goal gives students no small amount of di culty.

Another irony is that in the undergraduate curriculum, calc ulus is one of the rst subjects taught, whereas
our present re-working of calculus requires a lot of math begnd calculus | linear algebra, multilinear
algebra, abstract algebra, metric spaces, and quite a bit ohew terminology. The payo s are that (1) old
concepts, which we once learned by rote, now become lucid arelegant, and (2) we will be able to apply
calculus far beyond the reach of the freshman approach (seerfexample Pen]).

Goals for the paper

The main, but not sole, purpose of this paper is to organize ad annotate the content of Math 534A-B.

If one wishes only to succeed on the geometry-topology quadir, perhaps one can simply learn examples by
rote. Since my goal is complete mastery of these subjects, ttugh, this paper takes a thorough approach
toward the abstract algebra which | claim is the majority of t he content of the course.

Another goal of this paper is to illuminate and unify the vari ous notions of \tensor" which appear in math and
the sciences. | am particularly interested in understandirg change of coordinates and \index gymnastics".
(That is, it seems that mathematicians speak an entirely di erent language than scientists do. We can be
bilingual; it will bene t all parties involved.) While this is not quali er material, it is a main goal of my
graduate education. Furthermore, this discussion is so irgrtwined with the main body of this paper that it
seemed to me to be foolish to separate it. Non-quali er sectins of this paper are clearly marked as such.

Do the contents of this paper form a redundant replication of pre-existing textbooks? Yes in part, and no:

| want to explicitly state preliminaries (e.g. linear, abstract, tensor, and homological algebra, and
category theory) which were going unstated, or were stated nclearly, in the course.

One learns by writing: the selection of material winnows the important from the unimportant, and
the organization of material forces a clarity of thought which is otherwise urattainable.

| focus speci cally on topics needed for UA's 534A-B course ad geometry-topology quali er. This
invites a best-of approach toward several di erent texts.

The contents of this paper are things I need to know for the geometry-topology qual, and which are
possibleto recall on qual day. | am not interesting in reciting technical details of proofs which | won't
remember (details which authors of textbooks can and shouldnclude); | do, however, want to have a
single point of reference.

Structure of the paper

Necessarypreliminary concepts  from calculus, algebra, analysis, and topology are includg in sec-
tions 1 through 4, rather than being interleaved throughout the geometry-topology material per se.
The intents here are to summarize the key points and to presenuni ed notation.

12



Chains (which generalize the paths, surfaces, and volumes that apgar in integrals in vector calculus)
are atopological concept. Here (section 5) we needopological manifolds ; we encounter homotopy,
chains, and homology.

Forms (which generalize the integrands and di erentials that appear in integrals in vector calculus) are
a di erential concept. Here (section 6) weadd a di erentiable structure , or smooth structure
to topological manifolds. Here we encounter tangent bundls, forms, and cohomology.

Integration combines homology and cohomology. Here (section 7) we enaaer duality and pair-
ings.

Flows (section 8) are the generalization of ordinary di erential equations to manifolds.

Lie derivatives and the Cartan calculus (section 9) are, for this paper, a collection of notations
and manipulations which facilitate compuations.

Selectedproblem solutions  (section 10) are given for homework and exam problems for DrPickrell's
2005-2006 534A-B.

Solutions to some old qualifying exams are in a separate papewhich you should nd near this le as
prolrevqual.pdf

When | say map, | mean ...

In the context of group theory, one says merelynomomorphismin place of group homomorphism Likewise,
in di erential geometry, one simply says map in place of smooth map With reference to section 4.2, one
says that one isworking in the category of smooth things certain adjectives are omitted but understood.
Throughout this paper, functions are assumed to be smooth (i nitely many times di erentiable) unless
otherwise stated.

Moreover, in this paper | am working in the category of nice things My examples use Euclidean space or
submanifolds thereof. | will not discuss in nite-dimensional vector spaces or non-Hausdor topologies; | am
not interested in pathological examples. Straightforward examples provide plenty of work for a rst-year
course.

Speci city of dimension

I will happily prove a result for arbitrary n by illustating only an n =2 or n = 3 case, as long as then = 2
or n = 3 case contains all the elements of generality. Often, the gneral case adds no more detail, and in
fact obscures the simplicity of the presentation via its bric-a-brac of subscripts, ...'s, and summation signs.
We are low-dimensional creatures; we can see, touch, and feeo and three dimensions. We can use these
abilities to help us rather than hinder us.

The exemplar model

| was born not knowing and have had only a little time to changéat here and there.
| Richard Feynman (1918-1988).

| am no math historian; in fact, as a second-year graduate stdent and a teacher with only two years'
classroom experience, | am only a budding mathematician. Yethis much seems to me to be a clear pattern
in the development of mathematics:

13



Real-world problems are studied; mathematical models are elveloped.

After some time goes by, wherein mathematicians collaborat and communicate, similarities are discov-
ered between problems which had seemed distinct. (For exanip, permutations on symbols of letters
and Galois' original \substitutions" [ BMA ]; systems of linear equations and systems of di erential
equations.)

A system of axioms is developed, encapsulating and abstraicty the common features of the once-
disparate systems. (In the above examples, we obtained ahstct groups and vector spaces, respec-
tively.)

We then study the abstract systems, proving general resultsand developing general methods which
apply to all the original speci c situations, and any others which might apply in the future. Herein
lies much of the power of mathematics: once we are familiar wh, say, abstract groups, whenever we
encounter a brand-new object, if we recognize it is a group ten we instantly know much about it.

After enough time has gone by, we begin to teach the abstractins rst. In a pure-math environment,
one might forget (or forget to mention) the origins entirely.

So much for the phylogenyof mathematics | its evolutionary development across the li ves of many thinkers.
What about its ontogeny| the development of ideas within the mind of a single thinker ? Like Feynman, none
of us were born knowing calculus; every mathematics studenand future mathematician must painstakingly
relearn these ideas from scratch.

My claim is that ontogeny recapitulates phylogeny . This is a biological maxim?, re ecting the fact that
the embryonic development of an individual retraces (albei inexactly) the evolutionary development of that
individual's species. When | was an embryo, very early on | hd gill slits | and so did you. One pair of
slits became our ears; the rest closed. One might think that w, as modern humans, could reproduce more
humans directly, pole-vaulting over the intermediate stages | but we do not.

Likewise in the development of ideas. When we are young, we prrience many speci ¢ situations. We later
learn to abstract and categorize: many once-di erent objets begin to go by the common name ofork or dog
(See also the Boas quote in section 4.1.4.) One might think weould pole-vault over our early development,
but we do not.

Few would argue that we could hand a two-year-old a dictionay and have him or her skip over those early
learning experiences. But in the mathematics classroom | blinded by the power and beauty of modern
methods | we often do just that. In my eyes, the key trait disti nguishing the mathematics of the 20th
and 21st centuries from that of the centuries before is theaxiomatic approach This is a rightful component
of our discipline. Yet we start the rst day of an upper-divis ion or graduate algebra course with a mantra
of the form \A group is a set endowed with a binary operation ..."; we begin a geontey course with an
abstract discussion of atlases and manifolds. This feels gal and it feels right, especially to the teacher: we
are going straight for the beauty and the elegance. It is esp®ally easy for the teacher, who has already seen
these concepts put to use in dozens of concrete situtationghe teacher is ready for abstraction.

But when we do this, we leave our students behind. We attempt b leap over the absolutely necessary
instantiation of ideas that we ourselves went through (wheter we did so consciously or not). If we are to
retain students in mathematics, and if modern pure mathemaics is to remain relevant to the rest of the
world, we must explicitly acknowledge that ontogeny recaptulates phylogeny. This does not mean that we
need to retrace the full development of every mathematical oncept, with all its false starts and wrong turns.
It does mean, however, that werst need to tell our studentswhy a discipline was invented in the rst place.

1 Attributed to the zoologist Ernst Hackel. See also the Wikipe  dia article on Recapitulation theory .
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We need to present the applied problems which gave birth to tle subject we are teaching. We must give our
students the opportunity to generalize from concrete situdions.

One raises the objection:l don't have time for such trivialities. Graduate students should be able to do this
on their own. | reply, as a graduate student and teacher: It is hard enough dr our students to learn what

we teach them; it is far harder for them to learn what we do not teach them. The training of a new mind

is something worth doing right: it is better that it happen becauseof our teaching methods rather than in

spite of them.

This is the one of the reasons | have found it not only entertaning but necessary to write this paper. As
happened several times in my engineering career (before gtaate school), | could not obtain the kinds of
explanations | wanted (my questions were chiey of the form \But why?"). | found myself lacking, and
then writing, the references | wished | had had. This in turn led me to discover things | could not have
found out otherwise. | have, as yet, found few historical reérences for the (phylogenetic) development of
di erential forms. Nonetheless, one of the primary themes 6 this paper is the (ontogenetic) development
of tensor algebra, tangent spaces, etc. from fundamental emepts of area and measurement. | have pieced
together most of these insights from my coursework; see algBachman ] who has a similar approach.

Themes

| encourage the reader to keep in mind the following central hemes throughout the paper:

Geometric vs. symbolic methods’>. We manipulate symbols because we can do so e ciently, but
the reason we invented them the way we did is often geometricFor example, the deteminant can be
thought of symbolically in terms of cofactor expansions of asquare matrix, but it also has a purely

geometric existence in terms of the volume of a parallelepipd. Likewise for thed and wedge operators
of di erential geometry: we can rattle o axioms for them, bu t why were those axioms chosen? What
geometrical notions do these symbols re ect?

Coordinate-dependent  vs. coordinate-free de nitions. Early di erential geometry [xxx cite whom

| Spivak 2?] was done concretely, in terms of coordinate charts. Any coordinate-dependent de nition
needed to be accompanied by a proof that it was invariant unde change of coordinates. The modern
approach prefers coordinate-independent de nitions. Thee are more elegant, but not as easy for doing
speci ¢ computations. [xxx back that up or retract it.]

Change of coordinates ; covariance and contravariance . Dierent objects transform di erently
on change of coordinates. [xxx xref to some examples withinhis paper.] In the physics community
[xxx see Frankel and Spivak 27?], the transformation rules ag taken to be the de ning characteristics.

The chain rule and the Jacobian matrix . These are simply all over the place in this subject.
Likewise, Riemann sums . (It is ironic that in our rst-year analysis class, we learn the beautiful

subject of measure theory; Riemann integration becomes a @int relic. Yet in the geometry course,
where everything is smooth or at worst piecewise smooth, théatter works just ne.)

2My approach here is reminiscent of the Rule of Four as used in [ HHGM ], although at this point it sounds like merely
a Rule of Two. Namely, the rule is that mathematical ideas shou Id be presented symbolically, graphically, numerically, and
verbally. See section 12.3 for information about numerics; how ever, | have much more work yet to do in this area. (See also
[Kerl ].) Lastly, the very length of this paper constitutes a non-em pty verbal-description component.
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1 Preliminaries from analytic geometry

To guess what to keep and what to throw away takes considemltskill. Actually it is probably merely a
matter of luck, but it looks as if it takes considerable skill | Richard Feynman (1918-1988).

1.1 Notation

Notation 1.1.  Although | may occasionally slip, | endeavor to always write elements of R" as column
vectors . Also, | usually boldface their names. For example,

0 1
X
q=@y A
z

in R3. The transpose of a column vector is arow vector , written

and vice versa.

Convention 1.2. | will identify row vectors with 1 n matrices and column vectors withn 1 matrices,
respectively.

Notation 1.3.  When a row vector u! is being thought of as a 1 n matrix, | will write it as u . The reason
for this will be seen in section 4.6.7.

Notation 1.4. Throughout this paper, let

0 1 0 1 0 1
1 0 0
R=@0A; 9=@1A; and 2=@0A:
0 0 1

Note that some writers call thesef, f', and K. When working in arbitrary dimensions (rather than 2 or 3), |
will call them &, through &,, where & has a 1 in thej th slot and zeroes elsewhere.

1.2 Trigonometric functions

xxx incl the wtrig diagram. label and explain.

xxXx the necessary trig and hyp-trig identities: pyth, derivs, sum and di erence.

sin?( )+cos?( )=1
sin( )=sin( )cos ) cos( )sin( ) cos( )=cos( )cos ) sin( )sin( ):

Def'ns in terms of exponentials, which make anything possite (esp. choke recovery). [xxx perhaps a
section/note on choke recovery ...it does very much matte. What else? Check against the qual packet.
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The key to the castle for spherical and hyperbolic trig functions is the following foursome:

X ix X

COSQ(): eli COSh(X): exi
2 2

e ek _ e ex

sin(x) = ~——— sinh(x) = =

XXX also inverse maps.

XXX mention graphs of cosh and sinh.
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1.3 The dot product and its applications

Everything in this section is familiar from undergraduate math. In this section my goal is to connect these
familiar terms with the new material to come.

1.3.1 The dot product and projected length

We are familar with the dot product of two vectorsu and v in R". Algebraically, we write

What, though, is the geometricinterpretation 3? It can be shown, using the law of cosines and the Pythagorean
theorem, that
u v = kukkvk cos()

where is the angle between the two vectors, with taken to be from 0 to . Now, the dot product is
symmetric in u and v. But suppose that we distinguish, or X, one vector | say, u | and let the other one
vary. Then u v is the length of the projection of v onto u, times the length of u itself:

kvk cos

We can think of u asmeasuring length in a speci ed direction [xxx xref fwd to shbone plots in linear-algebra
and form sections.] Holdingu xed and varying v, we will get di erent numbers. We can plot vectors v
which all have the same projected length ontou:

[xxx xref fwd to contour plots] Note in particular that if v is perpendicular to u, thenu v is zero. [xref
to proj/perp; perp space; normal/tangent.] In fact we can de ne perpendicularity: u is perpendicular to
v if u v is zero. (This means that the zero vector is perpendicular taevery vector.)

Observe that, using convention 1.2, the dot productu v is the same as the matrix productu'v. For example,

3See also the nice Java applet at www.falstad.com/dotproduct
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in 3 dimensions:
0 10 1

Uz Vi
@ Uo A @ Vo A= UiVy + UpVo + UzV3

uv =
us V('); 1
Vi
ul' v. = up Uy us @ vy, A= Uy + Upvp + Ugvs:
V3

This line of thought is continued in section 4.6.4, where we hink of u! as being a function on vectorsv.

Last, note the following: the dot product is a function on two vectors u and v which is symmetric with
respecttou andv. Thatis, u v = v u. This is the paradigm whose generalization is thesymmetric
tensor , discussed in more detail in section 4.7.11.

1.3.2 Projection and perpendicular operators

Let a be a xed vector in R™. Often in what follows we will want to decompose a vector v into two
components , one parallel to a and one perpendicular toa:

That is, we want to write
V=Vt Vo

where v, is the component ofv in the direction of a and v, is the component ofv perpendicular to a, but
still in the plane spanned by v and a. (Note that if v is already parallel to a, then v and a don't span a
plane.) Since

Vo =V Vg

it su ces to nd the parallel component.

Given v and a, we need to construct a vector with magnitude equal tokvk cos and direction a, where is
the angle betweenv and a. Recall that the unit vector in the direction of a is

— a .
"~ kak’
So, we want a
v, = kvkcos @:
Since
v a= kvkkakcos;
and
kak = pa a;
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we have

v a vV a

—a and Vo =V —a (1.2)
aa aa

This looks familiar from the Gram-Schmidt process.

Vg =

This technique will be indispensable when we decompose vaxts into components perpendicular and parallel
to the normal of a surface, namely, when working with tangentspaces. See for example section 10.7.2.

[xxx xref fwd to divergence/curl/etc.]

1.3.3 Point-normal form

A (hyper)plane is de ned by a point g, on the plane, and a vectorn normal to the plane:

To get an equation for the plane, letq be an arbitrary point on the plane. Then q qo is perpendicular to
n. Algebraically,

(@ go) n=0: 1.2)
Suppose (in three dimensions) we have
0 1 0 1 0 1
Xo X a
Q=@y, A;q=@yA: and n=@bA:
Zy 4 Cc
Then equation 1.2 becomes
0 10 1
X  Xp a
@y yoA @pbA =0
zZ o c

a(x  Xp)+ by yo)+ c(z 2o)

1
o

xxx Include the many fwd xrefs.
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1.4 Coordinates

| have an existential map. It has \You are here" written all over it.
| Steven Wright (1955 -).

1.4.1 Coordinates, area, and the determinant

Here is a circle:

How big is it? What is its area? What is its curvature? These things requirerulers 4:

| have two points to make here: (1) what is forced upon us when & consider reasonable notions of symmetry
and scaling for area, and (2) what happens when we change catinates. | will address the former point
in this section and the latter point in the next section. I'll switch from a circle to a square, or really any
parallelogram, since these are easier to measure:

\Y

(Parallelograms and parallelepipeds are particularly important since they are regions swept out by systems
of not-necessarily-orthonormal basis vectors. [xxx xrefwd.] Also, they are key for computing Riemann
sums [xxx xref fwd].)

I'd like to think of the area of the parallelogram as depending on the lengths of two adjaent sidesu and v,
and the angle between them. In particular I'd want the area A to be

A(u;v) = kukkvk sin( ):
(Ina moment I'll inquire about negative .)

What properties do we want area to have? Well, it must beadditive . Two identical parallelograms have
twice the area of one of them:

4See BMA ] for the history of this key development, especially involvi ng Descartes.
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[ ] J

AQ2u;v)=2A(u;v):

Algebraically,

More generally, we expect
A(cu;dv) = cdA(u;v)

for any zero or positive ¢ and d.

Next, the area of two unit squares should be one less than theraa of three unit squares, and so on. From
this we are forced to require
A(cu;dv) = cdA(u;v)

for any real c and d, whether positive, zero, or negative. (This is themultilinearity ~ property of area, about
which we will have much more to say in section 4.7.) That is, rasonable arithmetic requires that we allow
the notion of signed area | even though | have no idea how much paint it takes to cover a wall whose area
is 100 square feet.

Now what if | rotate the parallelogram?

Rv

Its area is unchanged; area should beotation invariant . Algebraically, this is nothing new: s arelative
angle betwenu and v.

What if | pick up the parallelogram and ip it over?

c

We declare that we want the area to change sign on ips: it isoriented . Algebraically,
A(v;u)=  A(u;v):

This is the alternating or skew symmetry property of signed area; we will have more to say about this
in section 4.7.11. This also makes sense of negative

These properties, namely multilinearity and skew symmetry are the de ning characteristics of signed area.
They are what constitute the determinant.

De nition 1.5.  The geometric determinant  of two vectors u and v (or three or more) is the oriented
signed area of the parallelogram (or parallepiped) spannethy them.
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Now, there is achoice of orientation : after | ip one edge, then the sign of the area is reversed. But
what is the sign of the rst area? It's a choice and there is a caventional way to decide it. [xxx Mention
right-handed and left-handed coordinate systems.]

Showing that this geometric de nition is equivalent to the algebraic notion of determinant [xxx below;
perhaps type up handwritten notes for 2 2] is a separate task; the geometric notion su ces for now.

1.4.2 Change of coordinates

When we change coordinates, the object being measured is theame; only the underlying measurement
system changes. But when we adopt a hew measurement systenhbiecomes the new reality we perceive:

/, PR S S S
11— 1—1—1T—"1T—

[xxx more here.] This topic will be addressed further in sedbn 2.5.

1.4.3 Some coordinate systems

xxx to do: For R? and R3; S and S?. Rectangular, polar, cylindrical, spherical with mnemonics. Conven-
tions. Stereographic on both poles with reciprocal transiton function.

1.4.4 Stereographic projection on st

Questions involving stereographic coordinates are populaon the qual ying exams. The algebra involved is
not too profound, but can throw one for a loop if one has not woked through it at least once beforehand.
[xxx Draw the similar-triangles gures for p= x=(1 y) and q= x=(1+ y).]

[xxx note the domains of de nition for p and g, and their intersection.]

Proposition 1.6.  One converts from (x;y) coordinates on the circle top or q coordinates by

X .
1+y’

X
p= Ty and gq=

Proof. From the rst gure, we can see that by similarity of triangle s

pP_ X .

1 1 y
Likewise, from the second gure, q «

1 - l+y



Proposition 1.7.  The coordinatesp and q are related by
p= =
a

Algebraic proof. Recalling that x? + y? = 1 on the circle, we have

1 _ 1+y
q X
_ 1+y 1y
- X 1y
_ 1 y?
X(1 y)
x(1 y)
_ X
1y
= p

O

Geometric proof. [xxx make gure; use similarity of triangles]. [xxx xref fwd to transition functions in the
manifold section.] O

Proposition 1.8. One converts fromp or q coordinates back to(x;y) coordinates by

_ _pP 1
T Pl and Y
_ X _1 ¢
“ieg M YT ing

Proof. For the rst, start with p= x=(1 y). We can solve fory but we need to eliminate x. Our relation
betweenx and y is x? + y? = 1 so we will need to square things. We have

oo X 1y (1 y)d+y) _ 1l+y,
1T vy @1 y2 @ ya vy 1y

This is an invertible rational function: in general, if ad bc6& 0 in (ay + b)=(cy + d), then we can invert.
Doing as we instructed our freshman students in college aldea, we get

p

1+y . . 1 vy
2 2 _
p- = 1y and likewise q T+y
1 yp* = 1+y
pP°oply = 1+y
@+p)y = p* 1
_ P 1
Y7 @1
For x, usep= x=(1 y) and solve forp:
p? 1 2 2p

x = pd y)=p 1 i1 P @yl T @l
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Similar algebra proves the formulas forg. O

xxx move to the manifold section. Establish and use the folloving to illustrate covariance and contravariance:

g _ d 1 _ 1
dq dg q o
d _ d 1 _ 1
dp dp p  p*’
Then (noting that we di erentiate x(p) and y(p)):
0 o 2 1 , !
@ _ @x=@p _ g @ T A — %
= — - 2 - 4p
@p @y=er o &t CE
0 o 2 1 , !
@ _ @x=@q _ @ @1 T+ A _ %
- = - 2 - ___4q
@q @y @q @@q ]1-*'7 (g2+1) 2

Then (noting that we di erentiate the other way around, with p(x)):

@ x d+—@ X

dp = — X d
PT ex1y @ 1y
dx xdy
= +72
1y 1y
_ @ x @ x
dq = @x l+y dX+@y 1+y dy
dx x dy

vy (@+y)?
[xxx describe what dx and dy mean here: ¢?; xy) and ( xy;x?), respectively. They are scalar multiples
of d which is (' y;x). And/or, use x ory as graph coordinates.]

[xxx important remark about how vector elds push forward bu t forms do not. xref to geometric-tangent-
vector section. More work for forms. Edit and type up handwritten notes.]

Then [xxx do the algebra to show] (covariance and contravai@nce):

_ dp .
dp = aqdq.
@ _ de
@p dp @q

1.4.5 Stereographic projection on Si

Here we generalize from section 1.4.4. The pattern becometear in S3.

For stereographic projection from the north pole which is ;y;z;w) = (0;0;0;1), we want a coordinate
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chart and a parameterization, [xxx xref fwd or reorg to charts/parameterizations] respectively:

0 1 4 o 1 0 1
r r
%y§7!@sA and @sA7!%y§:
z X X z
w w

[xxx include gure and argument that this is done slotwise]

Then the desired coordinate chart is

For the parameterization, to use the relation x? + y? + z? + w? = 1 we need to square things; adding them
up to collect the numerators we have

X2+y?+2z2 1 w? _ 1l+w
@ w2 1 w? 1 w

r’+ s+t =

Now in general, proceeding as in section 1.4.4, to invert stnca rational function we have

a 1
a+1’

1+b
1 b

) b=

Here,
2+ g2+ t2 1
T2+ 2+ t2+1°

For x, usex = r(1 w). In general

o
[N

2

(]
+
=
(]
+
-

so here
2r 2s 2t

R r2+ s+ t2+1°

Cr2+ g2+ 241

Generalizing to the n-sphere, one obtains the following coordinate chart and paamerization for stereographic
projection from the north pole:

Xi .
i = —— =100,
o 1 Xn+1
Xi = Ppoo——i=1;0n Xpa = P
= Pptl j= P tL
If one repeats the algebra for the south pole, one obtains
Xj .
= ——— =10
9 1+Xn+1 p
1 S
Xi = —Li S i=1;00m xn+1=—l°7’n_1q2:
1+ i=1 1+ i-1 G
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It is evident from the gure [xxx] that the vectors p = (p1;:::;pn) @and q = (u;:::;0) are collinear and on
the same side of the origin. To see thakpk = 1=kgk, it is su cient to see that kpk2 = 1=kqk?:

0 1 0 1
p—?@ T q—?@ 1+xn+1
n n
X + 0+ X X + 0+ X
k k2 - 1 n k k2 - 1 n
P X )? TS T xn)?
- 1 X3, _ 1 Xau
(1 Xnp+1)? (1+ Xp+1)?
- 1+ Xps1 — 1 Xnp+t,
1 Xnu 1+ Xpe1

[xxx xref fwd to transition functions in the manifold sectio n.]

[xxx explicit transition functions. They work out quickly a nd nicely.]
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1.5 Types of functions

We can have functions (linear or not) from R™ to R". However, special cases and special terminology arise
whenm =1, n =1, or m = n. In this section | will discuss these types in the following ader:

paths from R! R™, then

maps fromR™ ! R", then

scalar functions fromR" | R.
This seemingly unimportant editorial decision re ects a natural order of composition:

Given a path from R! R™, we can post-compose with a map fronR™ | R" to obtain another path.

Given a scalar function from R" ! R, we can pre-compose with a map fromR™ ! R" to obtain
another scalar function.

Q scalar functions

Q

X x Q
X X
R z<(bR

3 X .
paths XX %y
XXX

This points toward pushforwards and pullbacks as discussedn [xxx xref]. In the di erentiation section
(section 2.2), though, | will discuss maps after functions. This is simply because maps are made up of
functions.

xxx here or elsewhere: parameterized curves vs. graphs .orf VC we prefer the latter and think of the
former as a special case; here, the other way around. elabdea

1.5.1 Paths: Rto R™

Reasoning draws a conclusion, but does not make the conclaasi certain, unless the mind discovers it by
the path of experience.| Roger Bacon (c. 1214-1294).

De nition 1.9. A path, or scalar-to-vector function , is a function :R! R™, which | will write for
m=3as 1
(t)
(t) or @ (H)A:
Q)

A scalar-to-vector function has m single-variable component functions

Paths will lead us to tangent vectors [xxx xref fwd] and [xxx xref to topology, homotopy classes, rst
homology classes, etc.].

Visualizing paths is easy. xxx include a gure with a starting point and an arrow.
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Example 1.10. B Let

_  cos()
=" gin)
[xxx matlab gure.] C
152 Maps: R™ to R"
De nition 1.11. A map, or vector-to-vector function ,isafuncton F:R™! R". Form=n=3,|
will often write such a function as 0 1
f(x;y;2)
F(q) or @g(xy;z)A:
h(x;y; z)

A vector-to-vector function has n component functions  of m variables. These component functions are
vector-to-scalar functions (section 1.5.3).

Vector-to-vector functions will appear as di eomorphisms  [xxx xref fwd], in [xxx xref fwd] change of
variables , and vector elds and ows [xxx xref fwd].

Maps are a bit harder to visualize than paths. There are at leat two ways:

Grid images . We think of each point g of R™ as beingcarried by F to a point F(q) of R".

Quiver plots . We think of F asattaching to each point g of R™ a vector F(q) which is footed not
at the origin but at q.

Example 1.12. B Let F : R?! R? be given by

X | x y3

y o x*+2y

A grid-image plot of F is as follows: [xxx matlab gures]. The rst gure is the orig inal plane: the positive
x-axis is marked in heavy red and the positivey-axis is marked in heavy blue. The second gure shows the
image of the grid underF. [xxx xref to matlab section: section 12.3.]

A quiver plot shows F as a vector eld: [xxx matlab gure] C

Remark 1.13. Generally we write vector-to-vector functions in the form
0 1 0 1
X f(s;t;u)
x=F(s) or @y A = @q(s;t;u)A
z h(s;t;u)

using separate letters for input, function name, and output A change of coordinates is nothing more
than a vector-to-vector function (which we generally want to be invertible), but we usually omit the function
name. (I call thesenameless functions , although that terminology is non-standard.) We have simply
0 1 0
X X(s;t;u)
x=x(s) or @y A= @y(s;t;u)A:
z z(s;t;u)
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1.5.3 Scalar functions: R" to R

De nition 1.14. A scalar function , or vector-to-scalar function , is a function G : R" | R, written
forn=3 as
G(x;y;z) or G(q):

Scalar functions will appear as [xxx write and xref fwd] [xxx submanifolds] [xxx xref to regular-value theorem]
[xxx coe cients in forms].

Scalar functions may be visualized in at least two ways:

xxX surfaces [xxx gure here]

XXX contours [xxx gure here]

Example 1.15. B The height function
h(x;y;z) = z

or
h(xy)=y:
[xxx elaborate.] [xxx gures.]

Example 1.16. B G(x;y) = x?+ y?. [xxx elaborate]

[xref fwd (not far!) to level sets]

1.5.4 Level sets

De nition 1.17. Let f : R®! R be a vector-to-scalar function. Thelevel set of f and c is the set of
points
fq:f(q)= co

Example 1.18. B Let f(x;y) = x?+ y2. It requires 3 dimensions to visualize this (non- at) 2D surface,
with z = f (x;y):

[xxx gure]

It requires 2 dimensions to visualizef as a contour plot:

[xxx gure]

Now take the level set off and 1. This result is a circle, which is a (non- at) 1D object in 2D space:
[xxx gure]

A single level setselects outa one-dimensional space. We will see more of this in theorem® . In short,
f (X;y) = cis one equation in two unknowns; there are two variables withone constraint and thus one degree
of freedom. C

xxx xref to tangent/normal dichotomy section.
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1.5.5 Images of paths under maps: pushforwards

Let :R! R"andF :R™! R". ThenF is a path from R to R". The path has beenpushed
forward from R™ to R".

Rm —-Rn

Example 1.19. B Combining examples 1.12 and 1.10, let
3

‘v = Xy
F(Xv y) - X3 + 2y
and 0
_  cos
®=" gin)
[xxx matlab plots]. C

[xxx xref fwd to functors]
[xxx xref fwd to pushforward of tangent vectors]

[xxx xref fwd to DF and F section; 1st xref to v.c. pushf/deriv section.]

1.5.6 Images of maps under functions: pullbacks

Let G:R"! RandF :R™! R". Then G F is a function from R™ to R. The function G has been
pulled back from R" to R™.

F
R™M — R"
@
G F @ G
@
R
Example 1.20. B TBD. Make it punchy; make sure it connects to other example(3 later. C

[xxx xref fwd to functors]

[xxx xref fwd to pullback of forms]

1.6 A gallery of curves and surfaces, part 1
XXX
St (X2 + y2 = 1)
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P (x2+y2+22=1)

T2 in coordinates

Paraboloids

Hyperboloid of one sheet x? + y> z? =1)
Hyperboloid of two sheets ¢> x2 y?=1)
Surface of revolution for g(y)

...search 534 HW and quals for others.
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2 Preliminaries from vector calculus

Hobbits delight in such things, if they are accurate: they ke to have books lled with things that they
already know, set out fair and square with no contradictions | J.R.R. Tolkien, The Fellowship of the Ring

Here we review notation which is old-fashioned in two sensegq1) it is 19th-century notation, and (2) it is
what we were all taught as undergraduates. Our aim in this couse is to replace, generalize, and extend such
things, while still having the symbols look largely the same. Thus, it is worth taking the time to review what

it is that we want to replace.

Also, | have found that much of the supposedly new material inthe geometry-topology course is really vector
calculus, being viewed in a new light. Viewing new things in mw ways requires the learner to make a larger
mental leap, so to ease that leap | will discuss old things in aw ways for a while.

2.1 Goals for vector calculus

xxx list out classes of problems solved. xxx note that many othese arise in physics.

Rate of change of functions.

Linear approximation of functions.

Optimization.

Volume, mass, center of mass.

Path and surface integrals: used for computingwork , etc.

Find the evolution of a system given speci ed initial/bound ary conditions: ordinary di erential equa-
tions, partial di erential equations. In particular, con guration space of mechanical systems. (E.g.
one-holed torus vs. double pendulum.)

Understand how results change when di erent coordinate syems are introduced.
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2.2 Di erentiation

Certainly he who can digest a second or third uxion need notmethinks, be squeamish about any point in
divinity. | George Berkeley, 1734.

We will see that almost everything in this di erentiation se ction involves the chain rule , which in turn is
encapsulated in theJacobian matrix . The Jacobian matrix will continue to reappear [xxx xref to COV
for integrals, and elsewhere].

2.2.1 Derivatives of functions from Rto R

Recall from single-variable calculus that we use the derivéive function, evaluated at a point xg, to form a
linear approximation to f at xg. This is nothing more than point-slope form:

y = Yo+ m(X Xo)
f(x) f (xo) + fAx0)(X  Xo):

Note that the derivative itself is not a linear transformati on. It is a function; evaluated at a point, it gives
a slope. Linear transformations send zero to zero and this g@oximation need not: considerf (x) = sin( x)
at xo =2 . Such approximations area ne : a linear transformation with translation. But if we rearra nge
terms, then we do have a linear transformation:

fx) f(xo) fAx)(x xo)

fofY%) x
[xxx two gures here, the latter with translated origin.]

[xxx more about coord charts don't have the origin at each pont but the tangent spaces do. xref to
position/velocity.]

De nition 2.1. Letf :R! R. We say that x is acritical point of f if f {x) is zero or unde ned. If x is
a critical point for f, we say thaty = f (x) is a critical value for f.

Example 2.2. B Let f (x) = x?+2x +3. We compute f {x) =2x + 2. This is a polynomial and so is not
unde ned anywhere; it is zero atx = 1. Therefore 1 is the only critical point for f. The critical value is
f( 1)=2 C

See de nition 6.16 in section 6.1.5 for the more general de ition.

Remark 2.3. Remember that relative extrema happen at critical points, but not necessarily vice versa.
The canonical examples ard (x) = x2 and g(x) = x3. Both have critical points at x = 0; f has a minimum
there but g does not.

2.2.2 Derivatives of paths

Paths are simply di erentiated componentwise.
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De nition 2.4. Let ) 1
H=@ (A
(1))

be a path. Then 1
1)

AUy=@ qt) A:
A1)

Notation 2.5. Looking ahead to section 2.2.4, | will write
°=p:

Note that isfromR!! R™ andD isanm 1 matrix.

[xxx gure]

We form tangent-line approximations for paths, much as in the single-variable case as described in section
2.2.1:

) (t)+ Ato)(t to):
Example 2.6. B Continuing example 1.10, let

_ cost)
®=" sin)
Then in)
Orer _ sin(t
(t) = cos()
At tg = =2, we have an equation for the tangent line’(t) given by
(t) (to)+ Ato)(t to)
cos(=2) sin( =2) _
sin( =2) * cos(=2) t =2
_ 0 1 _
= 1 ° 0 (t =2
_ =2 t
- 1
[xxx matlab gure.] C

If a path (t) representsposition of an object, then the derivative t) represents itsvelocity . When the
velocity is multiplied by the object's mass, we havemomentum (physicists write p = mv). [xxx elaborate:
a physicist might in fact think of a tangent bundle [xxx xref f wd] as a space of positions and momenta.]

[xxx mnem: gamma as car driving on curve; gamma prime as the taglight beam.]

[xxx note: we lose the linear-transformation part of it when we put it to work for the tangent-line approxi-
mation. The match is att = tg not t = 0.]

See de nition 6.16 in section 6.1.5 for the de nition of critical point. For paths from R into higher-dimensional
spaces, critical points are not interesting. (The derivative can never be surjective.)
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2.2.3 Derivatives of functions from R" to R

Notation 2.7.  For single-variable functions we write the derivative as

dG

ab 0y Y-
x or GH(x);

for multi-variable functions we write

@G @G . . v Y-
—@X or —@EX,%Z) or GX (vavz)'
When we evaluate at a point, we write
dG dG 0

Xo
in the single-variable case and

@G
@x o

yo
20

@
or @jxmyo;z()) or Gx (Xo; Yo; Z0)

in the multivariable case.

Intuition 2.8.  We can use partial derivatives to form alinear approximation  to a scalar function:

G(xy) G(Xo0;Yo) + Gx(Xo;Yo)(X Xo)+ Gy(Xo;Yo)(Y Yo):
The best way | know to motivate this is by using single-variable linear approximations, one variable at at
time. Starting at ( Xo; Yo) we can make a line to &;yg) and from there to (x;y):
G(X;Yo) G(Xo;Y0) + Gx(Xo;Yo)(X  Xo)
G(x;y) G(x;yo) + Gy(X;yo)(y Yo)
G(Xo;Y0) + Gx(Xo;Yo)(X  Xo) + Gy(X;yo)(y  Yo)
Alternatively, starting at ( Xo;Yo) we can make a line to §o;y) and from there to (x;y):
G(Xo;Y) G(Xo;Y0) + Gy(Xo:Yo)(y  Yo)
G(x;y) G(Xo;Y) + Gx(Xo;¥)(X  Xo)
G(Xo;Y0) + Gy(X0:Yo)(Y  Yo) + Gx(Xo;y)(X  Xo)
= G(Xo;Y0) + Gx(Xo;¥)(X  Xo)+ Gy(Xo;Yo)(y Yo):

Comparing these two expressions, we see that the di erencesi

Gx(Xo;Yo)(X  Xo) + Gy(X;yo)(Y  Yo)
Vs.
Gx(Xo;¥)(X  Xo) + Gy(Xo;Yo)(y  Yo):
If G is linear, then
Gx(X0;¥0) = Gx(Xo;y)  and  Gy(Xo;Yo) = Gy(X;Yo);
if G is approximately linear then we can replace one with the othe to obtain the desired result

G(x;y) G(Xo0;Yo0) + Gx(X0;Yo)(X  Xo) + Gy(Xo;Yo)(Y VYo)
= G(Xo0:Yo) + Gx(Xo0;Y0) X+ Gy(Xo;Yo) V:

A careful use of the word \approximately" requires a limit pr oof; see Rudin ], [Spivakl ], or the di erenti-
ation section of any graduate analysis text.
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XXX gure
XXX now note it looks like a plane form.

Just as in section 2.2.1, this approximation isn't a linear transformation | it only becomes one when we
rearrange terms:
f(xy) f(xo:yo) fx(Xo;yo) X+ fy(Xo;yo) ¥y
f af of X
@x @y y
Yo

We can think of this product in two ways:

As the dot product of two column vectors;

As the matrix product of a row vector by a column vector.

[xxx foreshadow ominously that this seemingly minor distinction leads into covariance and contravariance.
numerous xrefs.]

De nition 2.9. Let G: R"! R. De ne the column vector

0 1
%(xl;:::'

rG:Eb : X:
8S(xq;:::5%n)

(This inverted triangle is pronounced \grad" or \nabla". [x xx Anton ref w/ page number for the etymology.])
In particular, for n = 3 we have 0 1

Notice that we started with a vector-to-scalar function G : R" | R. Then we obtained a vector-to-vector
function r G: R" ! R". This suggests that ther may be thought of as adi erential operator r which
takes vector-to-scalar functions into vector-to-vector functions [xxx xref to functors].

De nition 2.10.  The gradient is the following di erential operator  , written as a column vector

0 1
@=@x

For n =3 we have

XXX gure: contour and quiver.

Remark 2.11. Sincer takes a scalar functionG into a vector eld function F = r G, it is natural to ask
if we can go the other way. That is, givenF, can we nd G such thatr G = F? If so, we say thatG is a
potential function  for F. [xxx write and xref to where we can answer that question.] [xx gures]
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Notation 2.12.  Since the gradient of a scalar function is a column vector, & transpose is a row vector.
Looking ahead to section 2.2.4, and recalling section 2.2,2 might write this as

tg = = @G @G @G .

Note that G is from R"! R! and DG isal n matrix. Then we have

f DG «x:
XXX:
o 1
X
f(xyiz)  f(xo;Yo; 20) g o % . @ yA:
Yo Z

[xxx dir'nal deriv, and grad as direction of greatest chang® gures. this leads to normals.]

De nition 2.13. Let G:R™ ! R. We say that q is a critical point of G if DG(q) is zero or unde ned.
If g is a critical point for G, we say thaty = G(q) is a critical value for G.

Remark 2.14. See de nition 6.16 in section 6.1.5 for the more general de ition: namely, for functions
F : R™ to R", a point q is critical if DF(q) is not surjective. Here, wheren =1, DG isan 1 m matrix
(which looks like a row vector). For a1 m matrix not to be surjective means it must have rank less than
1. But its rank can be at most 1. For a1 m matrix to have rank zero means it must be zero. This is the
same as the gradient (remember 'G = DG) being zero.

Example 2.15. B Let G(x;y) = x? y?+3. We compute DG(x;y) = (2x; 2y). This has polynomial
components and so is not unde ned anywhere. It is zero only wan % = 2y =0, i.e. at the single point
X =0;y =0. The critical value is G(0;0) = 3. C

Remark 2.16. Just as in the scalar case (see remark 2.3), relative extremaccur at critical points but not
necessarily vice versa. For the example just given, the potnx = 0;y = 0 is a critical point, but it is a saddle
point rather than a relative minimum or relative maximum. (I f we had de ned G(x;y) = x? + y? + 3 we
would have had a minimum at the origin.)

[xxx include gures here]

2.2.4 Derivatives of maps from R™ to R"

In section 1.5.2 | wrote a vector-to-vector function as
0 1
f(x;y;2)
F(xy;z)= @ g(xy;z) A:
h(x;y; z)

That is, a vector-to-vector function is simply a stack of the component vector-to-scalar functions. To make
a linear approximation for a vector-to-vector function, th en, we can simply apply the gradient as de ned in
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section 2.2.3 to each component function:

0 1
X
f(xy;z) f(xo:Yo; o) g g g ., @ yA
Yo Z
ZO 0
X
9(%;y;z)  9(Xo; Yo; Z0) G0 o g @ yA
Yo Z
© 0 1
X
h(x;y;z)  h(Xo;Yo: 20) & o & ., @ yA
Yo Z

Z0

But this is the same as saying

. ooy 1 Oor @ o 0 1
f(x;y;z) f(Xo;Yo;2o) @x @y @z X
@ g(x;y;2)  g(Xo;YoiZo) A %)%3 %; §§ ‘o y A
h(x;y;2)  h(Xo;Yo; 20) R z
Thus we have motivated the following de nition.
De nition 2.17. Let F:R®! R3 be
0 1
f(x;y;2)
F(xy;z) = @y(xy;2)A
h(x;y;z)
Then we de ne the Jacobian matrix for F to be the matrix with rows equal to the gradients of the
component functions: 0 1
aef of of
hoon &
@x @y @z
In general, forF : R™ I R™ given by
1
f1(X1;::0Xm)
F(X1;:00Xm) =
fm(X1;,000Xm)
the Jacobian matrix has entries
@f=@x

Notation 2.18. In case we have a nameless functiog = y(x), as in remark 1.13, it is common to write
the Jacobian as either

@y1;:115Yn)
@X1;::75 Xm)
or
@
@
Remark 2.19. Note that the Jacobian matrix, as presented, is amatrix-valued function . Only when we
evaluate it at a point, e.g.
DFjq;

does it become a matrix.
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Example 2.20. B Let

X 3
FOGY)= 3y 2yy
as in example 1.12. Then
v = 1 3y?
DF (X1 y) - 3X2 2
Evaluated at x =0;y =1, this is
DE(0:1) = é 3
We have
FOD=
so nearxg =0, yp =1 we have
X X
F(x:y) F(xo:yo) * DF(xaiyo) 0
1 + 1 3 x 0 _ x 3y+2
2 0o 2 y 1 2y
[xxx gures: superimpose eucl grid on grid image] C

Notethat °= D andr 'G = DG from notations 2.5 and 2.12 are both simply special cases ohe Jacobian.
[xxx xref fwd to DF section.]

See de nition 6.16 in section 6.1.5 for the de nition of critical point. The very de nition requires linear
algebra, which is why we don't teach it at the vector-calculus level.

2.2.5 Derivatives for images of paths under maps

Let 1
(t)
=@ (A
(t)
be a path and let 0 1
f(x;y;2)
Fxy;2)= @ g(xy;z) A:
h(x;y;2)
What is the derivative of the composition F  ? Using the chain rule , we have

0 1
q g (O @ ()
Gt (@ = @ga v O (A
; Sh( (©); (@©); (@) .
%L( 1) A+ S ) W+ ) AW
= %gs( () W+ 8 ) W+ ¢ V) 1k
S ) W+ S ) W+ S ) A
Oer @ o 0 41
@x @y @z O(t)
- by o oK, @A
@h oh @h ® qt)
@x @y @z )

N
[uly



That is to say, d
gi(FC M= DF(C (1) 1):

We can use this rule to produce an equation for the tangent lie to the image of a path under a map.

Example 2.21. B Continuing examples 1.10, 1.12, 1.19, 2.6, and 2.20, let

3

‘y) = Xy :
_ cost)
O= sint)y
and to = =2. Then from example 2.6 we have an equation for the tangent fie to the original path:
(t) (to)+ Ato)(t to)
=2 t

Then

F( (1) F( (to))+ DF( (to)) Yto)(t to)

= F(0:1)+ DF(0:1) é t =2
_ 1 1 3 1 _
- >t 0 2 o t =2
_ 1 1 _
= 5 + 0 (t =2

=2 1t

[xxx matlab gures]
Note:

The not-necessarily-linear functionF pushes forward the not-necessarily-linear path .

The linear approximation DF pushes forward the tangent line de ned by °.

[xxx xref fwd to pushforward of tangent vectors]

2.2.6 Derivatives for images of maps under functions

[xxx example]

[xxx xref fwd to pullback of forms]
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2.2.7 The chain rule and the Jacobian

XXX write out:

D((B  A)(q)) = DB (A(q))DA(q).

xref back/fwd that prevs are special cases of this.

2.2.8 Divergence and curl

xxx intuit rst. Follow [ HHGM ]
xxx the det formula seems quite arbitrary. xref to d section where it falls out naturally. also intuit ....

De nition 2.22. Let F be a vector-to-vector function. The curl of F, written curl( F) or r F, is the
cross product written as

0 1 0

R ) 2 @h=@y @g=@z hy @

r F= @=@x @=@y @=-0Paf-@z @h=a&%= @, hA:
f(xyiz) o(xy;z) h(xy;z) @u=@x@f=@y o fy

Note that the middle expression is just a silly mnemonic; it is not a determinant in any formal sense.

De nition 2.23. Let F be a vector-to-vector function. The divergence of F, sometimes written div(F),

is the dot product 0 1 0 1
@=@x f(xy;z)

r F=Q@@=@y @xy;2)A = @=@% @y=GY @h=@z:
@=@z h(x;y;2)

Note several things:

The gradient takes vector-to-scalar functions to vector-to-vector functions.
The curl takes vector-to-vector functions to vector-to-vector functions.

The divergence takes vector-to-vector functions to vectoito-scalar functions.

Since the gradient of a vector-to-scalar function is a vectoto-vector function, it makes sense to take the
curl of it; also it makes sense to take divergence of the curlfoa vector-to-vector function.

Proposition 2.24.  As operators,r r =0 andr r =0.

Proof. For the rst, let G be a scalar function of three variables. Then

0 @G:@% R 9 2
r @ @G=@% = @=@x @=@y @=@z
@G=@z @Gf@x @G=@y @G=@z
@G=Qy@z@G=@z@y
@@BG=@z@x BCG=@x@z=0:
BG=-@xQ@y @G=@y@x

The last step is true because all our functions are assumed mth: since the rst and second partials are
continuous, the mixed partials are equal.

rr G
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For the second, letF : R®! R3. Then
0 1
@h=@y @9=@z

rr F = r @af=@z @h=ax
@g=@x @f=@y
= (@h=0x@y @g=@xQz
+ (@f=@y@z Gh=-@y@x
+ (@y=@z@xBf=@z@y
=0
again due to equality of mixed partials. O
Notes:
Sincer  F is vector-to-vector, it makes sense to consider r F. | am leaving this topic untouched.

(See Hildebrand ], section 6.9.)

What do we do in higher dimensions (e.g. phase spaces of coreglmechanical systems)? The gradient
and the divergence seem to make sense for higher dimensiomsit there is no clear notion here of how
to extend the concept of curl. [xxx xref to 2D and 4D d? = 0 complexes, when | write that. Or to the
d section and let them do it themselves.]
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2.3 A rst pass at tangent spaces

[xxx s2tp]

circle. level set and not. two views of tangent line: kernel &linear transformation. show by example that
we get the same thing either way; question is how.

same with the two-sphere. relate to plane forms ....

main point: normal is perp to tangent.
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2.4 Integration

But just as much as it is easy to nd the di erential of a given quantity, so it is di cult to nd the
integral of a given di erential. Moreover, sometimes we camot say with certainty whether the integral of a
given quantity can be found or not. | Johann Bernoulli (1667-1748).

2.4.1 Integrals of paths

If v(t) is an expression for the velocity of a particle, i.e.v(t) = Yt) for some path (t), then we can recover
() via 7
t

()= v()d:

to

De nition 2.25.  The integral of a path is done componentwise: if

uw
v(t)= @ y(t) A
w(t)
then 0R 1
z, 2% wp * = u(d
vind = @ v Ad =B vnd K
to o w(t) ,, w(t)d
Example 2.26. B Let
_ sin(t)
v(t) = cosf)
and tg =0. Then
Z Z sin(t) R sin(t)d |
= = R
to v(d 0 cost) d ’ 5 cost)d
_ cos¢) 1 _  cost) 1
- sin(t) ~  sin(t) 0
which is (t) (0) for the path of example 2.6. C

There is not much more to say here that we haven't already seems undergraduates; the graduate course is
silent on this subject.

2.4.2 Integrals of scalar functions

The integral of a scalar function G(x), G(x;Yy), or G(x;y; z) is the familiar area/volume under the curve: if
the circus grounds are on a regiorR of the (x;y) plane and G is an expression for the height of the circus
tent, then _ G(x;y) dxdy is the volume enclosed by the tent.

[xxx gure]

Such integrals are easy to understand and (maybe) easy to caoute. Thus it is perhaps no surprise that we
have integration theorems which turn integrals of vector-to-vector functions into integrals of scalar functions.
[xxx xref.]
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2.4.3 Integrals of maps

Line integrals: integral of a vector eld over a path ....
XXX
[xxx antideriv vs. solving di erential equations?]

curl and div; xref fwd to the classical integration thms. Point out the interior/boundary pattern, including
the FTC, and xref to DG stu .

[xxx include F dr.]

De nition 2.27. Given a path

X(t)

t) =

O="y
for t 2 [a; 1 and a vector eld

- Fxy)

F(xy) =
(x:y) ax:y)
we write
Z Z Z
f(xy)dx+ g(x;y)dy = f(x;y)dx+  g(x;y)dy
where
VA Z =p
f(gy)dx = f(x(t); y(t))xYt)dt
t=a
and
z Z iy
g y)dy = g(x(1); y(t) yAt)dt:
=a

Notation 2.28.  Witing

dr = dx

= 4y

we have
Fodr = f(xy)dx+ g(x;y)dy
and so we write Z z
f(x;y)dx + g(x;y)dy = F dr:

xxx rem about work done by aforce, justifying the use of the dot.

Remark 2.29. An expression of the form
z

x=1

f(x;y)dy
x=0

may appear shady. However, in terms of the de nition of the pah integral, this is zero: for the parameteri-
zation path along the x axis from 0 to 1, y(t) is constant and soyYt) is zero along that path. Thus,
z x=1

f(x;y)dy=0:
x=0
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2.5 Change of coordinates

In this section we examine what happens to derivatives and itegrals when we change coordinates. This
foreshadowstransition functions  on manifolds, as discussed in section [xxx xref].

xxx xref to tensor stu as well. Several more xrefs ....

2.5.1 Change of coordinates for derivatives

Whether we change coordinates in the domain or the range of auhction, we use the chain rule as expected
to compute the derivative in the new coordinates.

Let (t): R! R™ be a path. Let x = x(t) be a nameless change-of-coordinate function, in the sens#
remark 1.13. Then we get the derivative of the reparameteried path using the chain rule :

d - :
g @)= AxE)xA):

Changing coordinates in the range is the same as section 2.
d
g )= DFC () 1):

xxx note how paths change coordinates. Use the jacobian.
xxx connect to pushforward. The COC map is just anF.

xxx note (cite frankel and who else?) that one can de ne a veabr eld as anything which changes coordinates
in this way.

If G(x;y) is a scalar function, with x and y reparameterized usings and t, then the chain rule gives us

d e @COXx, @GRy
P G(x(s;1);y(s:t) = @X@; @y@s

etc. Likewise for maps fromR™ to R".

2.5.2 Change of coordinates for single-variable integrals

We all know how to do u-substitution, but let's take a fresh look at it. We can attac h some new terminology
which will help us in section [xxx xref]. | will start with an a bsurdly simple example | it contains (for me
at least) a few surprises. Compute

x=1 X2 x=1 1

xdx = — = =

x=0 2 x=0 2
A u-substitution is unnecessary but let's do one for the sake ofliscussion: say,u = 2x. With reference
to section [xxx xref], we are measuring the area under the cwe with a new ruler | one which measures
half-inches rather than inches. We expect the new ruler to ogrcount area, and so we expect to compensate
by dividing by four. We have

u=2x;, du=2dx
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d
and so Z. Z o

xdx =
x=0 u=0

du__ v _ 1
2 T2

NS

| don't know about you, but when | do a u-substitution, | think of x as the \old" variable and u as the
\new" variable. But let's trace back through what we did in th at example, using symbols this time. We
started with 7
x=b
f (x) dx:
X=a

We chose a new variable as a function of the old,

u = u(x);
then found q
u
du= ax dx:
But when we substituted in the integrand we wrote x = x(u):
u dx
X = > and dx = ﬁdu.
That is, we mapped fromu to x and obtained
z x=b z u=u(b) dx
f(x)dx = f (x(u)) — du:
X=a u=u(a) du

Note that the integrand uses the function x = x(u), while the limits of the integral use the function u = u(x).
In summary, when we transition from u coordinates tox coordinates, the behavior of the integrandf (x) dx
looks reminiscent of thepullback diagram in section 1.5.6:

x(u)
f(x(u) Edu ———— f(x)dx
@
[x (a);x *(b] @ [a;b]
@

R
We will revisit this picture in [xxx xref fwd. to transition f unctions, ! = f (x) dx is a form, [a; ] is a chain,
integral is pairing, x (! )=! x is a pullback of a form, etc. etc.]

Here is another way to think of the change-of-coordinate fomula for single-variable integrals. Again start
with 7
x=b

f (x) dx:

X=a
Xxx picket gure (inkscape).

xxx form a Riemann sum and examine a single cell.
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Old: x from ato b. Area:
(b af(a):

New: u from c to d, wherea = x(c) and b= x(d). Area:

b a
i o (@ 9fx@)
But
b a_ x
(d o u
so the area becomes
f(a) x= —’; d o f(x() = —z uf (x(9):
Returning to the limit we have
dx
f(x)dx f(x(u) au du:
Result:
esu Zyop Z - 1(b) dx
f(x)dx = f (x(u)) — du:
x=a u=x (a) du
2.5.3 Change of coordinates for integrals of scalar functio ns

For scalar functions of more than one variable, we encounteonce again the Jacobian matrix.

| want to show that Z Z

G(x)dx = @
R

0 G(x(s)) @ ds:

x 1
Here is a picture of the function:

xXx tent gure here rst. Then:

We form a Riemann sum, as in [xxx xref], then reduce to considation of a single rectangle whereG is
approximately linear. We want to consider what happens to the oor under this cell of G in the new
coordinates. [xref back to section 1.4.1.] Then we have:

(s1;t2)  (s25t2) (X125 Y12) (X22;Y22) (X12; Y12)
t P 6 t y %‘A b6 y 6 p P(Xzz;yzz)
B Pp
s B
E 5 - Pp o
(s1;t1)  (s23t1) B (X115 Y11) (X215 Y21) (X11;y11) '8
BB : (X21; Y21)
B X
- B -
S B X
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As in section 1.4.1, the area of the rectangle in the originalcoordinates is the area of the parallelogram
spanned by the (perpendicular) vectors

8 and (t)
where
s=s, S and t=1t, ftq:
As in section 1.4.1, this is the determinant
det OS Ot
which simply the product
s t

The question is, what is the area of the parallepiped spannetby the images of sand t,in (x;y) coordi-
nates? For brevity, | will write

X11 = X(S1;t1); Y1 = y(S1;t1);
X12 = X(S1;12); Y12 = Y(s1;12);
X1 = X(S2;t1);  Ya1 = y(sz;t1);  and
X22 = X(S2:t2); Y22 = Y(S2;12):

The images of the two edges in question are

S X X X X
7! 21 11 and 71 12 11

0 Y21 Y11 t Yi2 Y1

We have a nameless change-of-coordinate functior = x(s), with Jacobian written as in notation 2.18
@ =@. We know from section 2.2.4 that this Jacobian approximatesdi erences:

X21 X1 @x=@s Q@x=@t s _ @x=0s

Y21 Yn @y=@s @y:@t?o 0 @y=-@s
and

X12  X11 @x=@s Q@x=@t 0 _ @x=0ot

Yi2 Yn @y=@s @y:@tfo t @y=0t

So, just as in section 1.4.1, the area of the parallelogram gmned by these two vectors is the determinant
@x=-0ss @y=@s

det
@x=@t @y=@t
But due to the multilinearity of the determinant, we can fact or out s from the rst column and t from
the second to obtain @x=@s @y=@ &
X=@s y=@s
s tdet = st —=":
@x=@t @y=@t s, @
to
Then the ratio of the area of the image parallelogram to the aea of the original rectangle is
s te . @&,
s t @

Forming the Riemann sum of such cells and taking the limit as sand t go to zero gives the result claimed
at the top of this section.

Note that | have discussed this situation only for G : R? | R, for clarity of presentation, but in fact nothing
here is dependent om = 2.
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2.6 Integration theorems

Here we recall several theorems and constructions, statedene for ready reference. Se&pton ] or [HHGM ]
for more information. These theorems will be proved here: sth questions occur from time to time on the
geometry qualifying exam.

We will see in section 7.2 that the generalized Stokes theome, which is the main point of the geometry
course, subsumes all of the following as special cases:

The fundamental theorem of calculus (section 2.6.2).

Green's theorem (section 2.6.4).

Classical Stokes (section 2.6.5).

Divergence theorem (section 2.6.6).

Cauchy's theorem (section 2.6.8).

There are two main points here:

Most of the theorems in this section convert one kind of integal into another.

In particular, they follow the pattern of the fundamental th eorem of calculus (section 2.6.2): the
integral of a derivative of a function over a region is equate to the integral of the original function
over the boundary of the region. We will discuss this situaton in greater generality in section 7.

xref fwd: point out things we currently cannot do.

2.6.1 Pieces for the integration theorems

Remark 2.30. Given a function G : R! R, note that the left-hand approximation to G9x) at x; is the
same as the right-hand approximation to GYx) at x,, i.e.
G(x2)  G(x1)

GYx1) ”

GYx2)

where X = X, Xi:

6G(xy) G(x2)

X1 X2

This seems obvious, but it is one of the tricks to remember in he proof of Green's theorem in section 2.6.4.

Remark 2.31. | can re-use the same picture as in remark 2.30 for one cell of Riemman sum, using the
trapezoid rule : z,
2 +
f (x) dx f(xa) + f(x2)
X1 2
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Remark 2.32. Likewise, we can use the trapezoid rule for a 2D cell:

P p
P p
(X1;y2) Pp P p | (X2;y2)

(X1;y1) (X2;y1)

z Y2 z X2 z Y2 z X2
G(x;y) dxdy = G(x;y) dx dy
Y1 X1 Y1 X1
Y2 G(x1;y) + G(x2;Y) X dy
Y1 2
G(x1;y1) + G(X2;y1) + G(X1;Y2) + G(X2;Y2)

] y
Notation 2.33.  On a cell with corners (X1;Y1), (X1;V¥2), (X2;y1), and (Xz;Y2), write Gi; = G(Xy;y1) and
so on. Then we have the more streamlined notation
z y2 Z X2
G(x;y) dx dy

Y1 X1

Guit+ Guo+ Goy + G2
4

That is, we nd the height of the cell by averaging the heights of the four posts.

Remark 2.34. Likewise, for a single cell of a 3D Riemann sum:

Z2 y2 X2

2.6.2 The fundamental theorem of calculus

Theorem 2.35 (Fundamental theorem of calculus) If G is an antiderivative of g, then
z b
gx)dx = G(b) G(a):

a

Proof. SinceG is an antiderivative of g, g is the derivative of G, i.e. g = G°% We form a Riemann sum for
the left-hand side as 7
b X 1

GYx)dx GUAxk) Xk
a k=0

wherea= Xg<X1<::1:<Xp, 1<Xp=band Xx = Xk+1 Xk. Then

G(Xk+1) G(Xk)

Gx«k) ”
so the sum becomes
D¢ 1 K 1 1
o) x o SXken) GO Glxk)  G(XK):
k=0 k=0 X k=0
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But this is a telescoping sum

G(x1) G(xo)+ G(x2) G(x1)+ G(x3z) G(xz)+ :::+ G(Xn) G(Xn 1) = G(xn) G(x0)= G(b) G(a):

The lack of rigor here is in my use of the symbol . More precisely, one replace$s%xy) with G%c,) where
Ck is the point in the interval ( Xx; Xk+1 ) Whose existence is guaranteed by thenean value theorem , such
that
G(Xk+1)  G(Xk).

™ :

GYa) =
O

Regardless of the approach, the three key points are (Ujnearization of G, (2) cancellation of the integral's
numerator X's by the derivative's denominator x's, and telescoping . These three points all reappear in
the proof of Green's theorem in section 2.6.4.

[xxx note connected domain. point out what happens if not. xref/foreshadow.]

2.6.3 The second fundamental theorem of calculus

Theorem 2.36 (Second fundamental theorem of calculus) If

Z X
F(x)= f (t)dt;
a
then
FOx) = f(x):
Proof heuristic. The left-hand side is
Z
d d X
&F(x) & f(t)dt
F(x+ x) F(x)
X
RX+ X RX
- a f()ydt _f(t)dt
X
Re+ x
_ x f(t)dt
X
f(x) x
X
= f(x):
[xxx make a picture w/ linearized extra strip at the right edge.] O
2.6.4 Green's theorem
Green's theorem: Let be a region ofR? with oriented boundary C. Letf : | R.
Z Z Z
f(xy)dx+ g(x;y)dy = (@g=@x @f=@gA:
c
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Theorem 2.37. Let F = (P;Q) [xxx stack vert]: R2 | R? with continuous partials. Let U be a simply
connected [xxx de ne above and xref backward] region &?. Let C be a counterclockwise closed path i,
with interior D. Then

| ZZ
: : _ @Q @ :
. P(x;y) dx+ Q(x;y) dy = o @y @x dx dy:

Proof. xxx grids. Mention linearization andtelescoping . xref back to proof of FTC. Use G1, notation. [

2.6.5 Classical Stokes
Theorem 2.38. Copy and paste into here.
Proof. [xxx goes here]. O

Classical Stokes: Let be a two-dimensional surface inR® with oriented boundary C which in turn has
outward-pointing normal . (To quote Ben Poletta, if is a potato chip then C is the peel on the potato
chip.) Let F be a vector-to-vector function, i.e. F : R®! R?, de ned on
z zZZ
F dr= (r F) rds:
C

(Note that this reduces to Green's theorem when is con ned to the plane, since then

0 1
f

F=@gA; n =2 and  dr = dx + dy+ dz:
h

Alternatively, classical Stokes is the extension of Greers theorem when we allowR to levitate o the plane,
and perhaps warp in the breeze.)

2.6.6 Divergence theorem
Theorem 2.39. Copy and paste into here.
Proof. Mimic proof of Green as much as possible. Us&;,, notation. Use (V 1f1)dA notation. O

Divergence theorem: LetG be a solid region inR® (e.g. a solid potato) with oriented boundary (the peel).
Let n be the outward-pointing normal. Let F be a vector-to-vector function, i.e. F : R®! R3, de ned on
G. A Z ZZ

(F n)ds= (r F)dv:
G

2.6.7 Fundamental theorem of calculus for line integrals
Theorem 2.40. Goes here.

Proof. xxx Use Green's theorem / classical Stokes on closed loops tget path independence. Type up
handwritten notes. O
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2.6.8 Cauchy's theorem

Cauchy's theorem
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2.7 Lagrange multipliers

Lagrange multipliers are used to solve the following problen (stated here for R%): Maximimize the function
f (x;y;2), subject to the constraint that g(x;y;z) =0.

When | rsttook calculus, this seemed to be a quite arbitrary thing to want. In di erential geometry, though,
it's the natural thing to use when restricting a function fro m Euclidean space (e.g.R®) to a manifold (e.g.
$?), when that manifold is the level set of some function. (E.g.S? is the subset ofR® subject to the constraint
that g(x;y;z) = x>+ y?+ 2> 1=0)
Proposition 2.41  (Anton's theorem 16.10.1). Let f;g : R® ! R with continuous rst partials on some open
set containing the constraint surfaceg(x;y;z) = 0. Further suppose thatg has non-zero gradient on this
surface. If f has a constrained relative extremum, it occurs at a point(Xo;Yo; Zo) where the gradients off
and g are parallel, i.e.

r f(Xo;Yo:20) = 1 9(Xo; Yo; Zo)
for some real number .

Remark 2.42. Recall from remark 13.4 thatr g is a normal vector to the surface de ned byg = 0. Thus,
the proposition is that if f has an extremum on the surface, it occurs wherf 's gradient is normal to the
surface.

Remark 2.43. Not all the points where r f is parallel to r g are necessarily extrema fof on g's zero set.
We have the following:

Solvingr f = r g will give you points at which the two gradients are parallel.

As explained in remark 2.45 below, these will all be criticalpoints.

Of the critical points, some may be extrema; others may be sadle points.

Remember that extrema off occur at critical points of f or on the boundary (if any) of the intersection
of the domains off and g.

Example 2.44. B Problem: maximize f (x;y;z) = y> z on &, i.e. subject to the constraint g(x;y;z) =
x2+y2+ 2722 1=0.

First compute the gradients:

0 1 0 1
0 2X
rf=@ 2y A and rg= @2 A;:
1 2z

Observe that r g doesn't vanish on S?, since it only vanishes at ;y; z) = (0 ;0;0) which is not a point on
S?. Thus the proposition applies. Next, nd when r f and r g are parallel:
8

<0 = 2x

Ly = 2y

1 = 2z

8

< X = 0

@ )y = 0

) z = 1=

8

< =0 or x=0
=1 or y=0

z = 1=
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Case =0and =1: Absurd.
Case =0 and y=0: The third equation cannot be satis ed.
Casex=0and =1: x=0and z= 1=2, from whichy = P 1 x2 z2= 3=4 = 3=2.

Casex=0andy=0: z= 1,with = 1=2

This gives us four candidate extremum points forf on S?:

0 10 1 010 1
pO p 0 0
@ 3=2A:@ "3=2A:@0A . @0A:
1=2 1=2 1 1

Evaluating f at these four points yields, respectively,

55
it 1;1:
Thus, the maxima of f are at 0 1 0 1
p 0 po
@" 3=0A and @ " 3=0A;
1=2 1=2

while the minimum of f (which was not asked for) is at the north pole. Note that S> has no boundary so
there are no extrema at boundaries.

[xxx incorporate Matlab gures from y2z.m.] C

Remark 2.45. It may appear at rst blush that something is wrong. Take the rst point (call it q), for
example: If we evaluater f there, we don't get zero:

0 1 0 1 0 1
D 0 0 p0
q=@ "32A; rf=@ 2y A; rf(g)= @ 3A:
1=2 1 1

However, it is not the gradient of f but rather the gradient of f restricted to S*> which vanishes. (We might
write this r S'f .) How can we compute this restricted gradient? We could do tke following:

Compute the tangent plane to the sphere atq.

Use the projection operator (1.3.2) to projectr f (q) down onto that plane.

Then see if that projected vector is zero.
Alternatively, we can simply recall [xxx xref bkwd] that the normal to the sphere is given byr g. The normal
is perpendicular to the tangent plane at each point, and we"e found that r f is parallel to r g, i.e. normal

to the tangent plane. So we know that if we projectr f (q) down to the tangent plane at q, we will get zero.
This sanity check gives us reassurance that we've really faxd critical points using this method.
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2.8 ODEs in one variable

Consult your favorite ODE text for full information, of cour se ...for quali er problems, the only types of
single-variable ODEs you are likely to need to solve are sepable rst-order ones, or linear homogeneous
second-order with constant coe cients. That is, you don't n eed to re-learn a thick volume worth of ODE
techniques.

Here an example of a rst-order equation:

dy _

ax Y
d—y = dx
y
Z Z
d—y = dx
y

In(y) = x+C

y = €%C=ke:
Then use the initial conditions to determine C.
Here is the general technique for linear homogeneous secondler with constant coe cients. We start with
ax®% bx’+c = 0:

Guessx = € for k to be determined. Thenx®= kek' and x°°= k2. Plug these back in and recall that
et is non-vanishing:

(ak® + bk+ c)e
ak® + bk+ ¢

0
0
b PE Zac
2a

k

In the case there are two distinctk's, say k; and k», write
x = Aeki! + Beke!:
Then apply the initial conditions and solve for A and B. If the quadratic formula gives onek, then use
x = Aek' + BteM!:
If k is imaginary, then you can directly convert the complex expmentials to sine and cosine using the

identities in section 1.2. Or, you can directly take your soltion to be in terms of sines and cosines. This is
shown by example:

x%+4x = 0
k?2+4 =
k = 2i
x = Ae’t + Be 2t-
Now 2t 4 o 2it it o 2it
cos(2) = — and sin(2t) = —
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SO

X = AeZit + Be 2it
] e2it + Be 2it ) e2it Be 2it
(A+|B)72 + (A |B)72i

Ccos(2) + D sin(2t):

That is, since the constants are to be determined anyway, wean either write down the solution as
X = AeZit + Be 2it
or as

x = Ccos(2) + D sin(2t):

If k is real with distinct roots, you can again convert the exponaitials to sinh and cosh, or take the solution
directly in terms of sinh and cosh as follows:

x? 4x = 0
k2 4 =0
k = 2
X = Ae?+Be % or
X = Ccosh(2)+ D sinh(2t):

If k has distinct roots which aren't purely real or imaginary, proceed as follows:

x%® 4x°+5x = 0
k? 4k+5 = 0
k = 2 i
x = Ae?el + Be?e or
x = Cé*cost)+ De? sin(t):

2.9 ODEs in two variables

As in previous sections, this material is review. However, & want to be sure that what we do later on, with
new terminology, is consistent with what we already know.

Systems of ODEs on the quals tend to be separable second-ordeiOne eliminates variables, then uses
techniques from section 2.8. This is best illustrated by exanple.

In R?, consider the system of ODEs given by

X _ y
y X
Taking second derivatives, we get
X _ Yy _ X
y X y
This gives two ODEs, each in one variable alone:
x+x =0
y+ty =0
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These have the solutions from section 2.8, namely,

acost + bsint
ccost + dsint:

y
Putting initial conditions ( x(0); y(0)) = ( Xo; Yo) gives
x(0)=a; y((0)=c
so we have

Xg cost + bsint
Yo cost + dsint:

X
y

But these two equations are not independent; the original sgtem wascoupled in the sense thatx depends
ony and vice versa:

X = Xpsint + bcost = y = Yo cost + dsint

y = Yosint+ dcost = x = Xgcost+ bsint:
from which _ _

X = Xpsint + bcost = y = Yo cost + dsint

y = Yosint+ dcost = x = Xgcost+ bsint:
which gives

and so the solution is

= XgcCost ypsint
= ypcost + Xgsint

or '
X _ cost sint Xo

y ~  sint cost Yo

Note that this matrix is the rotation matrix  for angle t. That is, any point (Xo;Yo) will be revolved
counterclockwise about the origin ast increases. The origin itself stays xed.
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2.10 PDEs

xxx TBD. Lee makes a cryptic reference tod = ! as a PDE .... Include some specic examples, with
relevance.

62



2.11 Limitations of vector calculus
2.11.1 xxx O

FTC with disconnected domain. Note this is no big deal: it just splits up.

2.11.2 xxx 1

Cite and use Massey example: non-existence of potential fution, given a 1-hole.

2.11.3 xxx 2

Cite and use Massey example: function with a 2-hole.
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3 Preliminaries from topology and analysis

Analysis does not set out to make pathological reactions ingssible, but to give the patient's ego freedom to
decide one way or another.| Sigmund Freud (1856-1939).

xxx emph that much of this is used in vector calculus, but not stated as such. Now, in graduate shool, we
use these things explicitly.

3.1 Connectedness?

3.2 Compactness?

Warrants any separate discussion?

3.3 Homeomorphisms and di eomorphisms

Recall the following:

De nition 3.1. A function from one topological space to another is shomeomorphism i itis a bijection
which is continuous with continuous inverse.

This is the isomorphism in the category of topological space. On Euclidean spaces (more generally, on
Banach spaces) we have the notion of di erentiability.

De nition 3.2. A function from R™ to R" is CX if it is k-times di erentiable. A function which may be
di erentiated arbitrarily many times is said to be C! , or smooth .

Most of the functions we deal with in this course areC? . This is a convenience which frees us from having
to track how many times a given function is needs to be di ereniable in each situation.

De nition 3.3. A function from R™ to R" is adi eomorphism i itis a bijection which is smooth with
smooth inverse.

Note that this is distinct from a de nition used in other cont exts, namely, that a di eomorphism is a bijection
from R™ to R" which is di erentiable with di erentiable inverse. When ne ed be, we may distinguish these
two concepts by saying that the latter is a C* di eomorphism, whereas the de nition given above describes
aC! dieomorphism.

Example 3.4. B The canonical example of a homeomorphism which is not a di emorphismisf : R! R:
x 7! x3, the inverse of which is not di erentiable at 0. C

3.4 Implicit function theorem

Theorem 3.5 (Implicit function theorem) . Let E be an open subset oR™*", and letf : E! R" be a
vector-to-vector function which is continuously di erentiable, i.e. of type C?. Let



be such that
f(a;b)=0:
Let D be then n submatrix of the Jacobian off given by @f=@x, for i =1;:::;;nandj = m+1;:::;n,
evaluated atb. If det(D) 6 0, then there exists a neighborhood) of a and a uniqueC? function g: U ! R"
such that
g(a)=b; ie. f(a;g(a)=0;

and for all a°2 U,
f(a%g(a%) =0:
That is, we can solve for the b variables at and neara.

Proof. See any of the geometry texts in the bibliography. O

Remark 3.6. The point is that, given a system of equations (for this cour®, usually a single equation), we
have an easy criterion for when we can solve for some varialddan terms of the others. Note however that
the implicit function theorem ensures existence and uniqueess; actually nding the function g is another
matter.

Remark 3.7. The theorem, as stated, has the to-be-solved-for variables) written last. In practice, this
may not be the case. E.g. given a functiorf (v;w;x;y;z) : R®! R?, we might want to solve for, say,v and
X. In that case, we would need to check the submatrix formed by e rst and third columns of the Jacobian
of f . Furthermore, we might not know ahead of time which variables to solve for, until we apply the implicit
function theorem to various submatrices of the Jacobian.

Remark 3.8. We make use of this theorem when we usgraph coordinates for a manifold. See section
6.1.2.

Example 3.9. B Let 0o 1
X

f:RI R:@yAT7Ix?+y?+22 1
z

Here we havem = 2 and n = 1. Then the kernel of f is the sphereS?. Consider the north pole, (G 0;1),
written as

(asb) =(ai;az; ) =(xy;2) =(0;0;1):

The Jacobian off is
X 2y 2z

which evaluated at the north pole is
0 0 &

Now, there is only one 1 1 submatrix of this which is non-zero, namely, the last. So, here is a neighborhood
U of (0;0) and a unique functiong: U ! R such that z = g(x;y). Here, it's clear what this is: take

p
z=g(xy)= 1 x? yZ

Another example is in section 10.7.1.
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3.5 Inverse function theorem

Theorem 3.10 (Inverse function theorem). Let E be an open subset dR™, and letf : E ! R™ be a vector-
to-vector function which is continuously di erentiable, i.e. of type C2. If the Jacobian of f is nonsingular at
a point g of E, then there exist open neighborhoodt) of g and V of f(q) such thatf is a di eomorphsim
from U into V.

Proof. See any of the geometry texts in the bibliography. O

Remark 3.11. The point is that, even if such a function f is wildly non-linear, to check for invertibility at
a point it su ces to make the much simpler check of the inverti bility of the linearization of f.
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4 Preliminaries from algebra

Structures are the weapons of the mathematician. | Nicholas Bourbaki

4.1 Algebraic axioms

Here | gather together needed axioms. This material is certmly review. My intention is not to insult the
reader, but rather to ensure that terminology is uniform thr oughout this paper.

4.1.1 Groups and semigroups

Following [Herstein ], | include closure as an axiom. (This is worth doing since itis often lack of closure
which keeps a set from being a subgroup. In particular, the esn integers are a subgroup of the integers with
respect to addition, whereas the odd integers fail to be clesd under addition.) Thus, | say that there are
four group axioms, rather than the usual three. Agroup G is a set with a binary operation (written using
juxtaposition) satisfying the following four axioms:

G is closed under the operation, the operation isassociative , there is a (unique) identity , and every
element has a (unique)inverse .

For an abelian group , there is a fth axiom: the operation is commutative

De nition 4.1. A semigroup , which will be referred to brie y in section 4.3.2, lives up to the pre x semi
in that it is halfway to being a group: it satis es the rst two of the four group axi oms. Namely, it is closed
under the semigroup operation, and that operation is assoaeitive.

Example 4.2. B The canonical example of semigroup is strings of letters ovesome xed alphabet, with
the operation being concatenation. E.g. \ab" pasted togethe with \c" is \abc". C

Remark 4.3. If we include the empty string as a letter, then we get an identty. The resulting structure is
3/4 of the way to being a group, and is called amonoid . (Mnemonic: the Greek root monos means single
(or one), and we often write an identity as 1 | which is precise ly what a monoid has beyond a semigroup.)

4.1.2 Normalizer and normal closure of a subgroup

xxx re-do this with subsets, not subgroups.

De nition 4.4.  Let G be a group with subgroupH. The normalizer of H in G, written Ng(H), or just
N (H), is the largest subgroup of G in which H is normal.

De nition 4.5.  Let G be a group with subgroupH. The normal closure or conjugate closure of H in
G, written FHiy or H, is the smallest subgroup of G in which H is normal.

Remark 4.6. In particular, if H is already normal in G (e.g. if G is abelian, in particular if G is cyclic)
then N (H) is all of G.

XXX examples
xxx How to actually compute such things?
rmk: H in center of G implies H normal in G.

[xxx xref fwd: SvK uses normal closure; action of ; on bers uses normalizer.]
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4.1.3 Group actions

Vision without action is a daydream; action without vision is a nightmare.
| Japanese proverb.

xxx left actions most useful elsewhere, and probably are mar familiar. for this course, though, we mostly
needright actions (xref fwd to ; acting on bers).
xxx xref fwd to action of 1 on bers.

De nition 4.7. Let G be a group and letS be a set. Lete denote the identity element of G. A map
:S G! S;written (s;g)=s gor (s;g) = s?is said to be aright group action if the following two
axioms (roughly speaking, identity and associativity) are satis ed:
(i) Forall s2S,s e=s;and

(i) Forall g;;gp2 Gandforalls2S,(s g1) =5 (LQ):

standard examples.

xxx note the standard consequences and de nitions (faithfu and transitive). Also the orbit-index formula.
xref to [Grove ].

note that eachg 2 G permutesS (1-1), but that di erent group elements need not give the same permutation
(not 1-1).

G mod isotropy is 1-1 and onto, if the action is transitive.

note that the action axioms put some requirements on the stricture (orbits, total size) of what might
otherwise seem an arbitrary set.

massey's E is a homogenouss-space” simply means thatG has a transitive group action onE.
def auts: homs are set maps such thatforall g2 Gandalls2 S,

(s 9= (s) g9
write as commutative diagram w/ a nice picture. then auts are bijective self-homs.

normalizer in group section? own section?

4.1.4 Group action example

Suppose that you want to teach the \cat" concept to a very younchild. Do you explain that a cat is a
relatively small, primarily carnivorous mammal with retra ctible claws, a distinctive sonic output, etc.? I'l
bet not. You probably show the kid a lot of di erent cats, sayig \kitty" each time, until it gets the idea. To

put it more generally, generalizations are best made by alvattion from experience.
| R. P. Boas

make a big deal of this. standard example.

Z acting on the vertices of ann-gon (take an octagon for speci city in the picture). (Kind o f like D, acting
on the n-gon, but not a faithful action, and no ips.)
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The group G is Z where is 1/n of the way around.
The stability subgroup of a pointis H = nZ.
G is cyclic hence abelian hencéd is normal. SON(H) = G.

Auts of the action are N(H)=H = Z=nZ.

415 Rings

A ring is a setR with addition and multiplication satisfying the following 8 axioms:

R is an abelian group with respect to addition.
R is closed with respect to multiplication.
Multiplication is associative .

Addition and multiplication are related by left and right distributivity
4.1.6 Fields
A eld is a setF with addition and multiplication satisfying the following 11 axioms:

F is aring .

Multiplication is commutative ;there is a (unique) multiplicative identity for all non-zero elements;
for each non-zero element, there is a (uniqueinultiplicative inverse

Another way to clump the 11 eld axioms is:

F is an abelian group with respect to addition.
The non-zero elements of form an abelian group with respect to multiplication.

Addition and multiplication are related by left and right distributivity

4.1.7 Modules and vector spaces

There are 21 axioms for a vector spac& over a eld F:

Fisaeld .
V is an abelian group with respect to vector addition.

V is closed with respect to scalar multiplication (from either side), scalar multiplication is associative
((abv = a(bv)), the eld's multiplicative identity 1r satises 1gv = v for all vectors, scalar
distributivity ~ (a(u + v) = au + av), vector distributivity ((a+ bv = av + bv).
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For a module M over a ring R, here | mean aunital module [DF]: | require R to have a multiplicative
identity 1 g and | require 1rv = v for all v 2 M. Otherwise, the axioms are the same as those for a vector
space over a eld. There are 19 axioms for a unital module:

R is aring with multiplicative identity 1 .
V is an abelian group with respect to vector addition.

V is closed with respect to scalar multiplication (from either side), scalar multiplication is associative
((abv = a(bv)), the eld's multiplicative identity 1r satises 1rv = v for all vectors, scalar
distributivity (a(u + v) = au + av), vector distributivity ((a+ bv = av + v).

Remark 4.8. Any abelian group is already aZ-module. To see this, letG be an abelian group, and
let x;y 2 G. When we write the group operation multiplicatively, we wri te products as xy and repeated
multiplication as x". However, when we write the group operation additively, we wite sums at x + y and
repeated addition asnx. Thus, scalar multiplication, by integer scalar n, is nothing more than repeated
addition n times, using the existing group operation. You can check o the axioms for aZ-module and verify
that they are in fact satis ed.

4.1.8 Algebras

There are several ways to think of an algebra. There are the sae number of axioms; the di erence is only
in the way in which those axioms are clumped together. One pait of view is taken by [Lang]. Let R be
a commutative ring with identity. Then an R-algebra is a ring A along with a homomorphism :R! A
such that (R) is contained in the center of A. The other point of view, and the one | prefer here, is taken
by [Hungerford 1:

De nition 4.9.  Let R be a commutative ring with identity. An unital R-module A is analgebra ifitis a
ring and if r(ab) = (ra)b= a(rb) forall r 2 R and a;b2 A.

When the base ring is a eld, we can say the following (which isequivalent, but phrased in more familiar
terms of elds and vector spaces):

De nition 4.10. Let F be a eld. An F-vector spaceV is analgebra if there is a multiplication operation
onV making V aring , and such thatr(uv)=(ru)v = u(rv) forall r 2 F andu;v 2 V.

There are three ideas here:

(i) We already have a eld.
(i) We have a vector space and we want to be able to multiply vetors.

(iif) The old scalar multiplication and the new vector multi plication should be compatible with each other.

There are 25 axioms for an algebraA over a eld F:

F isa eld.
A is a vector space.

A is closed under vector multiplication, and the vector multiplicatio n is associative .
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Vector multiplication distributes over vector addition.

Forallr 2 F andu;v 2V, r(uv)=(ru)v = u(rv).
Examples of algebras include:

The ring of polynomials R[x] is an R-algebra. The vector-space point of view is illustrated by te
standard basis f1;x;x?;x3;:::g. When we add two polynomials, we add them coordinatewise, by
equating like terms. Of course, we can multiply polynomialsas well.

The ring R[x;y] of real bivariate polynomials has basisfx'yl :i;j =0;1;2;:::0.

The ring of m  n matrices with entries in R is a vector space oveRR, but if m = n, then we can also
multiply two such matrices.

Extension elds: for example, take the base eld Q and the extension eld Q(i), which is the rational
complex numbers. We can treatQ(i) as a 2-dimensional vector space ove®, with elements of the
form (a;b) and (c; d), but of course we can also multiply complex numbers usingd + bi)(c+ di).

Likewise, the complex numbersC are just R?, along with a special rule for multiplying vectors. In a
similar way, the real quaternions are anR-algebra, namelyR*. Unlike for the complexes, though, the
vector-times-vector multiplication is not commutative.

Note that an algebra is a vector space with vector-vector muliplication. So, given an algebra we can obtain

a vector space by forgetting about the vector-vector multiplication. In turn, a vector space is an abelian

group with multiplication by elements of a eld. So, given a vector space we can obtain an abelian group by
forgetting about the eld.

4.1.9 Graded algebras
De nition.  An abelian group A is the direct sum of abelian groupsB and C, written A= B C, if:

i) A=B+C,ie. foralla2 A, there areb2 B andc?2 C such thata= b+ c.

(i) B\ C = f0g.
Note in particular that this de nition applies to rings and v ector spaces, which are simply abelian groups
with some more structure added.
Denition. Aring S is graded ([DF]) if it is the direct sum of additive subgroups

S=S S

such that for all i;j  0,SS;  Si+;. In particular, s2 S; andt 2 S; impliesst2 S;.;.
Example 4.11. B The ring of R[x] of real univariate polynomials is graded. Each additive sulgroup S;

consists of the zero polynomial along with all monomials wih degreei. C

The main examples for us (in fact the only reason for introduéng graded rings in this paper) are tensor
algebras. These are discussed in section 4.7.9.
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4.2 Categories
Mathematics is the art of giving the same name to di erent things. | Jules Henri Poincae (1854-1912).

Like several sections of this paper, this section is certaily optional. What | want to do here is to give a
thorough, Faris-esque grounding in fundamental terminolgy. The primary reason for presenting category
theory in this paper is as a mnemonic device: for example, it Blps us remember the di erence betweerf
and f in dierential geometry. If you nd that it only adds confusi on, you can certainly do di erential
geometry without it.

4.2.1 De nitions

Category theory is sometimes (Lang ]) referred to asabstract nonsense However, it is simply an abstraction
of some very concrete things. Namely, we are abstracting theoncept of structures (groups, vector spaces,
topological spaces, etc.) and mappings (homomorphisms,rear transformations, homeomorphisms, etc.).
One oddity is that the de nitions below are speci cally designed to avoid mentioning the elements of those
structures.

References are Appendix Il of DF ], section I.11 of Lang ], and section |.7 and chapter X of Hungerford ].

De nition 4.12. A category C consists of the following (formally, it is an ordered triple of the following
three things):

There is a class ofobjects .

For each pair (A;B) of objects, there is a set ofmorphisms or arrows from A to B. This set is
called ahom set and is written Homc(A; B), or more often simply Hom(A; B). For an elementf of
Hom(A;B), we often write f : A! B, or A "B,

There is alaw of composition : if f 2 Hom(A;B) and g 2 Hom(B;C) (whichistosayf : A! B
andg: B! C), then there is an elementg f of Hom(A; C).

The objects, hom sets, and composition law must satisfy thedllowing three axioms:

The hom sets aredisjoint : If A; and A, are di erent, or if B; and B, are di erent, then Hom( A{;B1)
and Hom(A;; B,) have no morphisms in common.

Each object A has anidentity morphism , written 1. Since we are de ning morphisms without
reference to specic elements of an object, we can't say sortténg like \...such that 1 5 (x) for all
x 2 A". Rather, an identity morphism on an object A is characterized by the property that for all
other objectsB, and forallf : A! B andallg:B! A,

f 1a=f and 1, g=g0:
Composition of morphisms is associative : if f : Al B,g: B! C,andh :C ! D, then

h (g f)=(h 9 f.

Category theory is carefully constructed to avoid referenes to elements of an object. This is a good and
powerful thing. However, for this paper, | use categories mstly as a handy way to refer to concepts which
apply equally well to rings, vector spaces, modules, etc. (fiis applies particularly to section 4.5 on sequences
of complexes.) | alwaysdo have in mind categories whichare sets, and whichdo at least have a zero element.
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De nition 4.13. For purposes of this paper, aconcrete category has objects which are sets, each con-
taining a zero element; the morphisms are homomorphisms.

4.2.2 Examples of categories
Some familiar examples of categories are:

Objects are sets and morphisms are arbitrary functions.

Objects are groups and morphisms are group homomorphisms.
Objects are rings and morphisms are ring homomorphisms.
Objects are vector spaces and morphisms are linear transforations.

Example 4.14. B A perhaps less familiar example is a partially ordered set. et P be a partially ordered
set, with operation 4. Then the posetP is itself the entire category. Objects of P are the elements ofP.
Morphisms of P are quite literally arrows: there is an arrow from a to bif a4 b. Composition of arrows is
nothing more than the transitivity property of posets. The i dentity morphisms are provided by the re exivity

property of posets, namely,a4 aforall a2 P. C

Here is a speci ¢ instance of that example: the divisibility lattice on factors of 12. Here | am not showing
all the arrows (morphisms): (1) | am omitting the arrows which may be obtained by composition, e.g. the
arrow from 2 to 12 since 2j 4 and 4j 12. (2) | am omitting arrows from objects (integers) to themselves,
e.g. 2j 2. | sometimes refer to these, the identity morphisms which bjects in any category must possess, as
self-loops : if we draw arrows as a graph, the identity morphisms appear a loops from each object to itself.

12
@
4 @6
6 6
2 3
@
@,

Example 4.15. B Another example is a single groupG. There is a single object which is all ofG; the
hom set Honm (G; G) is all of G. That is, the morphisms are the elements ofG. The composition of two
morphisms x and y is the usual product xy. The identity morphism is the identity element of G. C

4.2.3 Functors

A functor is a map between categories which takes objects to objects drmorphisms to morphisms.

De nition 4.16.  Let Cand D be categories. Acovariant functor T is a map from Cto D such that:

T takes objects ofC to objects of D.

ff:A! BinCthenT(f): T(A)! T(B)in D. (This is the covariance property: arrows point the
same way.)
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A T(A)

f - T(f)
?
B T(B)

-~

Identity morphisms map to identity morphisms: for all objects A of C, T(1a) =11 (a). A self-loop in
C must map to a self-loop inD.

Composition is respected:T(g f)= T(g) T(f).
De nition 4.17. A contravariant functor T is almost the same, except for the direction of arrows. It is
a map from Cto D such that:

T takes objects ofC to objects of D.

Iff:A! BinCthenT(f): T(B)! T(A)in D. (This is the contravariance property: arrows point
the other way.)

A T(A)
6
f T - T(f)
?
B T(B)

Identity morphisms map to identity morphisms: for all objects A of C, T(1a) = 11(a). A self-loop in
C must map to a self-loop inD.

Composition is respected (with arrows reversed)T(g f)= T(f) T(g).

Notation 4.18. For a given functor T and a morphismf , sometimes one writes

f = T(f); if T is a covariant functor;
f = T(f); ifT isa contravariant functor.

Some simple examples are as follows.

Example 4.19. B The identity functor  on any category, sending objects to themselves and morphissn
to themselves, is covariant. C

Example 4.20. B The forgetful functor is best illustrated by example. Take C to be the category of
groups, where morphisms are group homomorphisms, and take to be the category of sets, where morphisms
are arbitrary functions. For any groups G and H and any homomorphism :G! H, sendG andH to the
sets of elements ofG and H, respectively. Have be the same map sending elements @ to elements of
H, and simply forget the homomorphism ploperty. We also have aforgetful functor from vector spaces to
abelian groups, which forgets about scalar multiplication The forgetful functor is covariant. C

Example 4.21. B Let the category A be the poset consisting of the elements 1, 2, and 3 as shown. &te
are arrows (morphisms) from 1 to 3 and 2 to 3, along with the sdtloops from 1 to 1, 2 to 2, and 3 to 3.
Next to that category in the gure are two possible images of the category.

The rst, say a functor named f, sends 3 toc and collapses 1 and 2 intoa. This functor is covariant since
the arrows 1! 3 and 2! 3 are mapped to the (identical) arrowsf (1) ! f(3) and f (2) ! f (3), which are
both a! c.
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The second, say a functor namedy, sends 1 toa and collapses 2 and 3 intcc. This functor is contravariant
since the arrow 1! 3 is mapped tog(3) ! g(1), which is b! a, while the other non-identity arrow 2 ! 3
is mapped to the self-loopb! h.

4.2.4 Hom functors

[xxx perhaps exclude this section]
Note: Perhaps this section introduces more abstraction tha is worthwhile.

Here | want to formalize a familiar concept. This will be revisited in sections 4.6.8 and 4.7.8. First, | will
consider vector spaces as a motivating example, followed byategories in general.

Fix a vector spaceV. For any other vector spaceW, the hom set Hom(V; W) is what we call L(V;W),
namely, the set of all linear transformations fromV to W. If we have a linear transformationf from vector
spacesW; to W,, and a linear transformation g from V to W, then we can composd and g to get a linear
transformation f g from V to W5:

g -
VHH Wy
H
HH f
W,

We can use this to make a functor as follows:
It will be a functor from the category of vector spaces to the ategory of sets. We have to say what it
does to objects (vector spaces) and morphisms (linear trafisrmations).

A vector space W is sent to L(V;W). That is, a given W is sent to the collection of all linear
transformations from the xed vector space V to that W.

A linear transformation f : W1 ! W, is sent to a function which converts a linear transformation
g:V! Wiintof g:V! W,. Thatis,

(f:Wp! W) 7t f L(V;Wy)!IL (V;W2) where f (g: V! Wy)=(f g:V! W)
This functor is written
Hom(V;)):
It looks like this:
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W, L(V;W1)
Hom(V;)) i

? ?
W, L(V;Ws)

Since it sendsWy to L(V;W;), Wy to L(V;W,), and f : Wy ! Wotof :L(V;Wy) !'L (V;Wy), i.e. it
preserves the direction of the arrows, HomY;_) is said to be acovariant hom functor

* k k

Since we have a covariant hom functor, it is natural to ask abaoit a contravariant hom functor. Now x a
vector spaceW. If we have a linear transformationf from vector spacesv; to V,, and a linear transformation
g from V, to W, then we can composegy and f to get a linear transformation g f from V; to W:

This time, the functor associated to W is written
Hom(_; W):
It behaves as follows:

A vector spaceV is sent to L(V;W). That is, a given V is sent to the collection of all linear transfor-
mations from that V to the xed vector space W.

A linear transformation f : V; ! V, is sent to a function which converts a linear transformation
g:Vo! Wintog f:Vi! W. Thatis,

(F Vil Vo) 70 CL(VasW)IL (Vi;W) where f (g:Vo! W)=(g f:\Vi! W)

It looks like this:

V1 L(Vi; W)
Hom(_; W) 5
f = f
?
Vo L(V2; W)

Since Hom(; W) sendsV; to L(V1; W), Vo to L(Vo; W), and f Vi ! Votof L(Vo;,W)!IL (Vi; W), ie.
it reverses the direction of the arrows, Hom(; W) is said to be acontravariant hom functor

Now, here | used vector spaces as a concrete example, sinceeyhare familiar to all of us. However, the
same goes for categories in general: given an objedt of a category C, we have the covariant hom functor
Hom(A; )); given an object B of C, we have the contravariant hom functor Hom(_; B).
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4.3 FHreeness

Everything that is really great and inspiring is created by he individual who can labor in freedom.
| Albert Einstein (1879-1955).

The concept of freeness is central in algebra. The formal daition | which is undeniably necessarily for
mathematical rigor | obscures the simple intuition. Thus, i n this section | focus primarily on the intuition.

4.3.1 De nitions

De nition 4.22. Let C be a category. An objectF in Cis free with respect to a setS and with respect
to a morphism i from S to F if for any other object A of C and a morphismf : S! A there is a unique
morphism h from F to A such thath i=f.

This sounds too abstract to be of any use. To rescue it, here ia commutative diagram:

S— - F

This still looks overly abstract. What the de nition is sayi ng, though, makes sense when we consider the
familiar example of vector spaces.

Example 4.23. B Let be a basis for a nite-dimensional vector spaceV. Then i is (as is always the
case) the inclusion map. Letf be a transformation sending the basis vectors to another vdor space W.
The existence and uniquess ofi simply means that when we specify the images of the basis vemts underf ,
there is no more choicein where to send any other element ofV. This is precisely what we mean when we
write a linear transformation as a matrix: we are specifyingthe images of thebasis vectors, and that gives
us the image ofany vector in V by linearity. C

This example motivates the following intuitive notion of fr eeness.

Intuition 4.24.  An object F (group, abelian group, module, etc.) isfree on a generating setS (called the
generating set or basis) if, for a morphism (homomorphism, linear transformation, etc.), specifying the
image of the basis elements uniquely speci es the image ofladf F.

For the formal de nition of generators and relations, see {5rove ]. Here, the following su ces.

Intuition 4.25.  In any algebraic structure with an identity (group, abelian group, module, etc.) arelation
between two or more elements is an expression which is equad the identity element. (When there is more
than one operation, e.g. in rings, we mean the additive iderity.)

Example 4.26. B In an abelian group G, for all a;b2 G, we haveaba b ! = 1. The string aba b ! is
equal to the group identity, so it is a relation. C

This gives us another way to think of freeness.
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Intuition 4.27.  An algebraic structure F (group, abelian group, module, etc.) isfree on a generating setS
if the elements of S have no relations other than the minimal ones necessary forite operations appropriate
to the structure.

Example 4.28. B For vector spaces, this is the familiar notion oflinear independence : a linear com-
bination of basis vectors summing to zero (which is the additve identity of the vector space) is simply a
relation. When the generating set is linearly independent,any linear combination of basis vectors summing
to zero has all coe cients zero, which is the trivial relation 0 = 0. C

More examples of free objects appear in the following sectits.

4.3.2 Free groups

We will need free groups in algebraic topology. First, we hag the de nition of free semigroup. This is not
needed for the rest of this paper (nor anywhere in the geomey-topology course) but it helps motivate the
concept of free group. Semigroups were de ned in section 41

Intuition 4.29. A free semigroup on a setS is the smallest semigroup containingS in which there are
no relations between the elements of.

The canonical example is the same as the semigroup in example2:

Example 4.30. B Let S = fa;b;@. Then sample elements of the free semigroup o8 are the strings a,
abh abbbbccgabah etc. No string simpli es into anything else. C

Intuition 4.31. A free group F on a generating setS is the smallest group containingS along with all
inverses of elements of5. As well, elements of F are completely distinct except that inverses cancel, and
there must be an identity.

The formal construction of free groups, which makes this intitive notion precise, always take some fuss.
The shortest presentation I've seen is in Grove ], and even there it takes several pages. The simple concept
behind that fuss, though, is that a free groupF on a generating setS is as much like a free semigroup as
possible: elements of the free group are strings composed letters from S, with no simpli cation possible
except for the cancelling of inverses. We may think of the empty strig as the identity element.

Example 4.32. B Let S = fa;b;@. Then a sample element of the free group ors is
abababccc:

Note however that
ac= abb c= alk’b %c:

4.3.3 Free abelian groups

We need free abelian groups to construct tensor products, arting in section 4.7.1, and we will use them to
help de ne integrals on manifolds in section 5.13. Free ab&n groups are also used in free modules (coming
next) which permeate this course.

Intuition 4.33.  In the free abelian group on a generating setS, all elements ofS are distinct as with a
free group, but instead of forming strings of elements, we kep track of how many elements we have.
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Example 4.34. B Again take the generating setS to be fa;b; @. When we form the free abelian groupA
on S, we have elements of the form
3a 2b+c:

Another element might be 3a+0b+ ¢ (which we abbreviate as &+ c), and their sum would be éa 2b+2c.
The sum a + a simplies to 2a, but the sum a+ bstaysa+ b a and b are distinct; they are apples and
oranges. All we can do is count howmany apples and how many oranges, etc. C

To make that last sentence a bit more precise, | note the follwing:

Remark 4.35. A free abelian group on a setS is isomorphic to Z" wherer is the cardinality of S. For each
generatorg in S there is one copy ofZ, which counts the number ofg's. For example, the free abelian group
on fa;b; @ is isomorphic to Z3: 3a 2b+ ¢ maps to the triple (3; 2;1).

4.3.4 Free product of groups

xxx stress intuition and examples, following the pattern above.

4.3.5 Free modules

Next we have the notion of free module, which generalizes thprevious concept while also bringing us back
to vector spaces.

Intuition 4.36. Let R be a commutative ring with identity. A free R-module M on a generating setS is
the smallest module containing allR-linear combinations of elements ofS.

Remark 4.37. A free Z-module on a setS is the precisely the same thing as a free abelian group o8.
(Similarly, recall from remark 4.8 that any abelian group is a Z-module.)

We use this concept in two main ways for this course:

We can start with a small set of elements which, much as in free groups and free abeliggroups, are
de ned to be unmixable. We then take all R-linear combinations of elements of those basis elements,
and we obtain abig module.

We can start with a big R-module M, then look inside of it to nd a small basis S, or set of generators.
(We call the cardinality of S the dimension of M.) Every element of M is uniquely expressible as an
R-linear combination of basis elements. This is precisely wdit we do with vector spaces. Every vector
space is a free module, but we can also form free modules wh&his not a eld. We can think of a
free module as being as close to a vector space as we can get wiige base ring is not a eld.

Example 4.38. B Here is an example of the rst notion, i.e. starting with a generating set and forming a
free module on it. As in example 4.34, takeS to consist of the letters a; b; ¢ For the ring R, this time use
the rational numbers. Then elements of the freeQ-module on S are Q-linear combinations of a; b; ¢ e.g.
s 2
4 7
C

Now for the second notion, i.e. nding a generating set insi@& a given module. Just as a free abelian group is
isomorphic to Z", wherer is the cardinality of the generating set, a similar statemen holds for free modules.
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Remark 4.39. Let R be a commutative ring with identity. A free R-module M is isomorphic with R™ for
some integerm. The integer m is called thedimension of M. (For each generatorg of M there is one copy
of R, which holds the coe cient on g.) We are familiar with this for vector spaces: we know from Inear
algebra that every nite-dimensional real vector spaceV is isomorphic to R™, where m is the size of any
basis forV.
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4.4 Quotients, projections, and sections

De nition 4.40.  Afunction f : X ! X from a set to itself isidempotent if f (f (x)) = f(x) forall x 2 X,
e iff2=rf.

This simply means that when we apply a function twice, we dont get anything new, i.e. it acts like the
identity on its image.

De nition 4.41. Let E and B be sets. Aprojection :E! B is simply an epimorphism. IfE = B,
then we further require that be idempotent. Usually E and B are something more than sets; we require
that be a homomorphism for whatever categoryE and B belong to (e.g. groups, rings, vector spaces).

The setE is called thetotal space and B is called the base space.

De nition 4.42. Let :E! B be aprojection. Letb2 B. The ber ofbis (b).

This is thought of as the preimage ofb, or everything lying above b.

De nition 4.43. Let be a projection from a setE to a setB. A section of (or a cross-section ) is a
function s: B! E with the property that s is the identity on B.

The s =1p property simply means that a section maps elements oB somewhere into theirown bers,
and not into any other elements' bers.

Here is a picture of setsE and B with a projection . All the elements of E (black dots) are sent by down
to some element ofB (also marked with black dots). For eachbin B (for each dot on the bottom row) the
elements of the ber of b, i.e.  %(b), are connected with a line.

n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un
n T 0 o0 o0 un

?
S S S S S S S S s sp

Here is a picture of a sections for the same :E ! B. Here, all the elementsb of B are darkened, but only
one element from each ber ofbis darkened. The dark dot in each ber indicatess(b). So, a section begins
to look a lot like a graph , with B as the abscissa and bers oB as the ordinate.
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o O O 6 o o
O o o0 o6 o o
o o 0O 6 o o
o o0 O 0 o o
O O O 060 o un
O O O 060 0 o
O O 0O 6 o o
O O O 6 0 o
o O 0O 6 o o

D O 0O O o6 o o

Here is another section of :

O O O O O o
O O O O O o
O O O O O u»n
O O O O O u
O O O O O o

O O O O O O

O O O O O O

O O O O O O

O O O O O O

o O O O O O u

g0

S$ §$ S S§ S S§ S8 § § Sp

For a given projection, there are in general many possible s¢ions. This leads to the following de nition:

De nition 4.44. Let :E! B be a projection. Write ( ;E;B ) for the set of all sections, orspace of
sections, of . (This is what Pickrell calls ©; | choose to use a di erent symbol since is used for other
things. In fact, though, is rather common in the literature . We can think of for graph.)

Example 4.45. B Let E be the ring of integersZ and let B be the integers modn, written Z=n=Z. Then
is the map which reduces mod.
We write the elements ofZ=nZ asfO0+ Z;1+ Z;2+ Z;:::;n 1+ Zg,orasf0;1;2;:::;n 1g.

A section is a complete set of coset representatives. Usugliwe takef0;1;2;:::;n 1gto be that set.
That is, s(0) =0, s(1) =1, etc. For example, with n =5, a section of is f0;1;2;3;4g. But we could
just as well take another section to bef 4; 8; 12, 16; 20g.

The ber above k is all numbers equivalent tok mod n. For example, with n =5, the ber above 2 is
fiin; 8 3 2,7,1217;:::9.
C
Example 4.46. B Let E be the symmetric groupS, and let B = f 1g. Let be the sign function, which
takes even permutations to 1 and odd permutations to 1.
A section of is any set containing one even permutation and one odd permuattion.

The ber above 1 is the set of all odd permutations; the ber above 1 is the setof all even permuta-
tions, which is the alternating group A,,.
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Example 4.47. B Let :R R! Rbegivenby (x;y)= x,i.e. projectsa pointonto its x coordinate.

A section is simply any real-valued functions: given x, s(x) gives a point (x;y).
The set of all sections of is the set of all vector-to-scalar functions.

If we further insist that s(x) vary smoothly with x, then the set of all such sections is the set of all
smooth vector-to-scalar functions.

The ber of xg 2 R is the set of all (x;y) pairs with x = Xq, i.e. it is the vertical line through Xg.

C

Example 4.48. B Let :R® R! R begivenby ((x;y;z);u)) = u. A section is simply any vector-
to-scalar function : f(x;y;z) gives a point ((X;y;z);u). The set of all sections of is the set of all
vector-to-scalar functions. Again, we may further insist that u vary smoothly with ( x;y; z). C

Example 4.49. B Let :R® R3! RS2 begiven by ((x;y;z);(u;v;w))) = (u;v;w). A section is any
(smooth) vector-to-vector function : F(x;y;2) gives a point ((X;y; 2); (u; v; w)). C
These examples recall the vector-calculus notions discusd in section 2.2.

xxx de ne quotient in two ways:

(1) If there is algebraic structure (e.g. groups, rings, vetor spaces, etc.) then in terms of cosets. In
particular, dimension of quotient is di erence of quotients of originals.

(2) Else, A=B means contract B to a point and leave all else the same. Example:RP"=RP™. Present
in terms of cell complexes. [Maybe this needs to be moved foawd and xref'ed to. Or come up with a
better example for here.] Here, the dimension-di erence rie doesn't apply: e.g. RP"=RP" ! = | not
dimension 1.
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4.5 Sequences, complexes, and homological algebra

In symbols one observes an advantage in discovery which iegtest when they express the exact nature of a
thing brie y and, as it were, picture it; then indeed the laba of thought is wonderfully diminished.
| Gottfried Wilhelm Leibniz (1646-1716).

Here we have some fancy terminology for what (keep in mind!) B abstractions of down-to-earth concepts.
So, when confused by the terminology, invoke your favorite gample for concreteness. Several examples are
presented in the following subsubsections.

45.1 Sequences

Throughout math we have maps from one object to another, e.g.a group homomorphismG! H, a linear
transformation V! W, etc. But we can as well have asequence of maps, e.g.

Al B!l C

or
Al Al Azl Ay

or perhaps an in nite sequence
b AL Al Al Ayl

etc. We don't always name the maps, but we might, say, use the ame ;; +; for the map from the ith object
to the (i + 1)st object:

sl AL 1P AL 1R A

There's not much more we can say about such sequences of maas stated here. However, if we impose
additional restrictions, we can obtain additional structure and additional results.

For any group homomorphism : G ! H, the kernel and image of are always subgroups ofG and H,
respectively. Additionally, ker( ) is normal in G, but im( ) is not necessarily normal inH. Thus we can
always form the quotient group G=ker( ), but we can't always form the quotient group H=im( ). If G and
H are abelian, thenall subgroups are normal, and we can always form these quotientdNote in particular
that rings and vector spaces have abelian additive groups.

Suppose we have a sequence
Al B! C:
Then im( ) and ker( ) are both subobjects ofB. We can ask about the relationship between the two, e.g.

what additional results do we obtain ifim( ) ker( ),im( )=ker( ),orim( ) ker( )? To help address
this question, | will rst de ne some notation.

4.5.2 Trapezoid diagrams

Let A and B objects in a concrete category, with a homomorphism g : A'! B. (For concreteness,
perhaps think of them as being vector spaces.) We will draw drapezoid diagram  for this mapping. Each
object has a zero element: Q and Og, respectively. Heavy vertical lines represent all the elerants of the
setsA and B, with the zero elements in the middle:
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Oa IS Og |5

Suppose we have d@omomorphism as Al B. Since homomorphisms send 0 to 0, it makes sense to
draw a line connecting the zero elements. Also, draw two nesd trapezoids as follows:

The outer trapezoid starts with all of A and ends inside oB. Its right-hand edge represents theimage
of ag, which is at most all of B, but perhaps smaller.

The inner trapezoid ends with Qs . Its left-hand edge represents thekernel of ,g : all of the elements
of A which map to Og . This is at least f 05 g, but perhaps bigger.

By convention, | draw the outer-trapezoid lines parallel to the inner-trapezoid lines.

ker( AB) ‘ o im( AB)

Consequences:

If the inner trapezoid disappears into the center line, that means the map is injective (i.e. has zero
kernel). Since | draw the outer-trapezoid lines parallel tothe inner-trapezoid lines, one-to-one maps
will have horizontal lines.

If the outer and inner trapezoid both disappear into the center line, that means A = f0g.
If outer trapezoid reaches all ofB, then ag is surjective.

If the inner trapezoid disappears into the center line, and f the outer trapezoid reaches all ofB, then
AB IS an isomorphism.

4.5.3 Non-complex, non-exact sequences

Here are two sequences in which im(ag ) ker( sc). (For a specic example of the latter, suppose
A=B =Cand ag = pc are the identity map.)

[xxx include speci c examples: useZ=mZ, and R".]
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For the right-hand sequence, any non-zero element oA may be pushed through the sequence, all the way
to the right, with the result still being non-zero. (This wou Id still be true for a longer sequence of identity
maps.) For the left-hand sequence, there are also some elente of A which map to non-zero elements ofC.

We don't have a term for these kinds of sequences. However, dwte that many common maps (including
isomorphisms!) are of this form. Exact sequences and compleg (to be discussed below) deal with the cases
im( ag ) =ker( gc)andim( as) ker( gc), which are more special.

4.5.4 Exact sequences

Here is a sequence in which im(ag ) = ker( gc):

De nition 4.50. Let ag :A! B and gc :B ! C be homomorphisms of concrete categories. We say
the sequence
Al™ B I C

is exact at B if
im( ag ) =ker( gc):

XXX speci ¢ examples

now de ne exact sequences.

455 Complexes

Here is a sequence in which im(ag )  ker( sc):
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45.6 [xxx merge w/ the above] Exact sequences

De nition 4.51. A sequence
b A !12 A .'23 A3|

is said to beexact if im( i 1) =ker( i+ ) foralli.

Exact sequences have an important special case:

De nition 4.52. A sequence
0! Al B! C! O
is said to beshort exact .

Here is a graphical depiction of a short exact sequence:

A AB %<XXXBC

0 0A XX)X_ 0

In this diagram, the heavy vertical lines representA, B, and C. At the middle of the vertical lines are the
zero elements ofA, B, and C, respectively. [xxx nish describing it.]

Remark 4.53. Since the image of the (unnamed) map from 0 toA is O (it can't be anything bigger!), and

since that must be the same as ker(), this means that is necessarilyinjective . Likewise, since the kernel

of the (unnamed) map from C to 0 is all of C (it can't be anything smaller!), and since this is the same as

the image of , is necessarilysurjective . Thus we can also think of short exact sequences as follows1)
is 1-1; (2) is onto; (3) im( ) =ker( ).

Example 4.54. B Consider the sequence
0! z! z! z=2zZ! O

where is the multiplication-by-2 map, a 7! 2a, and is the reduction-mod-2 map. The quotient Z=27 is
just the two-element set of evens and odds. Multiplying by 2 § 1-1, and reducing mod 2 is surjective. Lastly,
the image of is the even integers, which is precisely the kernel of . (Also note that if we take all integers
and double them, then reduce them mod 2, we get only evens, wtth are the zero element oZ=22.) C

Remark 4.55. Given objects A and B where the quotient A=B is de ned (for groups we needA to be a
normal subgroup of B; for rings we needA to be an ideal of B; for modules we needA to be a submodule
of B; etc.), we can always make an exact sequence

0! Al B! A=B! O
where the left arrow is the inclusion of A in B, and the right arrow is the reduction of B mod A.

De nition 4.56. A long exact sequence is one which is indexed by the natural numbers or the integers
i.e. one which is countably in nite in one or both directions. Note however that we can make any exact
sequence countably in nite by putting zeroes on either side
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4.5.7 Techniques for exact sequences

Proposition 4.57. We have
o! Al' O =) A=0:

Proof. Let a2 A. Then the right-hand map must senda to 0, i.e. a is in the kernel of the right-hand map.
But the kernel of the right-hand map is equal to the image of the left-hand map, which is 0, soa = 0. O

Proposition 4.58. We have
o! Al B! 0 =) A = B:

Proof. The 0 on the left means that is 1-1, and the O on the right means that is onto. Therefore is a
bijection. Since is also a homomorphism, is an isomorphism. O

Ways to disconnect a long exact sequence

(i) Show that an object is zero. Then, its in-arrow must be sujjective, and its out-arrow must be injective.
For example, if we have

A B C!

and if B is 0, then we obtain two long exact sequences:

(il) Show that an arrow is the zero map. For example, if we have
ol A B CI® DI ELD
and if pgc is the zero map, then its image is 0. Then we obtain two long exat sequences:

ol A B0
0 I DI™ E!

(iii) Use the alternating-sum formula from p. 425 of [Spivak2 ].

4.5.8 [xxx merge w/ above] Complexes

xxx discuss: what if im & ker?

De nition 4.59. complex : 2 =0. Show this pictorially via trapezoid diagrams.

note exact implies complex. prove with trapezoid diagrams.
note im  ker implies non-complex. prove with trapezoid diagrams.

example with properly complex.

88



examples: Z, times 2, mod 2. Z, times 2, mod 10. Z, times 10, mod 2. compute the homology when
appropriate.

then, note we can take ker=im.

459 Zigzag lemma

xxx better to prove this with or without chains? If with, then move this section.
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4.6 Linear algebra

Halmos and | share a philosophy about linear algebra: we thinbasis-free, we write basis-free, but when the
chips are down we close the o ce door and compute with matrice like fury. | Irving Kaplansky.

Everything said in this section is applicable to nite-dimensional vector spaces over an arbitrary eld.
However, for this paper, the base eld for all vector spacess R.

4.6.1 Notation

Given m vectorsvy;:::;vy in a vector spaceV, written in coordinates with respect to a basis, | will write
0o 1
Vi
% : E and Vi| | Vm
Vim

for the matrix of row vectors and the matrix of column vectors, respectively. In the case that dimV = m,
both of these matrices are square.

The standard basis forR™ is written

4.6.2 To be led

Cramer's rule
Adj(A)A = det( A)l:

Rank-nullity theorem : Let T :V ! W with nite dimensions. Then

dim(V) = dim(ker( T)) + dim@im( T)):

4.6.3 Basis and dual space

Let V be a nite-dimensional vector spaceV over R, say of dimensionm. Then V is isomorphic with R™,
which has many bases. In particular, it has astandard basis

with elements of the form

De nition 4.60.  The dual space of V is the setV of all linear transformations from V to R.

De nition 4.61.  An element of a dual space is called dnear functional
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Recall that V is a vector space oveR. It has the same dimension, namelym, asV. To prove this, we can
choose a basis fo¥, do the following construction to obtain a basis forV , then use those bases to construct
an isomorphism betweenv and V .

De nition 4.62.  For any basisfbj;:::;bng, there is a basis for the dual space (i.e. @ual basis )

where theb; functions are de ned to have value
bi (bj) = j

where the is Kronecker's, i.e. j =1 wheni = j, 0 otherwise.

(See section 4.6.6 for a technique to compute the coe cientof the b; 's.)
In particular, the standard basis has astandard dual basis
fey;ii epgwith g (g) = j:

To construct an explicit isomorphism betweenV and V , we can map eachg; to the correspondinge; . The
proof that this map is in fact an isomorphism is a (brief) standard exercise in linear algebra.

Example 4.63. B Letv =(vi;:::;vm) 2 R™. Then e,(v) = v,, i.e. e, extracts the second coordinate of
v. That is, the standard dual basis may be thought of as consishg of coordinate-selector functions . C

Let :V! Randv 2 V. Given the above basis, we may write

x x
= ‘i and v = Vi g
i=1 j=1
Since theg 's are linear functions, and sincee; (g;) = j , we have
0
W= ie@ veAs= vie(e)= v
i=1 i=1 i=1 j=1 i=1

4.6.4 Geometric interpretation of dual

We can graph column vectors easily enough. How, though, do wegraph functionals? We will see that
functionals are row vectors, then de ne the notions ofspine and contour lines.

First, a representation theorem: Every linear functional on a nite-dimensional vector space corresponds to
a unique row vector. More precisely:

Proposition 4.64. Let V be a nite-dimensional vector space. For all 2 V there is a uniqueu 2 V such
thatforall v2V, (v)=u v.

written uniquely (which will make u unique below) as a linear combination of theb;'s. Since is a linear
functional, we can move it through the sum, and sinceV is nite-dimensional there is no question as to the

convergence of the sum:
|
x ' xn
(v) = vibi = v (bj):

i=1 i=1
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Simply put

ui = (bl)
for eachi from 1 to m. Then
xXn X
uv = ujVvi = vi (bi)= (v):
i=1 i=1

xxx xref to geom section; linear functionals.
xxXx shbone plots.
XXx de ne spine

xxx xref back to inner-product stu in the very rst few secti ons.

4.6.5 Dual and double dual

For nite-dimensional vector spacesV, we saw in section 4.6.3 thatV = V . But since V is also a nite-
dimensional vector space, we also have = V . Since isomorphisms are transitiveV =V andV =V
imply V =V . The spaceV is called thedouble dual of V.

However, more can be said. In section 4.6.3 we obtained a basfor V by rst choosing a basis for V. To
construct an isomorphism betweenV and V , though, we don't need to choose a basis. For each vector
v 2V and each 2V , we can think of v operating on by

v()= (v):

This makes sense becauseis in V , i.e. it is a linear function from V to R. Thus (v)isin R, so we've
taken 2 V and usedv to obtain a real number, which is precisely what it means for smething to be in
V :vmaps fromV to R. (The details of the proof of the isomorphism are a quick linar-algebra exercise.
This leads to a natural isomorphism  betweenV and V , in the sense that it works the same regardless
of which basis we choose fo¥.)

The key point is that while we think of vectors V asdata , they also can be thought of asfunctions as well,
operating on the elements of the dual space.

4.6.6 Explicit computation of dual basis

A linear functional 2 V is a linear transformation from V to R. With respect to a basis, say the standard
basis, we can think of a general linear transformation from a m-dimensional space to ann-dimensional
space as am m matrix. So, this means can be represented as a 1 m matrix. For example:

0 1
Vi
V2
(V)= a2 an B . G
Vm

Thus, a linear functional may be explicitly represented by arow vector. In section 4.6.3 we saw that each
2 V s a linear combination of the b;'s, the basis functionals corresponding to the basis vectarb;'s,
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where b; (b;) = ;. So, we immediately ask, given a basis ob;'s, how do we compute the coe cients of
the b, 's?

Recall the notation for row and column vectors shown in sectin 4.6.1. Use the fact thatb; (bj) = j . Now,
b; (bj) is the product of the 1 m array b; and the m 1 array b;. Matrix multiplication is nothing more
than a collection of such products: i.e. given any matricesA and B, the ij th cell of C = AB is the dot
product of the ith row of A with the j column of B. For example, in the product of two 4 4 matrices,
the 2; 3 cell of the product is the dot of the 2nd row of the rst matrix with the 3rd column of the second
matrix: 0 1

L RS

Since the identity matrix | has j inits i;j th cell, this means that we can collect all theb; (b;)'s into a
matrix product: 0o 1 0 1

See section 4.6.7 for an example. Also see section 4.7.14, ¢hange of coordinates for tensors.

[xxx perhaps note: If the basis is orthonormal then the primaies and their respective dual spines coincide.
If it is merely orthogonal then they are collinear with reciprocal lengths. Else they are skewy.]

4.6.7 Change-of-basis matrices; covariance and contravar iance

Here, by means of a carefully worked example, | relate the newand important) concepts of covariance
and contravariance to the familiar language of change-of-basis matrices . | also show the geometric
signi cance of change of basis for dual vectors.

Let
e = L and e; = 0
17 o 27 1
as usual, and let
_ 2 _ 1
b]_ = 1 and b2 = 3

| want to see what happens tob; and b, when we change fronf e;; e»g coordinates tofb;; b,g coordinates.
Using the reasoning in section 4.6.6, | have

b, !

b,

3=5 1=5

1 2 1 _
1 3 - 1=5 255

= b1|b2 =
SO
b,= 35 1=5 and b,= 1=5 25 :

(Note that these are not simply the transpose ofb; and b,. Hence my use ob; rather than b!, as mentioned
in section 1.1.)

Now | want to look at the change-of-basis matrix. Sincee; maps to b; and e, maps to b,, we write down
the matrix



This sends the original basis vectors to the new basis vecter
Q erle; = QI = by|by:

For the dual-basis vectors, we have

b, _ 1 _ 1 &
b= bifby T1=Q L
or
€ _ b,
e, b,

In summary, we used the change-of-basis matrixQ as follows:

el\ez !Q bl‘bz

e; Q b,
€ b,

That is:
The coe cients of a linear functional vary together with Q, i.e. covariantly with Q. (Now is as good
a time as any to note that linear functionals are sometimes ched covectors .)

The coe cients of a vector vary opposite from Q, i.e. contravariantly — with Q.

We will see more about this subject in sections 4.7.14 and [xwrite and xref | incl. dx 6 dx section(s)].

So much for the symbolic manipulation. From a geometric poit of view, why is it that the dual basis must
transform in this way? Here is a plot of the basis vectors and he dual-basis vectors:

[xxx gure here]

| am using shbone plots for the dual-basis vectors, as de né in section 4.6.4. Recall also the discussion
in section 1.3.1. From the gure it's now clear that b, has its spine pointing perpendicular tob,, and vice
versa. Also, the magnitude ofb, is such that b, (b4) is still 1.

4.6.8 Pullbacks

Now let f : V! W be a linear transformation, and let :W ! R be a linear functional, i.,e. 2 W . We
can map fromV to R by going through W rst. That is, for v 2 V, f (v) isin W, and so we can apply to
it
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Formally, f:V! R.Given 2 W ,we have obtained f 2V . Post-composing by f is said to be
a pullback of from W to V. Another way to look at this is that, given f : V! W, we have a map from
W toV :

f( ) = f.
U ))

1
~~
—

<
N

In this way, f takes functionals to functionals:

V ——mmm W

There are two key points here:

(1) We have a contravariant  functor from vector spaces to vector spaces. It is contravdant in the
categorical sense, as in section 4.2.3. This is because theavs are reversed. (See 4.2.4 or any of the
cited algebra texts for more information; f is called a contravariant hom functor .)

(2) To compute the pullback f  of by f, just write f.

4.6.9 Pairings

De nition 4.65. Let V and W be real vector spaces. Apairing is a bilinear function from V.= W to R.
Givenv 2 V andw 2 W, we write
hv;wi:

Example 4.66. B The usual dot product is a pairing of V with itself:

hvi;voi = vy vy

Example 4.67. B We can pairV andV via
h; vi= (v):

See section 7.2.2 for another example of a pairing.

De nition 4.68. Let V and W be paired vector spaces. For a linear transformationl : V ! V, a linear
transformation T : W ! W is the adjoint of T if

hTv;wi =hv;T wi

forallv2V andallw 2 W.
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The adjoint exists and is unique FIS].
Example 4.69. B In particular, for the usual pairing of V andV , we have
hTv; i=h;T i=h; T

[xxx elaborate.] C

4.6.10 Symmetric and skew-symmetric matrices

De nition 4.70. Let A be anm m matrix. Then A is said to besymmetric if a; = a; for all i;j from
1 to m. Likewise, A is said to be skew-symmetric if a; = &; forall i;j from 1 to m.

Remark 4.71. It is an easy exercise to show that an arbitrarym m matrix A may be written as the sum
of symmetric and skew-symmetric matrices. This is done exjititly by forming the symmetrization and
skew-symmetrization  of A, namely,

1 1
B=§A+At; CZEA A' ; A=B+C:

These are appropriately named: we take the entries oA and make matrices which are,by construction,
symmetric and skew-symmetric, respectively.

Example 4.72. B Let

_ 1 2
A= 3 4
Then the symmetrization of A is
1 12 + 1 3 1 52
2 3 4 2 4 5= 4
while the skew-symmetrization of A is
1 12 13 0 1=2
2 3 4 2 4 1= 0

C

It is easy to show that the set of symmetricm m matrices is a real vector space of dimensiom(m + 1) =2;
the set of skew symmetric matrices is a real vector space of miensionm(m 1)=2; the set of allm m
matrices is a real vector space of dimensiom?, and is the direct sum of the former two spaces.

Let A be anm m symmetric matrix with entries a; . Each a; must be the same asy; . Thus, to specify
a symmetric matrix it su ces to specify the entries a; fori j. There are m(m + 1) =2 choices for values
aj with i j. Thus, for example, a basis for the vector space of symmetri@ 3 matrices is

0 1 0 1 0 1
100 0 0O 0 0O
@ 0 A: @ 1 A: @ 0 O0A:
0 0O 0 0O 0 0 1
0 1 0 1 0 1
010 0 0 1 0 0O
@ 0 A; @ 0 A; @ 0 1A:
0 0O 100 010
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Likewise, for the skew-symmetric matrices, all thea; 's must be 0O; there arem(m  1)=2 choices for the
remaining coe cients. We can specify the values of a skew-symetric matrix by specifying the coe cients
a; fori<j . Abasisis

0 1 0 1 0 1
0 1 0 0 0 1 0 0 O

@10 A; @Qo 0 A; @ 0 A:
0 00 100 0 1 0
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4.7 Tensors

Let us be patient! These severe a ictions
Not from the ground arise;
But oftentimes celestial benedictions
Assume this dark disguise.
| Henry Wadsworth Longfellow (1807-1882).

Tensors are encountered throughout math and physics. They @ presented in at least four seemingly distinct
guises:

(1) Tensor products from abstract algebra.
(2) Tensors ask-linear functions T : VX I R.

(3) Tensors ask-dimensional arrays: a O-tensor is related to a scalar, a lensor is related to an array, a
2-tensor is related to a matrix, a 3-tensor is related to a 3-imensional array, etc.

(4) Old-fashioned tensors from physics (\transform accordng to ...", e.g. [PDM 1]). (In this guise, tensors
appear particularly foreign. You will see lots of superscipts, subscripts, Einstein summation, etc. Why
bother? Well, this is the way tensors are usually viewed in aplications, so this is the language that
your scienti ¢ collaborators will be speaking.)

[xxx introduce a new section on the zeroth guise: geometry. #nctional is u . Bivector u” v is the equivalence

class of all vector pairs coplanar withu and v, with the same signed area. For the symmetric product, all

pairs coplanar tou and v with the same inner product. Bifunctional u ~ v measures area spanned by two
other vectors, projected onto the plane spanned byu and v. Also equivalence classes using

¢~ Nusv)y=(C " )(u”nv)=det( j )det(ujv):

Generalizations to 3 and more dimensions. xref back frequely to the geometry section; xref forward to the
axiomatic tensor de nitions. Suggest that, although | don't know the history well enough, | suspectthat it
was precisely these geometric notions which led to the axiomwe have today.]

These four guises are all equivalent, as we will see. Here,ghrst guise is taken to be the base de nition.
Note that [ Spivak2 ] takes the second guise to be the base de nition. FollowingQonlon ] and [Abr ], | take
the rst guise to be the base de nition; the second guise folbws as a consequence as shown in section 4.7.4.
There are two reasons for this: (1) we can draw on the abstractlgebra that we possess as rst-year graduate
students in math; (2) we will be able to view vector elds as a ecial case of tensor elds. This will lead to

a more elegant view of Lie derivatives later on.

4.7.1 Tensor products of vector spaces

The tensor product of modules (here, it su ces to consider tensor products of vector spaces) is discussed in
any graduate algebra text, e.g. DF ], [Grove ], [Hungerford ], [Lang ]. There is some amount of fuss about
the existence and uniqueness of the tensor product; one losehe forest for the trees. The essence of the
tensor product is very simple, as follows.

(1) Let V and W be vector spaces. We can form th€artesian product V W. Elements of this product
are of the form (v;w) forv2 V andw 2 W.
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(2) Given any set we can form afree abelian group on that set, as discussed in section 4.3.5. That is,
for the free abelian group onV W, all of the (v;w) pairs are distinct.

(3) The tensor product of V and W, written
vV W,

with elements written

vV W
forv 2 V andw 2 W, is the free abelian groupmodded out by the following relations (see de nition
4.25):

(&) Foranyr 2 R,
rv. w=v rw:

(b) We can distribute:

(Vitva) w
v (Wit wy)

Vi W+Vsy W

vV Wi+VvV Wy

That is, all (v;w) pairs are distinct, except when we can do some of the above three operations to
make them equal. (This is to say that all elements of a tensor ppduct are equivalence classes, with
equivalence given by the above relations.) In property (a),we permit ourselves to movereal numbers
back and forth. For this reason, in an algebra text,V W would be written V. g W.

Example 4.73. B Let V= W = R2. Then
(2:4) (3:5)=(1:;2) (6:10)

since we can move the 2 from the left-hand component to the rigt-hand component. C

4.7.2 Explicit representation of the tensor product; tenso r product as vector space

It is proved in the above-cited algebra texts (see DF ] section 10.4 for a particularly lucid discussion) that
for vector spaces,
Rm Rn - Rmn

as an isomorphism of vector spaces. What this means for us ihat, given

dim(V) = m; dim(W)=n

where coe cients are taken with respect to the standard bass, we can think ofv w as the outer product

0 1
uiVva Ui1Vp

UmV]_ Um Vn
which is to say thatv  w isanm n array with i;j th entry

ujVvj:
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Example 4.74. B Outer products may be done with pencil and paper as follows. Wte u down a column
and v across a row, then Il in products of u;vj. For example, letu = (1;2) and v = (3;4). Then we have

3 4
1|3 4
2|6 8
C
These are not matrices in the regular sense: such things aredded componentwise just as for matrices, but
we'll see in section 4.7.9 that they are multiplied using a dierent rule.

Of course, we can take the tensor product of several vector siges. Sample elementsdf VW would be
of the foomu v w, with i;j th entry u;v;wy. For this course we are interested inV tensored with itself
an arbitrary number of times. In fact, we have the following de nitions:

De nition 4.75.  Take V tensored with itself r times. This is called ther-fold tensor product of V.

Remark 4.76. Let m =dim(V). By the above isomorphism, dimV V) = m?, and in general ther-fold
tensor product of V with itself has dimension m" over R.

Notation will be introduced in section 4.7.6. We will write t he r-fold tensor product of V with itself as
Ty (V), where the subscript 0 will be explained in section 4.7.4.

Given the above isomorphism, we can think oV W as avector space overR. Let m =dim V, n=dim W,
and let
be the standard bases folV and W, respectively. Basis elements fo/ W are of the form
e
wherel i mandl | n.
Example 4.77. B Let V = R? and W = R3. Then we have bases
fei=(1;0)e2=(0;1)g:  ff1=(1;0,0)f2=(0;10)fs=(0;0,1)g

for R? and R3. Computing as in example 4.74, a basis foR> R3 is

e g L0000 . _ 010 . _ 001,
"7 o000t 27T 000t T 00 0

0 0 0 0 0 0 0 0 0
& fi= 3 g o€ 2= g4 g€ 8= 45 g 1"

C

Example 4.78. B LetV = W = R2. In example 4.73 we saw that from the de nition of the tensor product
we could set
(2:4) (385=(1:;2) (610

by moving the scalar 2 from one side to the other. What happensvhen we think of these as explicit outer
products? The left-hand side is

_ &L 2325
@4 @9= 43 45
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whereas the right-hand side is

16 110 _ 6 10 .

L2 610= 546 510 = 12 20 °

This example drives home the fact that while the tensor prodict is associative, it is certainly not commutative.
Also note that, in contrast to the representation used in exanple 4.73, arrays give usunigue representations
for tensors. C

4.7.3 Decomposability of tensors

In example 4.78 we wrote an element o/  V as the outer product of two vectorsu and v in V. Given
the vector-space representation, it is clear that we can adda pair of two-tensors componentwise, e.g. if
Uq;Us;Vvy;va 2 V, then

u; Vvi+u, Vvpo2V V:

When we do that, will the result be representable as the outemroduct of two vectors? Probably not. To
see this, note the following: consideu v. With respect to the standard basis, we wrote this as anm m
array (where m = dim V), with coe cients u;v;. Now, the ith row of u v is just the vector ujv. So,u v
has row rank 1 (or O, ifu or v is zero) when viewed as a 2-dimensional array: every row is auttiple of the
same vectorv. (Likewise, the jth column of u v isuy;.) So, if an element of V V is ofthe formu v,
then it will have row rank at most 1, with respect to any basis we choose. Likewise, if an element of V
has row rank greater than 1, it could not be of the formu v. Now, we can certainly write down lots of
m m arrays which have row rank greater than 1. This means most elments of V  V aren't expressible
in the form u  v. This motivates the following de nition.

De nition 4.79. Atensor 2 T'(V) is said to be simple or decomposable if it can be written as a
tensor product of r vectors in V.

Example 4.80. B Let V = R2. With respect to the standard basis,

_ 1 2
T 3 6
is an element ofV  V which is decomposable into
=(1;3) (12
On the other hand,
_ 1 2
T 3 4
is indecomposable. C

Note that using the vector-space representation as shown irsection 4.7.2, while we cannot decompose an
arbitrary tensor as a tensor product of vectors, we can writean arbitrary tensor as the sum of simple tensors.
(We can do this because of the isomorphism in section 4.7.2.)

Example 4.81. B Take from the previous example. Proceeding as in example 4.77, wei  with respect
to the basisfe; fjg

12 .10 0 1 0 0 0 0
= 347 00 oo0* 10% 01
= e f1+2e; f,+3e, fi+4e, fo:
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4.7.4 Tensor products of dual spaces; tensors as k-linear functions

In section 4.7.1 we saw how to form the tensor producV W of vector spacesV and W, or the r-fold tensor
product T4 (V). However, given a vector spaceV, the dual V is also a vector space so it makes sense to
tensorV with itself. Here, however, we get an additional feature: wecan think of such tensors asunctions.
We could write V.V asTZ(V ), but we will instead write V.V asT2L(V). (This will be explained in
section 4.7.6.) In general, ther -fold tensor product of V  with itself will be written T.°(V).

Given linear functionals ; :V ! R, we can certainly write down the tensor product : But what can
this mean as a function? Givenv;w 2 V, we think of this as

( (voow)= (v) (w)
where we simply multiply the outputs (v) and (w) in R. This means thatV  V consists of functions
fromV V toR.

However, more can be said about such functions: they arbilinear , i.e. they are linear in each slot if we
hold the other slot xed.

Example 4.82. B For example, letuj;us;vi;ve 2 V and let a;b2 R. Given as above,

(ug+uz) (v)

[ (u)+ (u2)] (v)

(uz) (v)+ (uz) (v)

( Y(u;v) +( )(uz;v):

( )(u1+ uz;v)

Likewise, we have

( J(U;vi+ Vo) ( Juiva) + o (u;v2)
( )(au;v) a( )(u;v) =( )(u;av)
These things work precisely because and are linear. As a consequence:
(au;bv) = ab (u;v)
(Ug + uz;va+ Vo) (Ui;vi)+ (Ugve)+ (Uz;va)+  (U2;ve)

and so on. C

Likewise, givenr linear functionals 1;:::; 2V ,andr vectorsvy;:::;v, 2 V, we can write
(1 PV Vi) = 1(vi) r(Ve):
The following notation is handy:
De nition 4.83.  Write V' for the r-fold Cartesian product of V with itself.
Then we can say that T,°(V) consists ofr-linear functions from V' to R. Note that elements of V' are

just r-tuples of vectors. For example, ifV has dimensionm, we might represent an element ofV" using mr
scalars, with respect to some basis foV:

Note that, just as in section 4.7.3, an element ofT,°(V) may or may not be decomposable into a tensor
product of linear functionals. However, as discussed in séion 4.7.3, we can decompose an element d{°(V)
into a sum of simple tensors, using a basis 0 . An example appears in the next section.
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4.7.5 Explicit representation of multilinear functions

In section 4.7.2 we saw that, given a basis, we can view elenmsrof

s times

To(V)=V \5

as multidimensional arrays. The same is true for elements of
TV=V__ Yy
r times

Example 4.84. BlLet 2V V V wherem=dim V. (I do not need to assume that is decomposable
into the form for linear functionals , , and .) Then for u;v;w 2 V, using multilinearity (here,
trilinearity) we have:

(u;viw) = (Uier + Ux€p + U3€3;V1€1 + Vo€p + V3€3; W1€1 + Wres + W3€3)
XX X0 XX X0
= uviwi (ei;ej;ex) = U; v Wy aijk
i=1 j=1 k=1 i=1 j=1 k=1

where the aj 's are real numbers which depend on . All the information about what does is contained
in the 3-dimensionalm m m array with entries a; . In particular, all the a; 's are constants C

Here is the keyapplication formula  for tensors. That is, we can think of anr-tensor as anr-dimensional
array, while we can also think of it as anr-linear function operating on r vectors. How do we apply the
former to the latter? This is illustrated by example.

Example 4.85. B Let T be a 3-tensor onV; for this example, use the standard basis folV. As discussed
in section 4.7.2,T is a linear combination of the m* basis tensorse; e, e,. Likewise, vectorsu, v, and
w are also linear combinations of the basis vectors;:

X X
T = T(ei; € LK) €, € e = tijk € € €
ijk ijk
X X X
u = Ujo€jo, vV = Vjo€jo; w = Wo€yo
i0 i 0 KO
b 1
X X X X X
T (U;V; W) = tijk € e]- €y @ Ujo€jo; Vj 0§ o; Wkoa@A = tijk Ui Vj Wy
ijk i0 jo kO ijk

C

Remark 4.86. When doing computations by hand, another expression is usaf. This is illustrated by a
2-tensor example, with dim(V) = 2. Suppose that, with respect to the standard basis, we hae the following
2-tensor and vectorsu;v. We might write
N _ 1 2 5 7 _ _ .
(u;v) = 34 6 8 =1 57+2 58+3 6 7+4 6 8=433:
However, it is easy to mistake whether the 2 goes with the 5 an®, or with the 6 and 7. It is less error-prone
to observe that in the expression X

(u;v) = ti Ui Vj
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we have u;v; which are precisely the components ou v. Dene  on multi-dimensional arrays to be
componentwisemultiplication, e.g. if A and B have entriesa; and by; , then A B has entriesg; bj . Then

(u;v) = (u v):
In this example, multiplying out u v as in example 4.74, we have

1 2 5 7 35 40

_ 12 _ _ .
3 4 6 8 - 3 4 42 48 =35+80+126+ 192 =433:

(u;v) =
In general, for anr-tensor, write out the tensor product of the argument vectors, then do a componentwise
product with the tensor coe cients, then sum up.

Remark 4.87. In this paper, | do many tensor computations with respect to mordinates | usually the
standard basis. However, change of coordinates is a key paof tensor algebra, as well as di erential geometry.
In fact, coordinates are just an expression of an abstract oject with respect to speci ¢ coordinates.

A multidimensional array is to a tensor as a matrix is to a line ar transformation. ‘

Change of coordinates will be discussed further in sectionpxx write and xref].

4.7.6 Mixed tensors

De nition 4.88. We write

s times

{

TS(V) =V Vv Vv

Yy

r times
The integer s is called the contravariant degree ; r is called the covariant degree . There are s con-
travariant indices  and r covariant indices . An element of T,3(V) is said to be oftype s;r. If s> 0 and
r> 0, elements ofT,°(V) are said to be ofmixed type . When we refer to anr-tensor, we mean a tensor of
type O;r, i.e. anr-linear function on V. An r-tensor is said to havedegree r, or sometimesorder r. We
write

ord(!)

for the order of anr-tensor! .

Note the following in particular:

ToV)= R

THV)= V; T(V)=V .

TAV)=V V;TXV)=V V ;TAV)=V V.

A sample decomposable element 6f#(V)isu v foru;v 2 V.

A sample decomposable element of2(V) is for; V! Rie.; 2V.

Note that R is a subspace o/ and V , and so on. So we have the following:
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% % %

T2V)=Vv Vv TXV)=V V TXAV)=V V

% %

(V)= V T2(V)=V
vectors covectors
ToO(V) =R
scalars

Remark 4.89. As noted in section 4.6.5, we can identityV with V . So, we can view an arbitrary mixed
tensor as a multilinear function from (V ) V' to R:

s times
AR |
2TS(V) = V VoV

(V) vl R

Remark 4.90. For this course we focus on tensors of type ;0, which we call r-tensors , and tensors of
type 1; 0, which we callvectors . Mixed tensors perhaps seem like too much generality. Howey, they have
the following bene ts:

In sections 6.3.9 and 6.3.10 we will extend this notion, and btain forms and vector elds , respec-
tively, over manifolds . Mixed tensors unify these concepts.

Fundamental concepts such as linear transformations (se@tn 4.7.14) and curvature ([Guggenheimer ],
[Lee3]) turn out to be mixed tensors.

4.7.7 Examples of tensors

Example 4.91. B Let 2V . Asdiscussed in section 4.6.6, with reference to a given bias is represented
byal m matrix, or row vector . The action (v) is the product of 's row vector with v's column vector
which is the dot product of and v. For example:

0 1
Vi
V2
V)= aa2 am . = v+ i+ anVm:

Vm

Another way to see this is that linearity of gives
!

xn xXn X0
(v) = vieg = v (g)= via
i=1 i=1 i=1
The 1-dimensional array a, of length m, gives the information needed to compute of anyv 2 V. C
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Example 4.92. B An example of a 2-tensor is the standard dot product. Letu;v 2 V with m =dim( V).
Holding either u or v xed and varying the other gives a linear transformation, so this makes sense. With
respect to the standard basis, we can think ou v as

ui (& V)

i=1 0 1
X X

= Ui € @ Vi e,-A
i=1 j=1
X on

= uivj(ei ej)
i=1 j=1
X on

= UiVj iji
i=1 j=1

Here, them m array is the identity matrix , with entries j . Thesem? numbers indicate how to form
the inner product with respect to the standard basis in Euclidean space. (Since then m identity matrix
has rank m, if m > 1 then the dot-product tensor is indecomposable by the reasoning in section 4.7.3.)C

Remark 4.93. Using matrices which are not necessarily the identity leadso bilinear forms ; see FIS]
for more information. These two-tensors generalize the inar product: in fact, an inner product is nothing
more than a symmetric positive-de nite bilinear form.

Example 4.94. B Recall that the determinant on m m matrices is anme-linear function, either on rows
or on columns. Here, think of it as anm-linear function on rows. (More can be said about the determmant:
see section 4.7.12.) Let = (uy;uy);v = (v1;V2) 2 R2. Because of the bilinearity of the determinant (xref
backward after marking the equation), we have

det(u;v)

det(uie; + uxez;vier + vae)
det(uier;vier) +det(uier;voep) + det( uzez;vie;) +det( uzep;vaer)
up vy det (e]_; e]_) + ujvy det (e]_; e2) + UoVqp det(ez; e]_) + uoyv, det (ez; ez) .

It remains to nd the values of det(e;;e;). But since we are thinking of matrices as lists of row vectos,
these are

det(e;; e1) = det 1 8 =0 det(eq; ) = det

0

det(e,; ;1) = det 1 (1) = 1 det(ey; e5) = det

OO Or

So, the determinant tensor on rows of 2 2 matrices may be thought of as

X X
det(u;v) = Ui v dj
i=1 j=1
where d; are the entries of the 2 2 array
0 1
10
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Example 4.95. B Similarly, for 3 3 matrices:

0 1
x3 x3 x3
det(u;v;w) = det @ ue; vig;  weedA:
i=1 =1 k=1
PEED SIS
= det(uiei;vj € s Wk ex)
i=1 j=1 k=1
x3x e X
= Uj Vj Wi det(ei;ej;ek):
i=1 j=1 k=1

It remains to nd the values of det(e;; e;ex). There are 27 of them, but only 6 with non-zero values. They
are

0 1 0 1
1 0 O 1 0 0

det(e;;ey;e3)=det @0 1 0A =1; det(ey;es;e))=det @ 0 1A = 1
0 0 1 01 0
0 1 0 1
010 0 0 1

det(es;es;e)=det @0 0 1A =1;  det(es;er;e))=det @ 1 O0A = 1;
1 0 O 1 0 O
0 1 0 1
0 0 1 010

det(es;er;e)=det @1 0 OA =1; det(es;er;es)=det @ 0 OA = 1
010 0 0 1

The determinant tensor on rows of 3 3 matrices may be thought of as
x X e
det(u;v;w) = U; Vj Wi dijic
i=1 j=1 k=1

where dj, are the entries of the following 3 3 3 array wherei indexes the face (front, middle, back),]
indexes rows, andk indexes columns:

00 front 1 0 middle 1 0 back 11
0O 0 O 0 0 1 0O 1 0
@@ o0 1A @ 0 0A @1 0 AA
0 1 0 1 0 O 0O 0O

4.7.8 Pullbacks

This example is from [Spivakl ], p. 77.

Letf : V! W be alinear transformation, and let : WK ! R be ak-tensor, i.e. 2 TX¥(W). We can map

so we can apply toit:
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Formally, f :VK! R. Given 2 TX(W), we have obtained f 2 Tk(V). Post-composing by f is
said to be apullback of from WX to VX. Another way to look at this is that, given f : V! W, we have
a map from TX(W) to TX(V):
f: Vi w
f: TEW)IT (V)
f () f
(f vaiinvi) = (F(va)iiinf(vi)):

In this way, f takes k-tensors to k-tensors:

ka . Tk(V)
H 6
f l" R f
”?
Wk TX(W)

4.7.9 Tensor algebras

In section 4.7.2 we saw thatT/ (V) is a vector space overR, with dimension dim(V)"*S. This permits
addition of tensors. We can think of this in two ways, both of which are illustrated by example. First, since
tensors are multilinear functions, we can pick two tensors ad r vectors, then see what happens to the sum
of tensors. Doing this uses the vectors as something exterhahough, so this is less than satisfying. Second,
we can see what happens to the coe cients in the tensors thensves. The former turns into the latter as
follows, for a pair of 2-tensors and

X

= (engle g (&g)= g
X

= (eie)e  g;  (eije)=hy
ij

( + Nujv) = X(u;V)+ (u>;<V)

= aj ujvj + hj Ui Vj
X "‘

= [aj + bjluy:

i
So, by applying our pair of tensors to an arbitrary pair of vedors, we see that we didn't need them after all:

namely, the coe cients of + are the sums of coe cients of and . This is just vector-space addition,
as we would expect.

Recall from section 4.1.8 that we can turn this vector spacerito an algebra if only we can multiply tensors. As
with addition, we can do this argumentwise (with reference to vectors) orcoe cientwise  (with reference
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only to the tensors themselves). That is, knowing that tensas are r-linear functions, we can think of what
tensor multiplication would haveto be. Again, this is illustrated by example. Here, let be a 2-tensor, and
let be a l-tensor.

X

y
= (e)e; (&)= b

(eise)e  e;  (eig)= g

k
HUv) (W),

( usviw) =
#
X X
= 4 aj upvj ) bKWk
i k
X
= aj beuiv; wyc:
ijk
As above, we get the coe cients of the product tensor , hamely a; b, as an object of its own.

| chose to do a speci c example to keep the notation from becoing frightening. But we can extend this
example to mixed tensors in general.

De nition 4.96. Let be atensor of types;;ry; let be atensor of types;,;r,. Then the tensor product
is of type s1 + sp;r1 + ro. It is de ned by the property

( JO 13110 ss 1 s UL iiniUp VG iiniVe,) (4.1)
= 15000 sauniinUury) (it sy VariinViy,): (4.2)
The coe cients of are obtained by taking the outer product of the coe cients of and , as in section

4.7.2.

Note however that unless or is of type 0,0 | that is, a scalar | then the vector space T5(V) is not
closed under multiplication: orders increase when tensorare multiplied.
De nition 4.97.  Let V be a vector space. Thdull tensor algebra , written T (V), is
M
T(V)= T2(V):
s;r=0

Remark 4.98. Using categorical terminology, T is a functor from vector spaces to vector spacesT is a
functor from vector spaces to graded rings.

4.7.10 Permutations acting on multilinear functions

It is natural to ask about the symmetries of a tensor. For exanple, if is a 2-tensor, then we might ask if
(u;v) = (v;u)  (symmetry)

or
(u;v) = (v;u) (skew symmetry)

for all vectors u and v. For example, in section 4.7.7 we saw that the inner products symmetric, while the
determinant is skew symmetric. In order to generalize this oncept, and in order to de ne forms in section
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4.7.11, we will need a notion of how permutations act on tens. Proceeding as in section 4.7.9, we can rst
do this argumentwise, using test vectors, then nd out what the e ect is on the tensor itself.

This works for all tensors of non-mixed type, i.e. contravaiant or covariant tensors. (One could de ne a
notion of symmetry for mixed tensors, but this appears Lee2] not to be useful in practice.) Here, | will use
covariant tensors for my examples. Let be anr-tensor; letuy;:::;u, 2 V. Let 2 S;. Then we want

((ug;:issuz) )= U 1gyiiniu 1

This is completely reasonable. The only question is why we s the inverse of the permutation on the
right-hand side. [xxx discuss]

As we did for tensor addition and tensor multiplication, let's see if we can get rid of the need for test vectors.

Taking the specic permutation = (1 2 3), we have
X
= (eisee)e € e; ak = (e:€;e)

ijk
X

(u;v;w) = Aijc Uj Vj Wi
ijk
X X X

(w;u;v) = Qjk WjUj Vg = Qijk Uj kWi = Agjj Ui Vj W !
ijk ijk ijk

Generalizing from this example, we can de ne

where on the right-hand side, we permute theargumentsto , and on the left-hand side we permute the
coe cients .

This generalizes the concept of transpose discussed in sixt 4.6.10.

4.7.11 Symmetric and alternating tensor spaces

Above we said that a 2-tensor is symmetric if (v;u) = (u;v) for all u;v, and likewise is skew-
symmetric or alternating if (v;u) = (u;v) for all u;v. We can now generalize this as follows.

De nition 4.99. A non-mixed tensor of order r is symmetric if

for all transpositions 2 S;. Likewise, of orderr is alternating if

for all transpositions . An alternating tensor is also called aform .

Remark 4.100. The de nition was done argumentwise, but following the disaussion in section 4.7.10, we
can also look at it coe cientwise. That is, for symmetric r-tensors and transpositions 2 S;,

Likewise, for alternating

Note in particular that the symmetric r-tensors are held xed by the symmetric group S;, while the
alternating r-tensors are held xed only by the alternating group  A,.
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Remark 4.101. All tensors of order O or 1 are (trivially) symmetric and alte rnating.

Remark 4.102. Let be an alternating 3-tensor. The alternation property forces (u;u;v) = 0. In
general, for an arbitrary alternating tensor , has value zero when evaluated om vectors any time two
or more of those vectors are equal. As discussed in section745, the coe cients a;« of a 3-tensor  with
respect to a basisfby;:::;bmg are given byap = (bi;bj;bk) and so the a;« coe cients must be zero
wheneveri = j, i = k, orj = k. In general, the coe cients of an arbitrary alternating r-tensor are zero
when any index is repeated. (This is reminiscent of the fact hat the diagonal entries of a skew-symmetric
matrix must be zero. The diagonal entriesa; have equal rst and second indices.)

Remark 4.103. Just as 1-forms have zero output when vector arguments are peated, they have zero
output when wedge components are repeated. Let be a linear functional, i.e. a 1-tensor, onV. By the
de nition of wedge product, for any u;v 2 V, we have

No(upv) = (u;v) (v;u)
= W) ) (W= (@ (v) () (v)=0:

Note that this remark applies to one-forms. See remark 4.10%or full details.

It is easy to check that the sets of symmetric and alternatingr -tensors are closed under scalar multiplication
and vector addition, and thus that they are vector spaces.

De nition 4.104. More or less following Lee2] and Pickrell, | write
(V) (V)

for the spaces of symmetric and alternatingr -tensors, respectively.

One naturally asks about the dimension of these vector spase Just as for matrices in section 4.6.10, we note
that to specify the coe cients of a symmetric tensor, it su ¢ es to consider those with non-decreasing indices.
For example, for a 3-tensor , if we know what the coe cient a;;» is, then we know that a;»; and ap;; must
be the same; for the any of the coe cients of a symmetric 3-tersor, it su ces to specify the coe cients aj
fori ] k. For a symmetric tensor of arbitrary order r, it su ces to specify the coe cients a;,...;, for
R P

For an alternating 3-tensor , we know by remark 4.102 that the coe cients ajx are zero for any repeated
indices. For this reason, along with the reasons from the prgous paragraph, it su ces to specify the values
of ajx fori<j <k . Foran alternating tensor of arbitrary order r, it suces to specify the coe cients
Qi fOripg<:ii<iy.
To nd the dimensions of the spaces of symmetric and alternaing r-tensors on a vector space of dimensiom,
we only need to count how many ways we can choose coe cients gsist described | that is, non-decreasing
and increasing indices. A counting argument shows that
. m+r 1 .
dim( "(V )= . and dim( "(V ))= )
Remark 4.105. Note that the above formulas may be written as
m+r 1 _mm+1l) (m+r 2)(m+r 1) m _mm 1) (m r+2)(m r+1)
r rr 1) 21 ' r rr 1) 21 |

For m = 2, we have

m(m +1) N m(m 1)

2 2
and so an arbitrary 2-tensor may be written as the sum of symmeric and alternating components. However,
forr 3, M D 4+ ™ <mr and so we cannot write an arbitrary r-tensor in terms of symmetric and

r r
alternating components.

:m2
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4.7.12 Symmetric and alternating tensor algebras

The usual tensor product of two symmetric or alternating tensors need not be symmetric or alternating,

respectively. (Since all 1-tensors are both alternating ad symmetric, we can use example 4.74 to see this.)
So, in order to turn the vector spaces of symmetric and alterating tensors into algebras, we need to de ne

multiplications on them which preserve the symmetries.

First, much as in section 4.6.10, we de ne techniques for coputing the symmetrization and the alternation
of a given tensor.

De nition 4.106. Let Sym map from r-tensors tor-tensors by
1 X

Sym( )= Al

2S,

Likewise, let Alt map from r-tensors tor-tensors by

1 X

Alt( )= o sgn( )

t2S,
where sgn( ) is +1 for even permutations and 1 for odd permutations.
See any of the geometry texts in the bibliography for proofs hat the symmetrization and alternation do in
fact produce symmetric and alternating tensors, respectiely. Moreover, these are bothprojections from

T°(V) onto (V) and '(V ), respectively, in the sense of section 4.4: they are surjéiee as well as
idempotent.

Now we can de ne symmetry-preserving multiplications. Jug as with the tensor product as described in
section 4.7.9, though, the product of tensors won't have thesame order as the multiplicands.

De nition 4.107. We write
M M
(V)= (V) and (V)= "(V):
r=0 r=0

De nition 4.108. Let 2 X(V )and 2 (V). Thatis, suppose has orderk and has order".
The symmetric product of and , written using juxtaposition, is

= Sym( ):

Likewise, if 2 (v )and 2 (V ), then the alternating product , or wedge product , of and is

o (k+)!
= g A )
k+y 1 X
= T re—— sgn
T CE TR OC )
1 X
= G seO( )
T 28k

Note that in both cases the product has orderk + *. The factorial multiplier is included so that the wedge
of m basis functionals, wherem = dim( V), will be exactly the determinant. This is because the Ek!"! in
the rightmost expression above is 1 whenever we are wedgingténsors, which have ordersk = ~ = 1. We
will see more about this in example 4.118.
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With these multiplications, ( V ) and ( V ) are both algebras. That is, we can add, subtract, and
multiply tensors. In particular, all the usual arithmetic r ules for (non-commutative) rings apply, such as
distributivity. But what about commutativity?

Proposition 4.109. Let and be covariant symmetric tensors of ordersk and ", respectively; let! and
be covariant alternating tensors of ordersk and *. Then it can be shown that

and
LA =( 1k A

Mnemonic 4.110. For the symmetric case, take

and

where each ; has degree 1. Then

=(12)(345)= 1(345)2=(34512°=

since we can transpose degree-1 symmetric terms. Likewisiyr the alternating case, take

and

where each ; has degree 1. Then
PA =™ 23 4™ 5)= 1M (3" 4™ 5)™ 2=( 3" 4™ 5)™ 1N 2= ML

This is because we get three minus signs when we move past 3; 4, and s, then three more minus signs
when we move ; past 3; 4, and s. If either k or * is even, there is an even number of transpositions.

The proof simply generalizes this speci ¢ example from 2 tak and 3 to °, along with ; ;!; being linear

combinations of elementary terms of the form shown here: uséhe distributive property of symmetric and
alternating algebras to complete the proof.

Corollary 4.111. Let! be ak-form. If k is odd, then! ! =0.

Example 4.112. B Let! and both be 1-forms. Applying the de nition of wedge product to t est vectors
u and v gives

EA(upv) = ) (v)  H(v) (u)
Al(uiv) = (Wt (v) (W) (W)
= () (u) t(u) (v)
= A (u;v):
Since the test vectors are arbitrary,
I A = A
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Now suppose! is a 1-form and is a 2-form. Again applying the de nition of wedge product, recalling that
is alternating, and pulling the factorial coe cient over to the left, we have

! (u;v;w) ! (V;u;w)
20N (upv;w) =+ (viw;u) ! (w;v;u)
+ | (w;u;v) ! (u;w;Vv)
E(u) (viw) E(v) (ujw)
= + 1 (v) (w;u) I(w) (v;u)
+ 1(w) (u;v) F(u) (w;v)
2! (u) (v;w)

= + 21 (v) (w;u)
+ 21 (w) (u;v)

I'(u;v;w) P (v;u;w)
2 M(upv;w) o=+ I (v;w;u) I'(w;v;u)
+ I'(w;u;v) '(u;w;v)

(u; V)t (w) (viu)t (w)

=+ (viw)! (u) (wiv)! (u)

+ (wiu)t(v) (u;w)! (v)

2 (u;v)! (w)
= + 2 (v;w)! (u)
+ 2 (w;u)! (v)

= 2! N (u;v;w):

Since the test vectors are arbitrary,

C

De nition 4.113.  The alternating tensor algebra ( V ) is also called theexterior algebra or Grassmann
algebra onV.

Remark 4.114. One may write down explicit bases for "(V )and "(V ), just as for matrices in section

bi, by 1 iy i iy om

as a basis for "(V ) and

as a basis for "(V ).

Example 4.115. B Let m = 3. Then a basis for 2(V )is
(biby; byby; bibg; byby bybs; bsbsig

C
Example 4.116. B Let m =3. Bases for "(V ), for r = 0;1;2; 3, respectively, are
fig;
fby; by bsg;
fb, * b,; by~ bsg; b, bsg;
fb, ~ b, " bsg:
C
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Remark 4.117. We saw that "(V ) has dimension T . This means that ™(V ) has dimension m =1.
Now, the determinant is an alternating m-linear function on m vectors of length m, so it is necessarily a
scalar multiple of the single basis vector for ™(V ). In fact, that scalar multiple is 1, and the determinant

may be characterized as the unique alternatingm-linear function whose value on the standard basis is 1.

Example 4.118. B Here we see whae; * e, * e; does to three vectors on a 3-dimensional space.
X

e, e, M eg(urviw) e e ez(u;v;w)

2S;

= e e e(uviw)te e eg(viw;u)t e e, ez(w;u;v)
e, € eg(u;wiv) e e, eg(w;viu) e e, eg(v;u;w)

= UiVoWz + ViWolUsz + WilaVs  UiWaVs  WiVolz  ViUoWa

= U1VeWs  UpVsWp + UpV3Wi  UpViW3 + U3ViWz  UzVaWg

U Uz U3
= Vi V2 V3
Wi W2 W3
= det(u;v;w):

C

Remark 4.119. While our most important example of an alternating tensor is the determinant, the key
symmetric example is the dot product. Starting in section 62.1, we will use varying coe cients rather than
constant coe cients. Then, in sections 6.3.10 and 6.3.9, tle determinant and the dot product will become
the volume form and the metric tensor , respectively.

4.7.13 Some explicit computations with tensors

In example 4.84 we decomposed a three-tensor into a linear eination of its value on basis functions. Here
we will do something similar for a one-tensor. This kind of canputation comes up very often in exams and
quali ers, where the tensors in question are forms on a mandld. [xxx xref forward to section xxx, once |
write it.] See for example the problems in section 10.3.1 and0.5.2.

Example 4.120. B Let be a one-tensor onV and let m =dim( V). Let V have basisfby;:::;bng with

corresponding dual basisfb,;:::;b,g9. Then we know that is a linear combination of the one-tensors,
namely,
xn
= nib; :
i=1
How do we nd out what the coe cients n; are? We can apply to each of the basis elementd;. We get

X
(bj): nibi(bj): n;

i=1

sinceb; (bj) = j . So, we have the useful result

xn
= (bi)b;:

i=1

That is, to write our one-tensor with respect to a certain coadinate system, we just need to nd its value on
the basis vectors for that coordinate system. Note that a ongensor is trivially alternating, so this formula
also applies to one-forms as well. C
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Example 4.121. B A similar computation shows that for an alternating two-ten sor , we have

N/

= (bi;bj)b; ~ b;:
i<j
C
Example 4.122. B For a symmetric two-tensor , we have
= (bi; bj)b; b;:
i
C
Example 4.123. B Likewise, for a general two-tensor , we have
= (bi;bj)b;  b;:
Bi
C
4.7.14 Change of basis; more about covariance and contravar iance

Note: This section is not quali er material.

In section 4.6.7 we saw how the coe cients of linear functiorals and vectors transform when we change bases.
We now know these to be tensors of type 0,1 and 1,0, respectiye so one may ask how the coe cients of
general tensors transform with respect to change of basis.

First, some notation. Let

be ordered bases for am-dimensional real vector spaceV, and for concreteness assume here tha is the
standard basis. (As usual, my examples us&¢ = R™.) As in section 4.6.7 as well asKIS], let Q be the
change-of-basis matrix which converts vectors fromB coordinates to A coordinates. Recall that Q simply
hasj th column equal to b; in A coordinates. Write g; for the elements ofQ, and write p; for the elements

of Q 1.

We saw in section 4.6.7 that the coe cients of a covariant tensor and a contravariant tensor v transform
according to

[le=[ hQ and [v]g = Q *[v]a:

Written in terms of coe cients, these are

0 1
Gii i Chm
[ds = [mle = [ada 0 [l ®: e
0 1 0 10 i g G
[Vi]e P11 i Pim [Vi]a
@ XK = &: : '
[Vm1Is Pmi i Pmm [Vinla
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which is to say
xn

X
[ile= Gil[ila and [ils=  pjlyla:
j =1 J =1
Note in particular that the covariant 1-tensor uses g; , and the entries of [ ]Ja sum along the rst (row) index
of Q, namely, i. Likewise, the contravariant 1-tensor usesp; , and the entries of [ ]a sum along thej, or
column, index of Q 1.

I will discuss two more examples, as motivation for the genel principle.

The dot product is a bilinear function on V, i.e. a covariant 2-tensor. It will be convenient to name it, so
write
(u;v)=u v:
Given u;Vv written in coordinates with respect to the standard basis, we are accustomed to writing
xn
u v-= UjVi:
i=1
In the spirit of section 4.7.13, though, we can also write
X
= (ei;e)e g
ij
Recalling that e, is nothing more than the ith coordinate-selector function, we have
X X X X
(u;v) = (ei;e)e g (usv)= (e gluyv = j Uiy = U; Vi
i ij ij [
which is what we expect. So, with respect to the standard bags, the coe cients of are j, which is
the same as the identity matrix. These coe cients e; e of are equal to j precisely for orthonormal
coordinates.

X
= (bi;bj)b;  b;: (4.3)
i
Given the discussion in section 4.6.7, | want to state this interms of the change-of-basis matrixQ. Since

the covariant 1-tensor above had 0

[ile = G[ila;
j=1
and guided by my readings elsewhere, | want the coe cients ofthe covariant 2-tensor to transform by
using Q twice, summing along the rst index of Q in each case. That is, for them m array of coe cients
[ Is, | want

xXn
[ils = i G [ ka: (4.4)
k=1
It remains to show that o
(bi;bj) = Gi G [ Kk ]a:
k" =1

But this is true since the ith and jth columns of Q are preciselyb; and b; in A coordinates. That is, in A
coordinates we would write

xn xn
(bi;bj) = (a;a)(a  a)(bi;by)= [ Klagaa:
k" =1 k" =1
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* k k

The next example after the dot product is a tensor of mixed varance. It might seem that we don't know of
any such thing. However, we do: in fact, a linear transformaton is a mixed tensor. (This becomes guessable
when one uses the Einstein summation convention, as inLge2] and [Guggenheimer ], where we write
y' = A} xI with superscripts being contravariant and subscripts beirg covariant.)

Let T:V ! V. Then fory = Tx, taking coordinates with respect to a basisA, for the ith component of y
we write

xXn
Vila = [TjlalXjla:
j=1

Writing all the components of y at once, we can say
|
X X '
yla = [Tjlaai 3 [Xk]a ax
ij k
Cavalierly manipulating symbols (I should justify this usi ng tensor contraction, which I've not de ned here),
and recalling that & (ax) =, this is

X X
Yla = [Tjlalxklaa g (a) = [Tjlalxjlaa
iik iik

which is what we would expect.

The question at hand is how the coe cients of T transform when we change bases. Le® be the change-of-
basis matrix as above. It is shown in FIS ] that

[Tls = Q [TlaQ:
This is in fact easy to see. Above we saw that for vectors, Q converts from B coordinates toA coordinates.
So, when we compute Q *[T]aQ)([V]s), we are doing the following:
Convert v from B coordinates to A coordinates.
Apply the linear transformation in A coordinates.
Convert the result back to B coordinates.
So, the net e ect is to apply the linear transformation in B coordinates.

As with the covariant 2-tensor example, trying to generalize the pattern I've been seeing so far, | would want
to write X
Mile =  pxa[Tela

"

which looks a bit more familiar as X
[Tils = Pik [Tk 1a @ -

.

This is precisely what the triple matrix product Q [T]aQ is:
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, 0 : 1 , 0 1 5 0 : 1
5 Pi1 i Pim 5 [Tula 20 [Timla 5 Qi1 i Chm
? ? ?
P ? : : 2 k 2 : : 9 : :
v : : v : : g : :
Pmi i Pmm [Tmida 0 [Tamla Oni 0 Cmm

* k k

Following this pattern, we have a general rule for change of @ordinates. To recap, letT be a tensor of
type s;r on an m-dimensional real vector spaceV. Let A and B be ordered bases folV. Let Q be the
change-of-basis matrix with entriesg; , and write p; for the entries of Q 1. Then

X

..........

..... s1. — Kiiink s .
[lef ----- jI,]B_ Piike  PisksGaija q,;j,[T~11.....\r]A_

In section 4.6.7 and this section I've proved this for tensos of type 1,0, type 0,1, type 1,1, and type 0,2. |
will not prove this general formula, but the examples here sluld make it plausible and rememberable.

[xxx xref forward to varying-coe cients section.]

4.7.15 Contractions

De nition 4.124. Let V be an m-dimensional real vector space. Let be ak-form,i.e. ! 2 TK(V ). Let
u 2 V. Denethe contractionu y! (also written iy(!)) to be

Thus, if ! is ak-form, thenuy! isak 1 form.
Mnemonic 4.125. We have ani in iy, and it inserts u into a form's argument list: i for insert.

De nition 4.126. Let be a function from the alternating tensor algebraTk(V ) to itself. Suppose that
is linear, i.e. for all forms! and and for all s2 R,

¢+ )= M)+ () and (st)y=s (I):
Let k and * be the degrees of and . We say that is aderivation if in addition to linearity,
¢r)= M+t ()
Likewise, we say that is an antiderivation if in addition to linearity,
tr)= M +C DA ()

Remark 4.127. These two properties are also called thesigned Leibniz rule and the unsigned Leib-
niz rule , respectively, due to the analogy with the product rule in cdculus. Also note that the anti in
antiderivation has only to do with the alternating sign | it has nothing to do w ith antidi erentiation. (We
will see in section [xxx xref] that the di erentiation and an tidi erentiation operators d and uy are both
antiderivations on tangent bundles.)

Proposition 4.128.  The contraction uy is an antiderivation.

Proof. ...goes here. O

Xxx examples.
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4.7.16 Tensor products over free modules

Everything said about linear algebra and tensor algebra in setions 4.6 and 4.7 was stated in terms of nite-
dimensional vector spaces oveR. | did this for the sake of familiarity: we've all seen vector spaces before.
Since this is our rst year of graduate school and since we'llbe getting modules in the core algebra course
only in the second semester, | delayed generalizing the prestation. But everything said above for vector
spaces is in fact true forfree modules (see section 4.1.7) over commutative rings with identity aswell. This
will be discussed in section 6.2.1, after some more terminody is de ned.
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5 Topological manifolds

All art is at once surface and symbol. Those who go beneath tlsirface do so at their peril.
| Oscar Wilde (1854-1900).

Algebraic topology is an extensive subject. SeeHatcher ], [Massey ], and/or [Leel] for more information.
The minimum needed for our purposes is enough for the studerto understand and use the following:

classi cation of surfaces,

the lifting lemmas

the Seifert-van Kampen theorem,
the Mayer-Vietoris  theorem, and

cubes and chains which are needed fantegration on manifolds (section 7).

The essential idea is that section 2.11 showed us that tradibnal vector calculus fails when domains have
holes in them. Here, we simply want to understand what holes are.

5.1 CW complexes

CW complexes early on, following Hatcher? Is there any reasonot to? It would make it possible to do
classi cation of surfaces all at once, without having to cone back.

5.2 Classi cation of surfaces

& T T2=T#T T3
P=p2 KB= P2#P2 = p2 p3 p4

[xxx alg section: quotients / relations: we do NOT use equiv ¢asses in most actual work. rather, pick reps

and use xfmn rules.]

give edge presentations (multiple ones!) and stress they ha dierent uses. S2 with/without the edge.
In each case, stress careful counting of ID'd vertices and egs. Mention free groups on strings, mod
canonicalizing relations. Pound operator as concat op on &gk strings.

[xxx have a revisit section at the end of topo | incl various in fo including 's, univ covs (S? over §* and
P2, R? over everything else); fundamental groups; what else ... ]

to be led: genus has been soft-pedaled in this course ...=2 2g....

5.3 Homotopy and the fundamental group

5.4 Homologies

Cellular, simplicial, singular. Note | prefer singular since it gels nicely with the elementary proof of Stokes
using the FTC, as in little Spivak.
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5.5 Singular homology

Crucial example: latitudinal paths along S?: ¢; ¢, = @Bwhere [insert gure with cancelling arrows] B is
the image of the unit square as shown.

5.6 Cellular homology

Work some examples. This makes quick work out oRP", CP", and T".

xxx hote it's a homology theory for CW complexes so | need to hee rst said something about CW complexes.

5.7 Homotopy equivalence and homotopy invariance

what, and why (xxx xref fwd). Makes it easier to do SvK and MV.

De nition 5.1  (xxx cite wiki) . Topological spacesX and Y are homotopy equivalent  (or of the same
homotopy type ) if there exist continuousf : X ! Y andg:Y ! X suchthatg f is homotopic to idy
and f g is homotopic to idy . The functions f and g are calledhomotopy equivalences

Remark 5.2. A homeom is a h.e. but not v.v. nd a ctrex.
homotopy invariance : If X and Y are homotopy equivalent, then:

X pathconni Y is
X simply conni Y is
sing homol and coho groups are isom

k (incl fund grps) are isom as long asX, Y path-conn
5.8 Deformation retracts
what, and why (xxx xref fwd). Makes it easier to do SvK and MV.
intuition: ctsly shrink space into subspace.

5.9 Seifert-van Kampen

stt of thm (lee not'n)
torus example

claim: for surfaces, just read o the edge presentation.
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5.10 Mayer-Vietoris for homology

xxx include diagrams from Notation TBD section. Connections with SvK. Emphasize importance of choice
of U, V, and X | be sure their homologies are known. Xref bkwd to def retract s and homotopy invariance.
Tabulate known homologies. Also note that we needn't alwayssolve for X : sometimes it works out more
nicely to solve for U. Include example from August 2006 qual.

5.11 Covering spaces

De nition 5.3.  Let X and X be topological spaces, withp a continuous surjection of X onto X . Then the

map p is said to be acover, and the spaceX is said to be acovering space of X, if eachx 2 X has an
open neighborhoodU such that p *(U) is the union is disjoint open sets inX", each of which is homemorphic
to U. Furthermore, Pickrell requires that X and X be connected.

Mnemonic 5.4.  You can recover all of the items of the de nition by the following example: send the real
line X = Rto X = S' (viewed as the unit circle in C) via p(t) = €2 . The point 1 on the unit circle has a
neighborhood with preimages @ ";n + ") for each integern. For other points of St, just shift around the

circle.

Lift criterion : nice diagram here. Massey V. 5. Note the intuitive obviousess of it (at least if both uppers
are covering spaces), given the monomorphism property of eering paths.
monomorphism property: make a nice picture of a spoked wheeadver a single-dotted wheel.

Def automorphism in this context. Make intuitive sense of Massey's commutatve diagram: homomor-
phisms must preserve something; what is it that a homomorphsm of cov spcs needs to preserve.

no- xed-points | state thm and nd examples. Or, just as a con sequence of group actions.
def univ cov spc.
action of 1(X;x)onp %(x) | Massey is most thorough here.

Let 2 Aut(X;X)and 2 1(X;Xo). Let x2 p %(xq). Then

x )=( x%
[xxx note this is a compatibility between left and right grou p actions, namely, the aut group and ; of the
base both acting on bers. xref to the beautiful Wikipedia article.]

Massey's cor. 7.3 | central.

NP (105 9]

Aut( X; X ) =
p (10X %))

natural isom? Also belabor the group-action lemma in Massey's appetix B. Phrase p ( 1) as anisotropy
subgroup

normalizer notation. How to actually compute such things? Note that the normalizer of H in G is the
largest normal subgroup of G in which H is normal. In particular, if H is already normal in G (e.g. abelian,
in particular if cyclic) then N (H) is all of G.
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Find a good example space and covering for this normalizer kginess: draw up a nice picture (or set of
pictures) for 8-to-1 covering of St. \Stop sign". See handwritten AT nal-review notes from 5-1 0-06.

De nition 5.5. A covering spaceX of X is said to be aregular covering if

p(1(X5%)C 1(Xix):

(Massey 7.4)X=X a regular covering implies that for all x 2 X and for all x 2 p *(x),
1(X5x)

P ( 1(X; %))

since the normalizer is taken inside the parent group whichs ;(X;x).

Aut( X; X ) =

(Massey 7.5) LetU be a universal covering space oK. Then
Aut(U;X) = 1(X;x)
and
# 1Gx)=#p '(x)
(Massey 8.1) Aut group istransitive on bers i the covering is regular.

X=X a regular covering impliesX is homeom toX=Aut( X; X ).

De nition 5.6.  The action of a group G on a topological spaceX is free (we say G acts freely on X) if
the stabilizer subgroup of eachx in X is trivial, i.e. if all non-identity elements of G move all points of X .

De nition 5.7.  The action of a group G on a topological spaceX is properly discontinuous if for all
X 2 X, there is a neighborhoodU of x such that for all g 2 G other than the identity of G, guU\ U = ;.

5.12 Topo TBD

xxx in particular, lift recognition : many problems turn out to be an application of the lifting th eorem; the
task is to seethem as such.
Retract and deformation retract: emphasize recognition aml computation.
Seifert-van Kampen
Universal covering
1(X) acting on the covering spaceX'. (This is an application of the lifting theorem.)
Aut( X=X ) acting on the covering spaceX.

Mayer-Vietoris
Also look at the same topics in this order:

What options do we have for computing a fundamental group?

What options do we have for computing the automorphism groupof a covering space?

For MV: disconnect via (a) showing agroup is 0, or (b) showing amap has zeroimage, or (c) showing amap
has zerokernel.
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5.13 Cubes and chains

De nition 5.8. k-cube ....

De nition 5.9. k-chain ....

5.14 The boundary operator @

Make sure to emphasize the sign which alternates with variake index.

5.15 Homology
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6 Smooth manifolds

Life is a short a air; we should try to make it smooth, and free from strife.
| Euripides (c. 480-406 B.C.).

6.1 Manifolds
6.1.1 Manifolds

Denition 6.1. A manifold is a metric space with the property that for all g2 M, there is some neigh-
borhood U of g and some non-negative integem(q) such that U is homeomorphic toR™. If m(q) is the
same for allg2 M, then we say that M has dimension m.

For this course we consider only connected manifolds. In paicular, all our manifolds have a dimension. (For
a counterexample, consider the plane = 1 in R® along with the line y = z = 0. This has two disconnected
components: the plane with dimension 2 and the line with dimesion 1.)

6.1.2 Coordinates and parameterizations

De nition 6.2. Let M be an m-dimensional manifold. A coordinate chart is a homeomorphism from
an open subsetU of M to R™. (Formally, the chart is the ordered pair U; .)

A manifold by de nition has such homeomorphisms for every pant in the manifold, so we are just naming
them. Also, homeomorphisms are invertible by de nition, soit also makes sense to name their inverses.

De nition 6.3. Let M be anm-dimensional manifold. A parameterization is the inverse of a coordinate
chart.

De nition 6.4. A transition function  on a manifold M is of the formy x ! wherex andy are coordinate
charts on a manifold M .
Note that a transition function is a homeomorphism from R™ to R™.
Example 6.5. B There are several di erent coordinate charts we can put on the unit sphere $?.
We usegraph coordinates when we solve for one rectangular coordinate in terms of thetbers. E.g.

o0 the equator we can solve forz in terms of x and y. (Here we are implicitly using the implicit
function theorem, theorem 3.5.) An example coordinate chatraround the north pole is

0 1
X
@yAT
z
with parameterization 0 ) 1
e D y A
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We use spherical coordinates  which work everywhere except the north and south poles. (Whgp
Well, a homeomorphism must be one-to-one. Points with = 0 and any value of all correspond to
the north pole. Likewise for the south pole and = .) Spherical coordinates forR® are

0 0 1

1
X Ccos sin
@yA=@ sin sin A:
z cos

So, when we restrict toS? (where = 1), the coordinate chart is
0 1
X
@y AT
z

with parameterization 0 1
cos sin
7' @ sin sin A
cos

The domain of this coordinate chart is any open set as big as th open set consisting of all o? except
the poles and some meridian. If we were to include a meridianthen the resulting open set would not
be homeomorphic to a subset oR™.

Stereographic coordinates  are discussed in section [xxx homework problem early on]. (Aat section
also gives an example of transition functions.) Here, we havtwo coordinate charts, each of which cover
all but one point of S?.

C

One would want the transition mapsy x ! to be smooth. The notions of atlas, maximal atlas , and
di erentiable structure are important foundationally, but do not arise in practice in problems given in
this course. See any of the geometry texts in the bibliograpi for de nitions.

6.1.3 Maps of manifolds

In section 3.2, we de ned smoothness for functions fronR™ to R". To apply this notion to manifolds, we can
use coordinate charts and parameterizations. LeM and N be manifolds of dimensionm and n, respectively.
Let x and y be coordinate charts onM and N, respectively. If f is a function from M to N, then we want
to say that f is smooth in the manifold sense ify f x ! :R™ ! R" is smooth in the Euclidean-space
sense. Of course, we have to consider what happens if the ram@ff x ! doesn't intersect the domain of
y, and whether this manifold smoothness is independent of thehoice ofx and y. This can in fact be done.

De nition 6.6. Letf : M ! N be a map of manifolds. Acoordinate expression forf isy f x 1,
where x and y are coordinate functions onM and N, respectively.

De nition 6.7. A map of manifoldsf : M ! N is dierentiable if for all coordinates (x;U) of M and
(y;V)of N,y f x 1lisa dierentiable function from R™ to R".

De nition 6.8. A map of manifoldsf : M ! N is smooth if for all coordinates (x;U) of M and (y; V) of
N,y f x !isasmooth function fromR™ to R".

De nition 6.9. A map of manifoldsf : M ! N is adieomorphism if it is a smooth map of manifolds
which is also bijective.

Of course we could say that di eomorphisms need only be bijetive di erentiable (i.e. C') maps, but for
this course we use the same convention as in section 3.3.
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6.1.4 Immersion and embedding
De nition 6.10. Letf :M ! N be a map of manifolds. We sayf is animmersion atq 2 M if Df 4 is 1-1
(i.e. has zero kernel). Iff is an immersion at all points g 2 M, then we simply say that f is an immersion.

De nition 6.11. Letf :M ! N be a map of manifolds. We say thatf is an embedding if:

It is an immersion, and

it is a homemorphism onto its image.
Remark 6.12.  An immersion is locally 1-1. An embedding is globally 1-1.
Example 6.13. B ... C
Example 6.14. B ... C

De nition 6.15. Let M N be manifolds. Then the inclusion mapi is a map of manifolds. We say that
M is animmersed submanifold  of N if the inclusion map i is an immersion. Likewise, we say thatM is
an embedded submanifold of N if the inclusion map is an embedding.

6.1.5 Regular and critical values

De nition 6.16. Letf : M ! N be a map of manifolds. Thena 2 M is said to be aregular point of
f if the local derivative of f at a is surjective. [xxx draw a picture: x is a coordinate function onM andy
is a coordinate function onN.] That is, f is regular at a if D (yfx 1)jx(a) has rank n wheren = dim( N).
[xxx note that we need to prove (or cite) that this is independent of the choice of coordinates. here or
elsewhere: soap-box about the fact that much of the fuss in dérential geometry is showing that this or that

is independent of choice of coordinates. For this paper, sicfuss will at most be deferred to an appendix or
a citation.]

We then de ne the following related terms:

A point in M is acritical point  of f if it is not regular.

A point ¢ 2 N is acritical value of f if any of the points in f *(c) are critical points of f, i.e. if ¢
is the image of a critical point.

A point ¢ 2 N is aregular value of f if all the points in f (c) are regular points of f .

Note that the points are in the source manifoldM ; the values are in the destination manifold N .
[xxx draw a nice picture here.]

Theorem 6.17 (regular value theorem). Let M and N be manifolds of dimensionm and n, respectively,
and letf : M ! N be a map of manifolds. Ifc 2 N is a regular value off, then either f (c) = ; or
f %(c) has the structure of an embedded submanifold ® . In the latter case f 1(c) has dimensionm n.

Remark 6.18. For the last sentence we can intuitively think of m as the number of variables andn as the
number of constraints, leavingm n degrees of freedom.

Remark 6.19. Note that [Lee2] refers to this as theregular level set theorem

Remark 6.20. See section 10.6.3 for an example which shows that the conwer of the regular value theorem
does not hold.
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Remark 6.21. Manifolds are often presented as embedded submanifolds of Elidean space (e.g.S° inside
R3). The D in de nition 6.16 must be restricted to the manifold. Either ( 1) compute D in the parent space
and restrict as in section 1.3.2, or (2) use Lagrange multipers as described in section 2.7. For an example
using both techniques, see section 10.7.2.

7277
[xxx needs an example.]
xxx de ne codimension.

XXX move this to another section further on:

Remark 6.22. At aregular point g2 M of f,f has full rank n. The linearization Df jq (whichis f jq) is
a map from the m-dimensional spacel M jq to the n-dimensional spacel Njc. Therefore, by the rank-nullity
theorem, Df jq has kernel dimensionm n. [xxx need to x this bOrk3n statement.] Let f :M ! N be a
map of manifolds. Letq2 M and c 2 N be such thatc = f (q). Assume that c is a regular value off but
do not assume thatf is 1-1.

0 ! ker(f )= Tf (c) !  TMjg ! TN ! o:

xxx move this to the linear-algebra section:
Proposition 6.23 (adjugate criterion). An n m matrix (with m >n) has full rank ni notall n n
determinants are zero.

Proof. This is an exercise. See section 10.1.1. [This can't be quitéght | the exercise is for square matrices;
this is for non-square. How do we generalize it?] O

xxx note how cramer's rule is related to exterior algebras. e proof of Cramer's rule is elementary and easy
if you already have the formula | but how would a person have thou ght of it? Appeal to exterior algebra?

Example 6.24. B Insert an example here, or xref. C
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6.2 Vector bundles
6.2.1 \Varying coe cients

All the vectors, linear functionals, tensors, etc. discused up until now have had constant coe cients , i.e.

coe cients in R. Now picture the Euclidean spaceV = R™ evolving with time t. (Or, for V = R?, one may
think of a loaf of bread, where each slice of bread is a vectopsce and the parametert indexes the slices of
bread. Of course, the loaf of bread is in nitely long, with slices that are in nitely thin and in nitely wide.)

In this collection of vector spaces, you could imagine a vectr evolving in time. Using the other
metaphor, this would be a collection of vectors, one vectorn each slice, withvarying coe cients
depending smoothly ont. We could label the vector in the tth slice v(t), or, looking ahead to the
notation used in di erential geometry, v;. For example, in R? we might have v, = (cost; sint). We
could label the collectionv.

If, in the sense of section 4.4, we form grojection fromV RtoRby (v;t)=t,then we can
think of v as asection of . (We will be calling it a vector eld ).

We can write this asV R, but it is not the same as R™*1 . It doesn't make sense to add one time's
u¢, to another time's vy,, but it does make sense to add vectors in the same time slice.

Here the coe cients are not just in R; they're smooth functions, i.e. elements ofC! (R). We might
think of this V R as a vector space oveR, but it sure feels like it ought to be some sort of space
over C! (R) as well. (We will be calling it a vector bundle over R.)

Non-zero real numbers are invertible, soR is a eld. Not all non-zero elements of C! (R) can be
reciprocated: for a functionf 2 C! (R) to be non-zero, it must have a non-zero value forsomet; to
be reciprocable, it would have to be non-zero forll t. However, C! (R) is a commutative ring with
identity. Furthermore, it may be shown (see section 6.2.2) hat this V' R is a free module over
C! (R). Remember from section 4.1.7 that every element of a free ntule M over a ring R is uniquely
expressible as arR-linear combination of basis elements. So, we get everythgnwe would want from a
vector space, except division by scalars.

We can also form mixed tensors here: the tensor product, whitwe examined for vector spaces, can also
be formed on modules. (This kind of construction will be the sibject of most of the rest of this paper.)
Here, the coe cients of the tensors won't be real numbers; irstead, they will be smooth functions of
the parametert.

If we select a particular value oft, then we do have a plain old vector space oveR, where all the
vectors, tensors, etc. have constant coe cients which are gnply the coe cient functions evaluated at
t.

In this picture, constructions on V (i.e. the space, its dual, higher-order tensors, etc.) haveoe cients in
R, while constructions inV R have coe cients in C! (R):

\% V R

R C! (R)

Note also instead of parameterizing by a single variabld¢, we could attach a copy ofV to every point (X;y)
of R?. In that case, scalars (coe cients) would be of the form f (x;y) for f 2 C! (R?;R).
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6.2.2 De nition of vector bundle

Motivated by the preceding V. R example, what properties would we want a vector bundle to hae?

Every time t should have a copy ofV attached to it.

Even though we tookV to be R™, our V. R should not be the same aR™** . It should only make
sense to add vectors from the same time slice

Coe cients on vector elds v should vary smoothly with time.

The vector spacesV; themselves should be connected to one another smoothly wittime.

Here is the formal de nition (following [ Lee2]).

De nition 6.25. Let E and M be manifolds, and let :E ! M be a surjective smooth map of manifolds.
(Note that is aprojection in the sense of section 4.4.) Therk, M, and form a vector bundle of rank
k if the following conditions are satis ed:

For eachq 2 M, the ber (see de nition 4.42) 1(q) is a k-dimensional real vector space. WriteE,
for the ber 1(g). Note that since is surjective, every pointq of M has a ber over it. We call M
the base space.

For eachq 2 M, there exist an open subsetJ of M and a di eomorphism : L(U)! U RK. This
means that the bers vary smoothly as we move around open seté the base space.

For the g, U, and in the previous item, the following diagram commutes:

l(U) — U Rk

@
@

% 1

U

where 1 is the projection onto the rst component. If e is a point of E lying above q, then (e) = q,
whereas if we take (e) and then project down to M, we have to get the same base poiny. So, all
this means is that respects which ber lies over which base point.

Furthermore, for eachq®2 U as in the previous item, restricted to the ber Eqo is a vector-space
isomorphism betweenEqo and fq%  RX, which in turn is isomorphic to R¥. Sometimes we state this
condition by saying that is linear on bers

Some more terminology:

Recall from de nition 4.43 that a section of is a functions: M ! E such that s is the identity on
M, which simply means that a section maps base points into theiown bers. As in section 4.43, whenever
we have projections and sections, we want those maps to havehatever properties are appropriate for the
category in question. Here, this means that projections andsections are taken to besmooth .

De nition 6.26. A vector eld is a section of vector bundle.
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That is, a section is something of the form described in sectin 6.2.1, i.e. a vector whose coe cients depend
smoothly on the base pointq.

De nition 6.27. Given a vector eld v on a manifold M, for each point q of M there is a vectorvy. We
say that vq has its foot at q.

De nition 6.28. Sometimes we writevjq instead of vq. We do this particularly when the thing being
subscripted (or the subscript itself, or both) is a complicaed expression, has other subscripts, etc. See also
notation 6.33.

Recall from de nition 4.44 that we write ( E) for all the sections of E, or the space of sections of E. This
is actually makes (E) a module over C! (M; R), as was alluded to in section 6.2.1:

Given two sections, or vector elds,vi;v, : M ! E, we have vector-plus-vector addition of the form
(Vi+ V2)jg = Vijg *+ Vaig-

Given a \scalar" f 2 C! (M;R) and v 2 ( E), we have multiplication by the scalar of the form
(fV)iq = figVig.

Thus we have the following analogy between vector spaces angctor bundles:

Vv ( E)

R C' (M;R)

6.2.3 Examples of vector bundles

Let M be a manifold.

Example 6.29. B For any k, we can attach a copy ofR¥ at each point g of M. This is called aproduct
bundle . C

Example 6.30. B For a manifold which is, say, the level set of some function fom R™ to R, we can de ne
a normal bundle , which at each point q of M consists of all the vectors in the ambient spaceR™ which
are normal to M at q. For example, for the sphereS?, the normal bundle has rank 1, where the ber above
a point q of & is the line normal to the sphere atq. C

Example 6.31. B Similarly, in the same context, we can also de ne atangent bundle , where the vector
space attached to each pointg of M consists of the space perpendicular to the normal space. Faxample,
on S, this is of rank 2 where bers are tangent planes. C

Tangent bundles are central to the geometry course. In seabn 6.3, they will be de ned in a way that is
independent of an ambient space.

6.2.4 Trivializations of vector bundles

De nition 6.32. A di eomorphism , de ned on an open subset U of M as in section 6.2.2, is called a
local trivialization  of the vector bundle. If there is such a di eomorphism de ne d on all of M, then it
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is said to be aglobal trivialization of the vector bundle. If a vector bundle has a global trivialization, the
bundle is said to betrivial .

Notation 6.33.  Pickrell adopts the convention that vq may be written as the ordered pair (v; q) only for
trivial bundles.
There is a criterion to determine whether a vector bundle is tivial. It requires a few de nitions.

De nition 6.34.  Let (E;M; ) be a rank-k vector bundle. Given an open subseUU of M, a local frame

called aglobal frame .

Lee proves the following in chapter 5 of [ee2]. Pickrell uses this criterion implicitly: when he asks you to
compute an explicit trivialization, what he wants is a global frame.

Proposition 6.35 (Global frame criterion). A vector bundle is trivial i it admits a global frame.

For an example, see section 10.2.1. [xxx that problem usesr®minology from sections downstream from here.]

Note that the product bundle (example 6.29) is certainly trivial: take the standard basis for eachR¥ to be
the global frame.
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6.3 The tensor bundle

In this section we de ne tangent vectors, then build a tensoralgebra on top of that. This will encapsulate
many concepts, including derivatives, functions, functianals, area forms, and dot products.

6.3.1 Notions of tangent vectors

There are many di erent de nitions of tangent space given in [Spivak2 ], [Conlon ], and [Abr ]. If | count
correctly, [Spivak2 ] alone presents no less than 5 de nitions, and proves them tde equivalent. This
overabundance of de nitions is a great source of confusionof the learner.

For Pickrell's course, two notions are actually used reguasf in computations, with a third notion appearing
briey early on. (Namely, this third notion is tangent vecto rs as equivalence classes of curves. This is
discussed in section 6.3.3). As well, these are preciselyehwo notions that [Lee2] emphasizes. | will follow
that approach. Namely:

If we have a surface explicitly embedded inR* for somek, then we can think of the tangent space
in the usual way from vector calculus. Namely, we compute thenormal vector to the surface at
each point, then nd the space of vectors perpendicular to tre normal. These are calledyeometric
tangent vectors . Such tangent vectors areextrinsic in that they stick o the manifold: for example,
consider tangent planes on a sphere. This works ne when our amifold is already embedded into a
higher-dimensional Euclidean space in some obvious way.

The standard example of why geometric tangent vectors are isu cient is the spacetime of the universe
itself: regardless of whether itcould be visualized as embedded in some higher-dimensional spasee
might not want to do so, particularly when our manifold is already three-dimensional. (Trying to draw
three-dimensional pictures on a chalkboard is hard enough! The more general way to think of the
tangent space is as the space dfirectional derivatives . These areintrinsic in that we don't need
to visualize anything sticking o the manifold.

6.3.2 Geometric tangent vectors

Geometric tangent vectors are just what you would expect fran vector calculus (JAnton ], [HHGM 1]). In
the case that our manifold M is the level set of a single equation, we can get the tangent sige as a two-step
process:

(1) Compute the normal space to the surface. If the surface ighe level set of a function F, then the
normal vector to a point q 2 M isr (F)jq.

(2) Do linear algebra to compute the perpendicular space, with is the tangent space.

This technique is time-consuming; a more e cient technique is presented in section 6.3.4. An example
comparing both methods appears in section 10.6.5.

6.3.3 Tangent vectors

Here | want to accomplish two things: make some sense of Pickits choice of assigned problems, and
intuitively connect geometric tangent vectors with tangent vectors as directional derivatives. The latter is
made quite clear in chapter 3 of Lee2], so | will con ne myself to presenting motivation and examples.
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Preliminary #1. SupposeM is the Euclidean spaceR™ and let f : R™ | R. Then, given a point q of
M, it is reasonable to equate a vectovq footed at g with the directional derivative , taken on functions
from R™ to R, in the direction of v. This directional derivative is written

. d
Df jg(v) = g f(gq+ tv)
t=0

The left-hand side is the derivative of f at q in the direction of v. One can show that there is in fact an
isomorphism identifying eachvq with the directional derivative at g in the direction of v.

Preliminary #2. Let x = q+ tv,ie. fori=1;:::;m, x; = g + tv;, and letf 2 C* (R™;R). Then f (x)
is a function of t. By the chain rule, we have

xXn o
g f(q+tv): Qfdi: @Vi:
dt t=0 i=1 @X dt i=1 @X

In particular, take v to be a standard basis vectore;. Then the above gives

X @f dx; f
4 (grte)= T @ _ @f
dt .- L, @xdt @x
Preliminary #3. Now let M be a manifold not necessarilyR™. Note that in the previous step, any other

curve through q in the direction of v which is equal to q + tv up to rst order would have produced the
same result. The intuitive example isM = S?. Then tangent lines of the form q + tv stick o S?, but we
can have a curve throughq, heading o in the direction of v, but staying on the sphere. (This notion makes
an appearance in some problems early on in the course. See fample section 10.1.1.) We could use this
intuition to motivate a de nition of tangent vectors as equi valence classes of curves which agree up to rst
order. However, we do not in fact de ne them that way.

De nition 6.36.  We now de ne tangent vectors as follows.
Since we have anm-dimensional manifold M, at each point g of M there is an open setU with a
coordinate chart which is a homeomorphism fromM to R™.

From step 1 we know that in R™ there is an isomorphism betweervy's and directional derivatives at
g in the direction of v.

In particular, using that isomorphism we can identify each ; in R™ with the directional derivative
@=@x

We use that isomorphism followed by the parameterization ! (the inverse of the coordinate chart
) to map the standard basis forR™ back to an open subsetJ of M. (See Lee's proposition 3.6 for a
technical detail.)

In summary, the tangent space at a pointq of M has a basis, in coordinates, which is the set

( )

De nition 6.37. Let M be a manifold, and letq 2 M. The tangent space of M at g, written TqM or
TMjq, consists of alldirectional derivatives , applied to C* (M) = TP(M).
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De nition 6.38.  The tangent bundle of M is the disjoint union

a
™ = TyM:
q2M

Intuition 6.39.  Disjointi cation is a way to make otherwise equal things unequal. For example, take two
copies of the integers, one colored red and one colored blu&hen red 3 is unequal to blue 3. Two copies of
Z have been disjointi ed by the color label. Here, we have manytangent spaces, which are disjointi ed by
the foot label.

6.3.4 Explicit computations of tangent vectors

For problems appearing in Pickrell's course, we start with the directional-derivative notion of tangent vector
and end up with a geometric tangent vector. An example will hdp illustrate.

Example 6.40. B Let M = S%. A point g of * is (in rectangular and spherical coordinates, respectivel)

0 1 0 . 1
X cos sin
q=@y A =@ sin sin A:
z cos

The tangent space is spanned by the two (orthogonal) basis wors @=@and @=@ Now, we make the key
observation that @=@and @=@are directional derivative operators, acting onC?! (S?), while the x, y, and
z coordinates are in fact smooth functions of the pointg. So, weapply @=@and @=@to the coordinate
functions x, y, and z:

0 1 _ 1 . .
@ @ - Cos sin sin sin
=@yA = =@sinsin A=@ cos sin A;
@ z @ cos 0

0 1 0 . 1 O 1
@ - % @ .. Cos sin COS COS
—@yA = =@sin sin A=@ sin cos A:
@ z @ cos sin

Observe that when we do this, the results no longer look like airectional-derivative operators: they are
just geometric tangent vectors. The isomorphism of sectior.3.3 goes unspoken; we write

. . 1 0

sin sin COS COS
—@z@ cos sin A and —@=@sin cos A:
@ 0 @ sin

Here is another example.

Example 6.41. B [Surface of revolution.] Letg(y) > O be a smooth function. LetM be the surface of
revolution obtained by revolving g(y) about the y axis. Then a point g of M has rectangular coordinates

g(y) cos
gq= @ y A
g(y)sin

Now, we can parameterize this surface using and , where is the angle from the x axis to q. Thus, the
tangent space will be spanned by@=@and @=@ Proceeding as in example 6.40, we appl)~@'@y and @@ to
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the x, y, and z coordinates ofg to obtain

0
g(y)sin
= @ 0 A

g(y) cos

0
g%y) cos
@_@

@y

Slfe)

gy) sin

6.3.5 F and DF

Let F:M ! N be amap of manifolds of dimensionsn and n, respectively. Then we would like to de ne a
linearization of F at g 2 M as a function on the respective tangent spaces, i.e. a lineapproximation to

F at g. How can we do this? Well, we saw in section 6.3.3 that the tangnt spaceTqM is spanned by the
@=@'s. An arbitrary element X of the tangent space is just a linear combination of those. A map on the
tangent spaces is de ned by what it does to theX's. And what do the X's do? They operate on functions
from a manifold to R. So ([Lee2], chapter 3) we make the following de nition.

De nition 6.42. Let F :M ! N be a map of manifolds of dimensionsn and n, respectively. Letq 2 M.
Let X 2 TqM andf : N ! R. Recall that the pullback F f isf F. Then

F :TqM ! TN

is de ned by

| FEX)H)=X(F )|

Note the following diagram of the situation:

F
X ToM — TeN F X
F
q M — N F(a)
@
Ff @@ f
® =

There are several points:

Amapf :N ! R has beenpulled back , via F, from N to M.
A tangent vector X has beenpushed forward , via F , from TqM to Tg (q)N.
This is a coordinate-free  de nition of F .

As shown in [Lee2], whenever we do use coordinates, this map is represented by the Jacobian
matrix
@F

DF =
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6.3.6 The cotangent bundle

De nition 6.43. Let M be a manifold, and letq 2 M. The cotangent space of M at q, written T, M
or T Mjgq, is the dual space ofT4M . It consists of all linear functionals, or covectors , on TyM. The
cotangent bundle of M s the disjoint union
a
TM= Ty M:
q2M

Just as in section 4.6.3, given a basis we can form dual basis . We saw in section 6.3.3 that a basis for

TyM, in coordinates, is given by ( )
@ . @
@, ' @n ,
The dual basis elements are ( )
dx; ;:iiidXm
q q

and they are de ned, just as in section 4.6.3, by
@ _
ex "
That is, these are nothing more than coordinate-selector factions, in the sense of section 4.6.3, on the
tangent space.

dXi

Just as for frames (see de nition 6.34), we can haveoframes of the form

6.3.7 The dierential o

De nition 6.44. Letf :M ! R. Letg2 M and Xy 2 TqM. Then d, the dierential of f, is de ned
(in a coordinate-free  way) as
djq(Xq) = Xqf

Note that f is a linear functional on each tangent space: it takes a tang® vector and produces a scalar,
and it is linear.

Remark 6.45. In coordinates ([Lee2]), d is written

X of
@x

This looks a lot like the gradient, but written as a covector rather than a vector. Why? Well, the Jacobian
matrix for a vector-to-scalar function is a 1 m matrix. This looks like a row vector , and we've been
equating row vectors with linear functionals (see section 46.6). Recall from the discussion in section 4.6.7
that if we were to treat it as a column vector (plain old vector) rather than as a row vector (linear functi onal
or covector) then it wouldn't transform correctly on change of basis.

d = dx;:

i=1

Remark 6.46. In addition to asking what kind of map o is (we saw that it's a 1-form), we can also ask
what kind of map d is. Here, we started with f , which is a scalar, or 0-form. Thend is a 1-form. One

might guess that d will in general send ak-form to a (k + 1)-form. That is indeed the case, as is discussed
in section 6.4.
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6.3.8 The tensor bundle

Given a manifold M, we now have a tangent bundleTM and a cotangent bundleT M. We also have the
respective spaces of smooth sections, TM) and ( T M).

De nition 6.47. Elements of (TM) and ( T M) are calledvector elds and covector elds , respec-
tively.

As discussed in section 6.2.2, TM) and ( T M) are free modules overC' (M; R). We can appropriate
the discussion of tensors in section 4.7 wholesale, replag constant coe cients with coe cients that vary
smoothly over the manifold. This includes forming the full tensor algebra as well as de ning symmetric and
alternating tensors.

Notation 6.48. We write T,>(M) in place of T,5(TM).

Just as in section 4.7.6,C! (M; R) is a subspace of (TM) and so on. So we have:

% % %

T (M) TH(M) T2(M)
Tol(M): ™ Tlo(M): TM
tangent space cotangent space
T(M)= C* (M; R)
scalars

as well as:
higher-order covariant

tensor elds
(TE(M)) ( TH(M)) ( T2(M))
contravariant 2-tensor mixed 2-tensor covariant 2-tensor

elds elds elds

(T¢M)=( TM)  (TPM))=( T M)
vector elds covector elds
(TPM))= ( C* (M;R))
scalar elds
In the second diagram, I've boldfaced the parts of the full teansor bundle which are of interest for the geometry

course: namely, covariant tensor elds (the right-hand linear branch of the tree), as well as contravariant
1-tensor elds, i.e. vector elds (the left-hand spot).
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6.3.9 The metric tensor

De nition 6.49.  As foreshadowed in remark 4.119, themetric tensor is nothing more than the dot
product in tangent spaces. That is, the metric tensorg 2 ( T2(M)) is de ned by

a(Vg:Wg) = v w:

Remark 6.50. In Euclidean coordinates,
vV w= Vi W; .
i=1

Recall that dx; is the ith coordinate-selector function, so we can write this in tersor lingo as
x
9(Vq; Wq) = (dxi  dxi)(v;w):

Treating g as a 2-tensor, we can write

In particular, for Euclidean 3-space, we have
g=dx dx+dy dy+dz dz
which we sometimes abbreviate as

g= dx?+ dy? + dz*:

See section 10.3.1 for an example computation.

6.3.10 Forms

The human mind has rst to construct forms, independently, efore we can nd them in things.
| Albert Einstein (1879-1955).

xxx to do.
somewhere (perhaps not here)pullback of forms . xxx incl. a diagram too?
f.z 7 2"
I = dz
f () Iof
f (dz) d(z") = nz" ldz:

incl/xref to i example too.

xxx diagram with coords/parameterizations and dp vs. @=@|pwhich goes which way.
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6.4 The exterior derivative

Mathematicians are like Frenchmen: whatever you say to thenthey translate into their own language and
forthwith it is something entirely di erent. | Johann Wolfgang von Goethe (1749-1832).

6.4.1 De nition of d

And what are these uxions? The velocities of evanescent imements. And what are these same
evanescent increments? They are neither nite quantities,nor quantities in nitely small, nor yet nothing.
May we not call them the ghosts of departed quantities...?
| Bishop Berkeley, in  The Analyst: A Discourse Addressed to an In del Mathematician (1734).

Both [Lee2] and [Spivak2 ] de ne the exterior derivative in coordinates. Namely, if we have anr-form
b= f(Xe i Xm)dxg, A o™ dx,

then we write

d =

I
S
~—
<
e
<
3
N
o
ES
s
>
>
o
X

where the d is taken on coe cient functions in the sense of section 6.3.7 The d operator takesr-forms to
(r + 1)-forms. It can be shown that the following properties hold:

The d operator is unique, and is independent of change of coordirtes.
Given forms! and ,d(! + )=d! +d .

d(s!) = sd! fors2 R.

di! A~ )=di A~ +( 1)°90)1 A d | (This is the signed Leibniz rule )

(Note that the previous three items satisfy the de nition of an antiderivation  on the alternating
tensor algebra.)

d? = 0. [xxx xref to complex section.]
The following computational rules apply:

We simply write out the di erentials, then simplify.

From corollary 4.111, if ! is an odd-degree form then! ~ ! = 0. This applies in particular to the
1-formsdx et al.: dx” dx = 0.

We can replacedy * dx with  dx " dy.
Note that f dx is shorthand for f ~ dx.

We are working in the algebra of alternating tensors, with the wedge as multiplication. So, the usual
rules of arithmetic apply, e.g. the distributive property. However, see immediately below for the
commutativity rule.
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Example 6.51. B

! f(x;y;2)dy ™ dz+ g(x;y;z)dz” dx + h(x;y;z)dx " dy
d = d " rdy~rdz+ dg” dz® dx+ dh” dx” dy

(fydx+ fydy+ f,dz) * dy” dz

(oxdx + gydy + g,dz) » dz” dx

(hydx + hydy + h,dz) ~ dx* dy

fydx”™ dy” dz+ gydy”™ dz” dx+ h,dz” dx " dy

(fx + gy + hy)dx” dy” dz:

nm + + 1

Furthermore, if
F=(fg;h)

then we can write
(fx + gy + hy)dx*dy”dz=(r F)dV:

C

[xxx: major lack | geometric view of the d operator. Without this it's hard to come up with a geometric
notion of when two forms are cohomologous. Perhaps it su ceso work locally. Can | claim that then all k
forms are linear combinations ofdx; »# ” dxx? Then does it reduce to obtaining a geometric view off ?

If so: of of
d = = dx+ =dy:
@x @yy

Usedx, dy as spines. This is just the gradient (covariantly of course). How to extend to higher-level forms?

f (x;y) dx + g(x;y) dy

of @f @g @g
d = = dx+ —dy ~dx + —dx+ —dy ~d
@x @yy @x @yy y
@g Of
= —= = dx”"dy:
@y @x Y

First, plot a contour of f. Then, superimpose gradient arrows. Second, draw a quiverfarrows, with f and
g components in a pair of adjacent dotted triangles. Then, wha does @g=@y @f=@Jook like? ...]
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6.4.2 Forms in 3-space TBD

FydV =
fdy » dz+
F dx = gdz” dx+
f fdx + gdy+ hdz hdx ”~ dy fdv
d d d
O(RS)—- 1(R3)—- Z(RS)—- 3(R3)
6 6 6 6
Id F dx Fydv fdv
1 /o3 grad=r gy curl=r gy div=rr 1 /o3
c*(R;R) —— vect(R°) ———— vect(R?) ———— C* (R*R)
f F=(fg;h) F=(fg;h) f

Include the cor. 12 stu here. The property d®> = 0 means:

curl of grad is 0

div of curl is O

incl. X y in the diagram.
nydVv = dA.
need to showF ydV = (F r)dS. Lee lemma 13.25.

xxx here or somewhere else: closed, exaallx is exact;d is not; dA is exacti M is non-compact. Explain

6.5 Computations with tangent vectors and forms
6.5.1 When dx 6 dx: charts, embeddings, projections, and variance

also graph coordinates on, say, upper sheet of hyperboloidf &wo sheets. di erent meanings for @ =@etc.

xxx crucial distiction between enough coordinateqi.e. a chart) and too many coordinates(i.e. an embedding).
Neither is \wrong"; both have their uses. We simply need to becareful about what the symbols mean.

xxx peril: illustrate by example. On S?, the function f = x?+ y?>+ z2 1is 0 | obviously. Less obviously,
ydy” dz xdz” dx is also zero. Show this using spherical coordinates.

In the plane, we convertfrom polar coordinatesto rectangular coordinates as follows:

X _  rcos
y r sin
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Then [xxx point out directions] the following two pop
@ _ cos X
@r  sin Y
@ r sin
@ r cos
[xxx footing caveats] and
dx dx
dx = —dr+ —d
T w Ty
dy dy
dy = —=dr+ —d
S I

For the other four, it takes a bit more manipulation.
andd .

out easily:
0 1
=r _ X2+y2 A
- - (6.2)
X2+ y?2

y

X (6.2)
=cos dr rsin d (6.3)
=sin dr + rcos d: (6.4)

[xxx dis claim about the arctan nonsense.] First,dr

0 § 1
dx cos rsin dar _ @ x°+y y A dr
dy sin r cos d - xzy+—y2 X d
0 1,
X
dr - @ Xty y dx
d - s X dy
X2+y2 | |
B x y ' 1 dx
- D D
ee P x2+y?  dy
X y
- pX2+y2 nx2+y2 dx
XZZyZ Xzfyz dy
Second,@=@and @=@Yy
!
@=@r _ P Penr @=0x
@=@ y X @=@y
0 y 1 I
@=@x @ xiy A 1 @=@r
@=@y y X:+y2 X2 + y2 @=@
0
- @ px:wz xz+yy2 A @=@r _ rcos rrszin @=@r
S &y @=@ Ln_ e @=@
_ cos sin @=@r
- sin % @=@ -
So, as a nal result,
@@x: cos @@r 2 @@ dx=cos dr rsin d
@__. @ cos @ .
—=sin — + — — dy =sin dr +rcosd
@y @r r @ Y
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and

xdx + ydy @ X @ y @

dr = — = Pt —_—

' X2+ y? @r " x2+y2 @xX X2+ y2 @y
_ydx + xdy @ _ @ @

17 Ty @ Yex ey

[xxx compute norms and show, and plot: length of @=@is 1, length of @=@is r; spine length ofdr is 1,
spine length ofd is 1=r. Thus it's no surprise that d is unde ned at zero. ]

When we restrict to St, i.e. setx?+ y? =1 and project onto the tangents, then we have

@

@_ L
a@x sin @ dx= sin d
@_ @ _
@y cos @ dy=cos d
and
- @ _ @ @
4= vt xdy @ Yex' ey

[xxx then, use this to drive home the point about whendx 6 dx. Spine plots will make this quite clear.]

* k K

Note that [xxx e; with @=@and e, with @=@gquations 6.1 and 6.2 are the same as
@_exe, @ye

@ @rex @r@y
e_axe, eye
@ @ @x @ @y
Compare to equations 6.3 and 6.4:
dx dx
dx = d_rdr+ d_d (6.5)
_ody L dy
dy = ar dr + g d: (6.6)
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Graphically, we see

r F J| X =F(r )= r C(?S
y r sin
F (dx)= d(rcos )=cos dr rsin d QQ F dx
F (dy)= d(rsin )=sin dr + rcosd 00 F dy
@ F Ik @ - @@, @ve- C0S
Qr @r @r@x re@y sin
@ F I @ - @@, @y@ - rsin
@ @ @x @ @y r cos

Two points:

This echoes the discussion in section 4.6.7, wherein | notetiat column vectors (e.g. @=@xwhich are
contravariant, and row vectors (e.g. dx), which are covariant, change coordinates di erently.

This justies our use of @=@for vectors and dx for functionals: namely, the @ and d's cancel
correctly in the numerators and denominators in the above fomulas, in accordance with their respective
contravariance and covariance.

6.5.2 Stereographic coordinates on st

xxx dp, dq, etc. In terms of (known) d .

6.5.3 A gallery of curves and surfaces, part 2

xref back to galleryl, and have it xref here. what coordinate to use. computing partials. Make sure to do
upper sheet of two-sheeted hyperboloid; compare and conted @=@with @=@x

6.5.4 asdfasdfasdf

Formalize the following mnemonic: withi :M ! R™: M =ker F, TM =ker DF .
xxx xref to the SL problem from the nal review.

xxx Include here some references to vector calculus. Commasurfaces such as the sphere are a level set of
someF : R®! R. The gradient points in the direction of greatest change; itis the eld of vectors normal
to the surface. Perpendicular to that, F is (to linear approximation) constant. Now, v 2 kerDF means

146



DF v = 0 which simply means that the dot of v with DF is zero, i.e. v is perpendicular to the normal.
This is exactly what we would expect.
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6.6 Cohomologies

xxx cellular, simplicial, singular, de Rham w/ xref back to homologies sectoin. xxx note prefer singular for
the same reason as there.

xxx put the de Rham thm right up front. This is a representatio n theorem, equating singular cohomology
with de Rham cohomology. So, it su ces to work with the latter . Note that qual questions only ever ask
about de Rham cohomology.

xxx def or xref to closed, exact.

XXX in VS section, have already done sequences of mappingscinding exact and short exact ones. Then,
note d as a sequence of mappings. Then, closed mod exact as ker mod im

6.6.1 de Rham cohomology

De nition 6.52. de Rham cohomology

Theorem 6.53 (Poincae lemma). A contractible (technically, star-shaped open subsetU of R" has trivial
cohomologyH k- (U) for k > 0.

Remark 6.54. This means that if a form is closed on a contractible open set, then it is exact. fla form is
not closed, then the Poincae lemma does not apply.

long exact seqs, complexes, homology and cohomology. whereput this in the right order vs. d and @
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6.7 Section title goes here

This section is not quali er material.

6.7.1 Old-fashioned tensors

From [PDM 1:

Let x and y be coordinate functions (xxx for what). Thus, a point g (of what) has coordinates

coordinate system.

A set of m components, written Al, that are functions of the rst set of coordinates will become a set
of m components, denotedB', after transformation to the second set of coordinates.

A set of m? components, Written__A” , that are functions of the rst set of coordinates will become a
set of m? components, denotedB ! , after transformation to the second set of coordinates.

A set of m® components, written _Aijk , that are functions of the rst set of coordinates will become a
set of m® components, denotedB ¥ | after transformation to the second set of coordinates.

A tensor is a set of components that obeys some transformatiolaw. The number of su xes indicates
the rank of the tensor; their position indicates the type (covariant, contravariant, or mixed) of the
tensor.

A covariant 1-tensor is a set (?) A; satisfying, for eachi,

X @X
Bi = —A:
" @Y

A contravariant 1-tensor is a set (?) A' satisfying, for eachi,

i — X @Dy r.
B—r:1@A.

A covariant 2-tensor is a set (?) A satisfying, for eachi andj,

:X‘ X @k @R

Br —7 =i Arst
‘ @y @y

r=1 s=1
A contravariant 2-tensor is a set (?) Al satisfying, for eachi and j,

Bij = X @_y@_yArs:
r=1 s=1 @k @i
A mixed 2-tensor is a set (?) A} satisfying, for eachi and j,

XX ayax .,

r=1 s=1
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xxx several examples here. First, a simple rotation inR2. Show how linear functional, dot, and determinant
transform.

Try to express this in terms of concepts used in the course.

Is this just using the COB matrix?? Try a couple speci c examples.

(u;viw) x(ukel ;( U2€p + U3€3;V1€1 + Vo€ + V3€3; W1€1 + Wres + W3€3)
= uviwi (eisej;ex)
i j Kk
X X X
= u; Vj WkLijk
D«

xxx xref back to section 4.6.7: here we are generalizing thatoncept, which was done there for vectors and
functionals (i.e. tensors of type 1,0 and type 0,1).
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7 Duality

The union of the mathematician with the poet, fervor with meaure, passion with correctness, this surely is
the ideal. | William James (1842-1910), Collected Essays

xxx quack about chains and forms; homology and cohomology.

7.1 Integration

xxx xref to chapter 10 of [Rudin ].
De nition 7.1. Integral over a k-chain . ...

Proposition 7.2.  Well-de nedness with respect to choice of pullback ....
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7.2 Stokes' theorem

Here we discuss a generalized Stokes' theorem. This moderarfnulation includes several classical integral

theorems as special cases.

7.2.1 Stokes theorem for chains

steps (xxx make a picture):

cis a singlek-cube andw is a simple k 1)-form. Moreover c is the inclusion of [Q 1)< into RK. Write

out using de nitions of @¢cdw, Fubini, and the FTC on one variable.
Show independence of parameterization on [a]€ (source).
Let ¢ be an arbitrary k-cube (destination).

Sums ofci'sand ! 's.

7.2.2 Stokes theorem for manifolds

XXX need to de ne:
De nition 7.3. manifold with boundary

De nition 7.4. boundary of a manifold.

This is written @M If M has dimensionm,then @Mhas dimensionm 1.
De nition 7.5. integral

De nition 7.6. induced orientation

Let M be a compact, oriented manifold. Supposé¢ 2 ™ 1(M). Then

4 4

dl = I
M @M

xxx express in terms of the pairing of forms and chains:@is the adjoint of d:
!;ci = h; @a:
7.2.3 Proof of Stokes

[xxx rst use POUs to say why it su ces to work within a single ch art.]

[xxx next use chart invariance (cancelling dets) to say why { now remains to work in R".]

Sketch (needs a picture w/ transition function):
z z z

yH!= xHyH'!'= xHyyH'!'= xHe
V] U U U
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Let f be a O-form; letc be a 1-chain. That is, c is a smooth map from [Q1] to X.
z Z,
o

c

c (d) (pull & back to [0;1])
0
z 1
dc (f) (d commutes with pullback)

0
(cf)@) (cf)O) (fundamental theorem of calculus)
f(c(1)) f(c(0)) (de nition of pullback)

Meanwhile,
7 @c= 1 c¢1) 1 c0)
fo= f(c2) f(c0)
@c Z

= d:

c

See section 10.6.12 for the two-dimensional case. [xxx merdghat in here, or eliminate.]

Next, we will look at how the classical integration theoremsof section 2.6 are special cases of Stokes' theorem.
We will pay particular attention to how the classical notati on translates into the generalized notation.

7.2.4 The fundamental theorem of calculus

Let M be the closed interval p; b for somea;b2 R. Then @M= fa;bg. Let f(x) be a a dierentiable
function on [a; 4, i.e. f 2 °(M). For an antiderivative F(x) of f, i.e. dF=dx = f, we are accustomed to
thinking of the fundamental theorem of calculus as

Zy

f(x)dx=F(b F(a):
a

Using our current terminology, we can observe that the integand fdx is a 1-form. This is d of something,
namely, fdx = dF. Then we can write the left-hand side of the Stokes equation s

Zy Zy Zy
fdx = d—Fdx = dF;
a a dX a
and we can write the right-hand side as
z
F=F{M F(a):
@a;b]

7.2.5 Line integrals independent of path

xxx xref to the gure in section 6.4.

Let M be a curve (i.e. a manifold of dimension 1) oR? between pointsp and g. Then @M= fp;qg. Given
f;g : R?! R, we write the line integral
z

y f(x;y)dx + g(x;y)dy:
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The integrand is a 1-form, i.e.
fOGy)dx+ g(xy)dy 2 H(M):
To use generalized Stokes, we need to write the integrand ab of something. If f and g are smooth (which

we assume in this course) then in fact inton ], section xxx) there is a vector-to-scalar functionH : R2! R
such that

@_l— f: @_'— g
@x ' @y
Then @H aH
fdx + gdy= ——dx+ —dy=r H dx
IV “ax @y Y
where dx is the vector (dx; dy). Note that we can also write
@H @H
dH = —dx+ —d
@x @y’
SO Z 4
fdx + gdy= dH:
M M
Now we can use Stokes' theorem to say
z Z
dH= H=H() H(p):
M @M
Hence the classical result that Z

y fdx + gdy= H(q) H(p):

Note that the right-hand side is independent of the curveM , as we would expect from xxx cite.

7.2.6 Green's theorem

Let M be a connected blob, i.e. a bounded manifold of dimension 2niR?. (One might think of M as a
pancake, with R? as the griddle.) Let C be a closed curve around the perimeter oM. Use the positive
induced orientation (xxx put in a picture here) with tangent vectorrt. Let

L= f(qy)dx+ giy)dy2 *(M):
Then we want to compute |
. f (xy)dx+ g(x;y)dy:

Note that we have C = @M In the previous examples, we had to obtain the integrand asd of something.
Here, we are given the other side of a Stokes equation: we arévgn ! and all we need to do is to compute
d! . We have (xxx xref to above section)

di = d(fdx + gdy) = d(fdx) + d(gdy)
= %‘;jx+ %Ejy Ndx + %)%jx+ %}%/iy A dy
= %‘;gxwm %Bjy"dx+ %)%ix"dy+ %}%w dy
= %];Eiy’\ dx + %)%ix" dy
%S %; dx ~ dy:
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Thus 7 7 7
dl = @9 @F ngy= @9 @f .
M M @x @y M @x @y
and we obtain the classical result
Z |
@g @f

M @x @y

XXX need to write this in terms of the normal vector as well.

7.2.7 Classical Stokes

Let M be a 2-dimensional submanifold ofR3. That is, M is a surface, where the canonical example is a
potato chip. Let # be an outward-pointing normal vector. Start with a 1-form

'=B dx = Bi(xy;z)dx + Ba(x;y;2)dy + B3(x;y; z)dz:

XXX incomplete.

xxx think of: the work done by a magnetic eld around a wire equals ux of eld through interpolating
surface?

7.2.8 Divergence theorem

[xxx elaborate on this sketch]

Y4 Y4 Y4 Y4

(r F)dv= dFydVv)= FydV = F fdA:
M

M @™ @M

XXX more:

Le(dV)
Lr(dx”™ dy” dz)

d(F ydV) + Fy(d(dV))
(Le(dx)) »dy”~ dz+ dx” (Lg(dx)) ~ dz+ dx” dy” (Lg(dx))
d(Le(x)) M dy”™ dz+ dx”™ d(Lg(x)) » dz+ dx” dy”™ d(Lg (X))

Le(x) = (F1@=@%xF,@=@yF;@=@%= F;
etc.
Lr(dx~dynrdz) = dFyMdy”dz+ dx”dF,”dz+ dx” dy” dFs
= (r F)dv:

7.2.9 Cauchy's theorem
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7.3 Duality theorems

Pairing (see section 4.6.9) of homology and cohomology (cycles andrins). This:
KM) C(M)! R

via Z
(he)yn !

C

Induces a pairing of homology and cohomology:
Hgr(M) Hk(M)! R
via z
(CH )R .
C

which is well-de ned. Type up 4-13: pull back to I ™ and Riemann integrals.

Proposition 7.7  (Poincae duality) . If M is an orientable smooth manifold, then
Hik ¥(M) = Hir (M)

via 4

[rm <y 7 [O171 1A
M

Remark 7.8. We can remember that this theorem has orientability as a hypdhesis | else the integral of
a top form over all of M would be zero.

Remark 7.9. Also (via what map? \cap product” (?!?) with \fundamental cl ass" M ]):
H™ KM) = H(M):

Proposition 7.10 (de Rham Theorem). Let M be a smooth manifold. Then
Hiir (M) = Hi(M)

via z

e 71 [zt 1

c

Remark 7.11. Note that orientability is not needed here | the integrals ar e over chains, which are oriented.
Proof. See [ee2] for the full proof, which is non-trivial. Here, though, | wi Il note why it is that the above
map is well-de ned on cohomology (the! 's) and homology (the c's).

First suppose I ] = [ ]. Recall that cohomology classes are closed forms mod exafdirms, and homology
classes are cycles mod boundaries. This meahs is exact: say! =d . Then
z z z

by Stokes theorem, and because is a cycle so@c 0. Thus
z z
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Second supposec] =[b]. Then ¢ bis the boundary of a chain: sayc b= @aThen
z z z

Y4 4

O

Remark 7.12. One direction is obvious: given anyk form ! we can certainly turn it into a functional as
shown above. The payload is the other direction. This is redy a representation theorem , much like
proposition 4.64. Namely, all functionals on (real) homology come from forms in this way.

XXX nature of the explicit maps for M-V on cohomology: j, jy andiy iy, with j,(!) being just the
restriction of ! ) to U, etc. Make a nice picture. What about the connecting map ?
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7.4 Notation TBD

By relieving the brain of all unnecessary work, a good notatin sets it free to concentrate on more advanced
problems, and, in e ect, increases the mental power of the ree. | Alfred North Whitehead (1861-1947).

[xxx needs elaboration]

C«(M): k-chains.

Z(M): k-cycles @& 0).

Bk (M): k-boundaries c= @)

Hk(M): Z(M)=Bx (M) (kth homology is k-cycles modk-boundaries).

K(M): k-forms.
Z¥(M): closedk-forms (d! = 0).
BX(M): exact k-forms (! = d ).
HK(M): zX(M)=B¥(M). (kth cohomology is closedk forms mod exactk-forms).

and quotients (since@ =0 and d? = 0):

Ck(M) Zx(M) Bk(M), Hk(M) = Z(M)=Bx(M)
kM) zKM)  BX¥(M); HkM)= z¥(M)=B¥(M)

Here are the inclusions and their induced maps on chains anddmology (used, with varying connectivity

hypotheses, in Seifert-van Kampen and Mayer-Vietoris). Nde that the subscript # and  are covariant

functors from manifolds to chain complexes and homology graps: they preserve the directions of the arrows
(see notation 4.18).

. M@ . . C(M) . Hie(M)
Ju Jv Ju Jv Ju Jv
@ ’ % %o
u \ Ck(V) Ck(V) Hy (V) Hy (V)
iu@)@ 1V iu;:fl@@ iv# i l@@ 1V
U\ v Ce(U\ V) He(U\ V)

Here are the inclusions and their induced maps on forms and ¢mmology. Note that the superscript # and
are contravariant functors from manifolds to cochain compkxes and cohomology groups: they reverse the
directions of the arrows (see notation 4.18).

M k(M) HX(M)
ju @ iv I @ v ju @ v
u @ @v kK(U) @ @ K(Vv) Hk(U)@ @ H&(V)
. . - H# - H# . .
v @U\ Y N v KU\ V) v IU H@EU\ V) v

Behavior of induced maps:
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Induced maps on chains arénclusions. E.g. a chaincin U\ V is a chain inU by inclusion: iy# (c) = c.

Induced maps on forms araestrictions. E.g. aform! onM is a form onU by restriction: jfj(! )="1ju.

Short exact sequences of chain maps:

0 ! Ch(U\ V) A v

CU) Cuv) it oMy 1o
#@ o #@ _ _ #@
0 ! Ca(UVV) T CaU) Cea(v) YT CoaM) t 0
Long exact sequence of homology:
Hk(U\ V) oy v Hk(U)  Hk(V) Jup v Hk(M)
—hH (U V) oy v He 1(U)  Hk 1(V) Juy v Hk 1(M)
Short exact sequences of form maps:
0 kuyvy v kuy k) oy k(M) 0
"d "d "d
0 k 1(U\ V) o v k 1(U) k l(V) lv v k 1(M) 0
Long exact sequence of cohomology:
HXWU\ V) iy HX(U) HXV) v v Hk(M) 20—
BE
GRA
Hk YU\ V) v HE L(U) H* (V) lu v Hk (M)
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8 Flows

Flow with whatever may happen and let your mind be free. Stayentered by accepting whatever you are
doing. This is the ultimate. | Chuang Tzu (c. 370-301 B.C.).

xxx de ne in terms of di eomorphisms
xxx de ne ow , complete ow , one-parameter family
xxx make sure to xref back to the ODE section.

1-parameter group of di eomorphisms:

s t= s+t-

To convert a di eomorphism into a vector eld, we have the fol lowing formula:
00 11

@: X
v =2t @ayAA.
; @t t=0 z

z

[xxx How to convert a vector eld into a di eomorphism? Solve ODE? Include an example or two. xref to
Lee2 thms about existence.]

If
iy @ ey @ ey @
x - f(X,y,Z) @X+ g(X,y,Z) @y-'- h(X,y, Z) @Z

then solve
x = f(xy;2z)
y = 9(Xy;2)
z = h(xy;2):
Example 8.1. B (Fall 2001 qualifying exam, #4.) For each t 2 R, let  denote the map of $? into itself
which is de ned by 0 1 0 1
X cost)x sin(t)y
P F:@y A7 @ sin(t)x +cos(t)y A
z z

Show that  is a one-parameter group of di eomorphisms, and compute andyraph the vector eld v on S
for which  is the corresponding ow.

Remark: In de ning the vector eld v, please specify how you are viewing the tangent bundle of?.

Solution. To show that ; is a one-parameter group of di eomorphisms, we need to show:

Each . is bijective on .
Each : is smooth with smooth inverse.

For eachsandt we have ¢ = g+¢.
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First note that the map  may be written in matrix form as

0 1 0 _ 10 1
X cos() sin(t) O X
@y A1'@sin(t) cost) 0A@y A:
z 0 01 z

The matrix has determinant cos?(t) + sin?(t) = 1 6 0 so it is invertible, hence bijective. In particular its
inverse is 0o 1 0 1

X N cost) sin(t) O 10 X
@yA 1" @ sin(t) cost) 0A@y A:
z 0 0 1 z

This much shows that . is bijective on R3. To show bijectivity on S?, we need to show that (q) 2 S? for
all g2 S, and likewise for , . Now, we've already shown that , * is rotation by t (since cos( t) = cos(t)

and sin( t) =sin(t)) so it su ces to show this for ; only. Namely, the coordinates of (1;v;w) = (X;y;2z)
should satisfy u? + v + w? = 1. Check:

uz+ v+ w? = (cos(t)x sin(t)y)? + (sin(t)x +cos(t)y)? + z2

cos?(t)x  cos()sin(t)xy + sin?(t)y?
sin?(t)x? + cos(t) sin(t)xy + cos?(t)y?
z2

+ +

x?+y2+ 22 =1:

The transformation is linear, hence it is its own derivative and thus eminently di erentiable; likewise for
the inverse. (Remember we're checking smoothness for xetl. Smoothness with respect tot is a di erent
guestion.) For the composition property, we compute (usingthe sum formulas for sine and cosine)

0 1 0 ) 10 1
X cos@s+ t) sin(s+t) O X
«t@yA = @sin(s+t) coss+t) 0A@yA
z 0 01 z

cos(@) cos(t) sin(s)sin(t); sin(s) cos(t) cos@)sin(t); O 10 X !
@ sin(s) cos(t) + cos(s)sin(t);  cos@)cost) sin(s)sin(t); 0 A @y A

0; 0 1 z
On the other hand,
0 1 0 . 10 _ 10 1
X cos(@s) sin(s) O cos() sin(t) O X
s @y A = @sin(s) coss) 0A@ sint) cost) 0A@yA
z 0 0 0 1 0 01 z 10 1
cos(s) cos(t) sin(s)sin(t); cos@)sin(t) sin(s)cos(); O X
= @ sin(s)cos(t) + cos(s) sin(t); sin(s) sin(t) + cos(s)cost); 0 A @ y A
0 01 z

which is the same as desired. This was the last item needed torgve that the 's form a one-parameter
group of di eomorphisms.
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Recalling the necessary formula for the corresponding veot eld, we have

0 1
X

v = @ @y A
@tt=0 Z

N <

@ cost)x sin(t)y
= @ sin(t)x +cos(t)y A
@tt:O z

sin(t)x cosg)y !
@ cost)x sin(t)y A
0

t=0
o 1
y
= @ x A )
0 :
= y@=@xx@=@y:

This is of course rotation about the z-axis. [xxx insert gure here.] Here, we are viewing the tangnt bundle
as directional derivatives.

This is a vector eld on R3. [xxx to do: convert to graph coordinates, or spherical.] C

Example 8.2. B Here is a variation of the previous example. Let! = xdy * dz+ ydz” dx + zdx” dy.
Compute , (!). (In example 9.16 we will revisit this problem using the Lie derivative.)

Solution. Let ¢ = cos(t) and s =sin(t). Then, replacing x with cx sy and y with sx + cy, we have

(1) = (cx  sy)d(sx+ cy) " dz
+ (sx+cy)dz” d(cx sy)
zd(cx  sy) ™ d(sx + cy)

+

(ex  sy)(sdx” dz+ cdy” dz)
(sx+ cy)(cdz™ dx sdz” dy)
z(cdx sdy) ™ (sdx + cdy)

+ +

(ex  sy)( sdz” dx + cdy” dz)
(sx+ cy)(cdz” dx + sdy ™ dz)
z(c? + s?)dx ” dy

+ +

csxdz® dx+ ?xdy A dz+ s?ydz” dx csydy” dz
csxdz” dx+ s?xdy ~ dz+ c?ydz” dx + csydy” dz
zdx” dy

+ +

xdy N dz+ ydz” dx + zdx” dy
It

Note that this is a bit messy, only because | chose a form with hiree terms in it. C
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9 Lie derivatives and the Cartan calculus

If you do not change the direction in which you are going, you il end up where you are headed.
| Confucius (551-479 B.C.).

9.1 The Xy operator

XXX note we are revisiting this for tensor elds; xref back to section 4.7.15.
xxx xref back to d section as well.

xxX collect rules here.

Xyf =0
Xy!® = 1(X)
Xyt~ ) = (XyhH)r +( A~ Xy )

Rules for X y! :

(f@=@w(gdx” dy” dz) = fgdy" dz

(f@=@y(gdx" dy”~ dz) =  fgdx " dz

= gdz” dx

(f@=@z (gdx" dy” dz) = fgdx " dy:

In general,

f@=@xy(gdx;» " dxgk™ ™ dXm)=( 1)k lfg dx~ d\xk NN dXy)
where the overhat indicates that that term is omitted.

Mnemonic 9.1. Put your left fore nger over the @=@»and your right fore nger over the dxy. Write down
what remains, toggling the minus sign by the number ofd's between your ngers.
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9.2 Lie derivatives

Let X be a vector eld on a manifold M, and T be a tensor eld on M. The Lie derivative Lyx (T) is,
intuitively, the rate of change of T in the direction of X. We will see that Lx takes tensors to tensors of
the same rank. This is in contrast tod and X y which are rank-raising and rank-lowering operators.

9.2.1 Lie derivatives on general tensor elds

De nition 9.2.  Let X be a vector eld on a manifold M, with ow . Let T be a tensor onM . Then

Lx (T)= % (DT
t=

Meaning: How T changes under the ow in the direction of X : (1) Pull back (w/r/t ow | need to have
de ned pullback in terms of the di eomorphism map), then (2) di erentiate with respect to time.

xxx make a better diagram (and xref to pullback section(s)):

9.2.2 Lie derivatives on O0-forms

Proposition 9.3. Letf :M ! R, and let X be a vector eld onM. Then
Lx (f)= Xf

where the action of X on f is the directional derivative as usual.
Proof. [Lee2], proposition 18.9. O

Note that f and Xf are both functions from M to R, i.e. O-forms onM .

9.2.3 Lie derivatives on vector elds

De nition 9.4.  For smooth vector elds X and Y, the Lie bracket of X and Y is
[X;Y]= XY YX
via
X;YIF = XYf  YXf
for a smooth function f .

SinceXf and Y f are O-forms, just like f , it makes sense to computey Xf and XY f .

Vector elds on M become aLie algebra : Addition is as usual and multiplication is [X;Y ].
Proposition 9.5. Lx(Y)=[X;Y].

Proof. See [ee2], proposition 18.9. O
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9.2.4 Properties of Lyx and relationships between X vy, Lx, and d

De nition 9.2 is unwieldy. Propositions 9.3 and 9.4 (the proofs of which also use de nition 9.2) give us
better ways to compute Lie derivatives of 0-forms and vector elds. For forms in general, using a couple
more propositions along with the properties we've seen, wean derive some more handy properties that
allow us to manipulate Lx 's, X y's, and d's directly.

[xxx xref:]

Proposition 9.6.

de ~ )
Xy ")

Proposition 9.7.  Lx (! » )=Lx ()™ +!1 ~Lx().

d(!)’\ +( 1)ord(!)_|/\d
Xy(!)" +( 1)ord(!)!/\xy()

Proof. This is [Lee2], proposition 18.9. O

Remark 9.8. That is, while X y and d are antiderivations , the Lie derivative is a derivation . (See
de nition 4.126.)

Proposition 9.9. Lx(Yy( )= LxYy()+ Yy(Lx!).
Proposition 9.10.  For any smooth vector eld X and any smooth di erential form !,

Lx (d')=d(Lx!):
Proof. This is [Lee2], corollaries 18.11 (for 1-forms) and 18.14 (fok-forms). O

What does it mean to contract a one-form?
Proposition 9.11.  For a smooth function f and a vector eld X on a manifold M,
Xy(d)=d((X)= Xf:
Proof. The rst equality is by de nition of the X y operator (de nition 4.124): we insert X into the argument
list of the form . Sinced is a 1-form, we need no more arguments:
Xy(d)=d(X):
For the second equality, the only way | know how to do this is usng coordinates. The vector eld X is a

linear combination of the basis vectors@=@xwith coe cients being smooth functions, say, v;. Then, since
the dx;'s are the dual basis to the@=@s,

0 1
X @f @ X @f
d(X) = = dx@ v = A= — v
i=1 @x | i ' @x i=1 @x
xn @'
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Given these facts, we can now justify a formula which connealLy , X y, and d | all using simple algebraic
manipulations.

Proposition 9.12 (Cartan's magic formula). For any smooth vector eld X and any smooth di erential
form !,

Lx! = Xy@@d)+dXy(():
That is,
Lx =Xy d+d Xy:

Mnemonic 9.13. The d operator raises the degree of forms, theX y operator lowers degree, and the_x
operator preserves degree. So, with regard to degrees, welea0 = (1 1)+ ( 1+1). Or,

% &
& %

Proof. The proof is in three steps: (1) for O-forms; (2) for 1-forms;(3) for k-forms, using induction.
First suppose! is a O-form. Rename! to f for clarity. Then
Lx (f)= Xf

whereas
Xy(d)+ dXy(f))= Xf +0= Xf:

The rst term is Xf because of proposition 9.11. The second term is 0 becauXey is degree-lowering and
f is already of degree 0; our convention [xxx write and xref baward] is that X y of O-forms is 0.

Now suppose! is a 1-form. Then [xxx write and xref backward]! is a linear combination of 1-forms of the
form u dv, where u and v are O-forms. Recall that by convention, we omit the wedge in wedge products
when one factor is a scalar | e.g. u dv meansu” dv. Using the above propositions, the left-hand side of
the magic formula is

Lx (udv)

Lx(uy~Mdv+ u” Ly (dv)

= Xudv + ulyx(dv)

= Xudv + udLyx (v)

= Xudv + ud(Xv):
Recall that while the Lie derivative is a derivation, the X y and d operators are antiderivations. For the
right-hand side, we have

diudv) = du”dv
Xy(dudv)) = Xy(du” dv)

= Xy(du)rdv du” X y(dv)

= Xudv duXv
Xy(udv) = Xy@u)"dv+ uXy(dv)
= uXxv

dXy(udv)) = d(uXv)
= duXv + ud(Xv)
Xy(dudv))+ dXy(udv)) = Xudv duXv+ duXv + ud(Xv)
= Xudv + ud(Xv)
= Lx(udv):

166



[xxx nish up the induction part.] O

9.3 Lie derivatives and ows

XXX attribute:

Proposition 9.14. Let V and W be vector elds with associated ows ¢ and . The following are
equivalent:

Lv(W)=0.

Lw(V)=0.

[ViW]=0

W is invariant under the ow of V.

V is invariant under the ow of W.

t s~ s t-

xxx examples here, or xref to prolrevqual.
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9.4 Computations using Lie derivatives

An idea which can be used once is a trick. If it can be used morén&n once it becomes a method.
| George Polya and Gabor Szego

Let's summarize the results of the previous sections. If anxam question asks you if a form! is \invariant
under the ow" of a vector eld X, or asks you whether the \ ow of X preserves" !, what can you do?
Compute the Lie derivative of ! or Y with respect to X : the Lie derivative Ly (! ) is zero if and only if ! is
invariant under the ow of X (proposition 18.16 of Lee2]). Here are our options for carrying that out that
computation:

(i) Foravector eld Y, Lx (Y)=[X;Y] [xxxtype up qual problem and xref to it.]
(i) For a O-form f, Lx (f) = X(f).
(iif) For an exact form d!, Ly (d!') = dLx (!).
(iv) For a wedge of forms! ~ [ Lx (! » )=Lx ()™ +! ~Lx().
This allows us to _split up a lot of things. Perhaps not everything imaginable, but hopefully anything we will
see on an exam in our rst year.

Common quali er questions are: is a given form! invariant under the ow corresponding to a given vector
eld X, or does a given ow preserve a given form. We can answer these questions in the a rmative ly
showing that the Lie derivative Lx (! ) is zero.

Example 9.15. B On S?, does the ow of @=@preserve the area formdA?
Using spherical coordinates, the area form iglA =sin d ~ d . Then we need to compute
L@:@(Sin d ~d ):

Remember from [xxx write and xref] that there is an implicit w edge between 0-forms and higher-level forms,
so this is really
L@:@(Sin Nd ~d )Z

Using rule (iv), this splits up as
L@:@(sin )y~d ~d + sin A L@:@(d )~ d + sin ~d ~ L@:@(d ):

Using rule (i) we can set the rst term to zero. Can we use rule (iii) for the remaining two terms? Just
because a form traditionally is written with a d in front doesn't mean it is exact. Locally, at least, and
are O-forms. Then we have

0O + sin 7 dL@:@( )~ d + sin ~d A dL@:@( )=0:
Since this is identically zero, @=@preserves the area formdA.

Suppose the question asked about the ow of@=@ The second and third terms would still go away, but
the rst would not. C

Example 9.16. B (This example revisits example 8.2, using the Lie derivatie.) Show that the two-form
I = xdy” dz+ ydz” dx + zdx” dy is invariant under the ow of ;.
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Solution. We will compute the Lie derivative [xxx for prolrev, xref for ward or reorg] of ! in the direction of
v and [xxx]. Since

V= y@=@xx@=@y,
we have
Le(xX)= vy, Ly(y)=x; Ly(2)=0:

Recall that L, is a derivation, i.e. it follows the product rule through wedges. Also, it commutes withd for
exact forms. For the rst term of !, namely xdy * dz, we then have

Ly(xdy " dz)

Ly(x)dy” dz + xd(Ly(y)) ® dz + xdy " d(L(2))
ydy~ dz + xdx”~dz + xdy” 0
ydyr dz  xdz” dx:

For the second term:

Ly(ydzrdx) = Ly(y)dz® dx + yd(Ly(2) "~ dx + ydz” d(Ly(x))
= xdz~dx + yO~rdx ydz~dy
= xdz~dx + ydy” dz:

For the third term:

Lv(zdx" dy) Lv(z)dx ™ dy + zd(Ly(x)) "~ dy + zdx” d(Ly(y))

= 0dx~dy zdy~rdy + zdx” dx

= 0:
Combining these, we have
L,(') = ydy~dz  xdz” dx
+ xdz”™dx + ydy” dz
= 0:
which shows that! is invariant under the ow of . C

[xxx do it again using the magic formula. Much nicer.]

[xxx type up the August 06 qual problem and xref to it.]
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10 Problems

Each problem that | solved became a rule which served afterwla to solve other problems.

| Rere Descartes (1596-1650).

Here are various problems, along with solutions. The problms are taken from homework assignments, exam
reviews, and exams.

10.1 Geometry homework 1
10.1.1 Geometry homework 1 problem 2d

Find Df wheref :L(R")! R s given by A 7! det(A).

Hint: First consider the case whenA is invertible, i.e. det(A) 6 0. Then by the multiplicativity of the
determinant,

d det(A + tB) = d det(l + tA B)det(A):
dt t=0 dt t=0

Next, recall that the exponential map from L(R") to GL( R") has the form
=1+ A+ AZ21+ 0
and so )
e” "B = +tA 1B + (higher-order terms):
Thus

d det(l + tA 1B)det(A) = det(e® "B)det(A):

dt dt

Answer (due largely to Andy Lebovitz). Recall that det(eX ) = € X). So,
; d r(tA !B d tr(tA 1B).
D detja(B) = at e det(A) = det( A)a e :

t=0 t=0

Since the trace is linear, tr¢(A B =t tr(A B). Also note that A B is constant with respect tot. Then

D detja(B) det(A)% g (A 'B)

t=0

det( A)tr( A lB)E €
dt -
det( A)tr( A 1B):

Continuing to follow the hint, consider non-invertible A. Recall that when A is invertible [xxx have de ned
adjugate somewhere above],
1 adju(A),
T det(A)
From above,
adju(A)B

D detja(B) =tr det(A)

det(A):
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Since the trace is linear,
D detja(B) = tr(adju( A)B):

This formula applies for non-singular A. Note that tr is linear, the adjugate is polynomial in the coe cients
of A, and GL(R") is dense inL(R"). Thus by continuity, this formula holds for all A.
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10.2 Geometry homework 6
10.2.1 Geometry homework 6 problem 1

Supposez = ¢(y) is a positive function, and let M denote the surface of revolution obtained by revolving
the graph of g around the y axis in R3. Show that the tangent bundle of M is trivial by nding an explicit
trivialization.

Answer. It su ces to apply the global frame criterion  as de ned in section 6.2.4. Letq 2 M. Then in
rectangular coordinates forR® we can write

0
g(y) cos

q= @ y A
g(y)sin

We can parameterize this surface usingy and coordinates, where is the angle from the x axis to q. As
in section 6.3.4, we compute

o 5 1 0 .
@ . dWcos @ o(y) sin
@ = @ 1 A : @ = @ 0 A
Y gUAy)sin g(y) cos
It su ces to show that the sections @=@and @=@form a global frame, i.e. that they are linearly independent
and globally de ned on M. Clearly, they are globally de ned on M. (Unlike, say, [xxx xref] S?, where our
various coordinates leave some part of the sphere uncovergdt is also clear that @ =@and @=@are smooth
on M, as long asg(y) is smooth onR.

For linear independence, we can show that (1) both sectionsra non-zero, and (2) their dot product is
identically zero. For the rst claim, @@y is nowhere zero sincey(y) is assumed non-zero, and since sine and
cosine have no common zeroes. Likewis@ =@is nowhere zero due to the 1 in they component. For the
second claim, we compute the dot product

o 10 .
@ @ . SWecos g(y) sin

oG @ 1A @ 0A = g(y)gy)sin cos + g(y)gXy)sin cos =0:
Y g%y) sin o(y) cos
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10.3 Geometry exam 1
10.3.1 Geometry exam 1 problem 6

Fix 0 <r <R . Consider the manifold M obtained by revolving the circle (y R)?+ z? = r? around the
z-axis in R®. As we discussed in class, there is an explicit di eomorphis

0 1 0 1
o cos 0
St S M:(€ ;€ )7 (R+rcos )@ sin A+rsin @oA:
0 1

Express the Euclidean inner product (or metric), viewed as a 2ensor eld on M, in terms of the coordinates

Answer. See example 4.123. Here we are doing the same thing, but witharying coe cients in the sense of
sections 6.2.1 and 6.50. A pointg of M is

0 1 0 1 0 1
X cos 0
q= @y A=(R+rcos )@sin A+rsin @0 A:
z 0 1
SO we can write
0 ) 1 o . 1 0 1
@ sin @ sin 0
—~=(R+rcos )@ cos A and —=( rsin )@cos A+rcos @0A:
@ 0 @ 0 1

As in example 4.123, we want to write the metric tensorg as

)

_ @ @,
g=g9 @ @ d d+g @

Qe
o
o

where we can omit the diagonal termsg(@=@ ; @3@tc. since g is diagonal and f @=@ ; @=gadls an
orthogonal basis. First we nd g(@=@ ; @3j@Recalling that dx extracts the x coordinate, etc., this is

@ @ _ @ o
g @ @ (dx dx+dy dy+dz dz) @ @
_ @0 @0 eo
= dx dx @ @ +dy dy @ @ +dz dz @ @
= (R+rcos )2sin? +(R+rcos )2co€ +(0)?2
= (R+rcos )%
Next we nd g(@=@ ; @)@
@0 @ @ @ @ @@
g@,@ dx dx @ @ +dy dy @ @ +dz dz @ @
= r2sin® sii® +r2cod sin® +r2cog
= r2(sin? +cos® sin® )sin? + r?cod

= r2sin® + r?cog

= rZ
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So, we have

d d+g@@; d d

@l

_ ., @ @
- 9 @ @
(R+rcos )?d d +r?d d
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10.4 Geometry homework 11
10.4.1 Geometry homework 11 problem 2

Let x;y; z denote linear coordinates forR3. Let

0 1 0 1 0 1
@=@x X A
r=@@=@%; x=@yA; A=@B A; and dV = dx”" dy” dz:
@=@z z C
Show that for the exterior derivative
(a) d(A dx) = (r A)ydv

(b d(Aydv) div( A)dV:

Answer. The key is that dV is the volume operator , and as such is represented by a determinant. (Without
this observation this problem can be become a time-consumin mess.)

For part (a), rst we compute A dx. Using the shorthand notation A, = @A=@>»etc., we have
A dx = Adx + Bdy + Cdz:

Next we nd d of this. Recalling that [xxx cite]
dA = Aydx + Aydy + A,dz;

etc., we have

d(A dx)

(Axdx+ Aydy + A,dz) * dx
(Byxdx + Bydy + B,dz) * dy
(Cxdx + Cydy+ C,dz) » dz

+ +

(Aydy + A,dz) » dx
(Bxdx + B,dz) N dy
(Cxdx + Cydy) "~ dz

+ +

Aydy ™ dx + A dz” dx
Bydx” dy+ B,dz”" dy
Cydx " dz+ Cydy " dz

+ +

(Bx Ay)dx*dy+(Cy B;)dy”dz+ (A, Cy)dz" dx:

We also need to write outr A. This is
0
R s 2 Cy B;
z

r A= @=@x @=@y @=@:zA
A B C By Ay
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Let v;w 2 R3. Then, sincedV of m vectors in R™ is the volume of the parallepiped spanned by them, and
using the de nition of the contraction operator from [xxx ci te], we have

0 1
r A Cy BZ Az C:X BX Ay

(r A)ydv(v;w)=det @ v A = Vi ) V3
w W1 W2 W3

(Cy Bz)(vawz Vvawy)
(Az  Cx)(vawi Vviws)
(Bx Ay)(viwz  vowy):

+ +

At this point we should simply seethat

VoWs  VaW, = dy ™ dz(v;w);

etc. so
(r A)ydv + (Bx Ay)dx"dy
+ (Cy B)dy"dz
= (A; Cy)dz" dx:
as desired.

For part (b), rst we will nd out what A ydV is, then computed of it, then compare that to div( A)dV.

As in part (a), let v;w 2 R3. Then

0 1
A A B C
AydV(viw)=det @vA = v; v, Vs
w W1 Wz W3

A(vows  vawp) + B(vawy  viwz)+ C(viwp  Vowg):

Again observe that
VoWs  Vawp = dy ™ dz(v;w);

etc., so
AydV(v;w)= Ady"dz+ Bdz”" dx+ Cdx" dy:

Then, it is easy to compute d of this [xxx cite justifcations for steps]:
d(AydV(v;w)) = d(Ady”~dz+ Bdz”" dx+ Cdx”" dy)
= d(Ady~ dz)+ d(Bdz " dx)+ d(Cdx " dy)
Now [xxx cite], and using the shorthand Ay, = @A=@»etc.,
dA = Aydx + Aydy + A,dz;
etc. When we FOIL this out, we'll get 9 terms, but 6 of them are zero sincedx * dx =0 etc. So,
d(A ydV(v;w)) Aydx” dy” dz+ Bydx”~ dy” dz+ C,dx” dy” dz
= (Ax+ By+ Cdx"dy” dz
= div( A)dV:
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10.5 Geometry exam 2
10.5.1 Geometry exam 2 problem 1

Let v denote the vector eld on R? given by

2
% = XY
X y X
y y
Compute the ow of this vector eld.
Answer. We have
x _ x?
Yy y
which immediately givesy = y with solution y = yp€'. Plugging this into the rst equation gives
(;—)t( = X%y
S X 2dx = ygeldt
x 2dx = ype+ C
1=x = yge+C

... nish typing up later.

10.5.2 Geometry exam 2 problem 2

Recall that we can identify the tangent space ofS? at a point g with f(v;q):v 2 R%;q ? vg. Let
the 1-form (or 1-tensor) which is given by

((a;v))= w1
wherev; is the rst component of v.

(a) Express in terms of spherical coordinates; for S?, where 0< < and 0< < 2.

(b) Find two reasons that d =0.

denote

Answer. See example 4.120. Here we are doing the same thing, but withamying coe cients in the sense of

section 6.2.1. Using that approach, we have

@ @
= — d+ = d:
@ @
The point g is 0 1
cos sin
q= @sin sin A:
cos
Thus 1 0
sin sin COS CoS
@=@ q= @cos sin A; @=@= q= @sin cos A:
0 sin
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Now, extracts the rst coordinate, so

= sin sind +cos cosd:

For part (b), we might like to say that d? = 0. However, it is an unfortunate fact [xxx xref to the approp riate
section once | write it] that not everything that begins with d is exact. [in the xref, say whetherd and d
are in fact exact. | guess that's the same as asking whetherand are O-forms. Also in the xref, talk about
dA, etc.] Let's compute d using the above expression. We use the fact thatl is an antiderivation, so it is
linear and has a product rule. We get

d

d(sin sind )+ d(cos cosd )
d(sin )sin d sind(sin )d sin sin dd
+d(cos )cosd +cos d(cos )d +cos cosdd

Now, dd of anything is zero, andd ~ d =0 and likewise ford ” d , so we have
d = sin cosd ~d sind cos *d

Butd "d = d ~d sothisis zero.

10.5.3 Geometry exam 2 problem 3

Consider the manifold M = f(x;y;z) 2 R®:z = x? + y?g with the upward-pointing orientation.
(a) Compute the area form of M in x;y coordinates.
(b) Let 0 1
X
h:M! R2:@y A7) v -
z
If du” dv denotes the standard area form orR?, then h (du” dv) is a two-form on M . Express this two-form

in x;y coordinates.

Answer to part (a). Proceeding as in [xxx xref], we note thatM is a warp of the plane, so the graph
coordinatesx;y are appropriate. Then a point q 2 M is, in the x;y parameterization,

0 1
X

q=@ y A
X2+ y2

Since we are usingk;y coordinates, a basis for the tangent space dfl is f @=@x; @g@wynd a basis for the
cotangent space oM is fdx; dyg. As in [xxx], we compute

0 1 1 0 0 1
_@ = @ 0 A and _@ = @ 1 A .
@x o Yy gy
As in example 4.121, for the area formdA we have
@ @ . »
dA=dA —;— dx dy:
@x @y Y
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so it remains to nd out what dA(@=@x; @F@®y

Unlike in example [xxx], here we need a little trick: from vedor calculus we know that the area of the
parallelogram spanned by two vectors is the signed magnituel of their cross product. The cross product, in
turn, is just the normal vector to the surface:

0 1
Y 2
0 X =@ A
1y

R

The magnitude of this is p
knk= " 4x2+4y?+1:

To get the sign correct, use the right-hand rule: moving from @=@t0 @=@we would expectn to point
upward, so we want the positive sign, so we can leave the sigrsas. In conclusion, we have

dA = (4x?% +4y? + 1) 72dx" dy:

Answer to part (b). We have
0 1

X
h:M1 RR:@yA7 Y = X
\"
z

Then using [xxx write and xref; also include a pullback diagam], we have

h (du” dv)

h (du)y”~ h (dv)= d(u h)~d(v h)

d(xy) M dz=(ydx+ xdy)* dz=(ydx+ xdy) " d(X2+ yz)
(ydx + xdy) ~ (2xdx +2ydy) = 2y2dx ~ dy 2x2dx ~ dy
(2y?  2x%)dx” dy:

Note that the key to this problem is pulling back correctly; t he rest is straightforward computation.
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10.6 Geometry nal review
10.6.1 Geometry nal review problem 1

(a) Calculate the derivative of det: L(R") ! R.

(b) Determine the set of critical points for det.

Answer to part (a). This was done in homework 1, section 10.1.1. | remark that thelerivation of the formula
required several non-obvious tricks, so for an exam one wodllperhaps be advised to simply memorize the
formulas

D detja (B) = det( A)tr(A 1B) (det(A) 6 0)

and
D detja(B) =tr(adju( A)B) (general A):

Answer to part (b). Critical points A of det occur whenD detj, is not surjective. Since the target spaceR
has dimension 1 overR, the rank of D detj, is either 0 or 1. We need to nd points A such that D detja is
zero. This is precisely when adjuf\) is 0. Thatis, if Aisn n, then adju(A)is zerowhenall(@ 1) (n 1)
submatrices of A are singular.

This result is perhaps surprising: we might have guessed thathe critical points of det would be all the
singular matrices, i.e. those of rank less tham. However, the above tells us that the matrices of rankn 1
are also regular points for the det function. It is the matrices of rankn 2 or less which are critical.

10.6.2 Geometry nal review problem 2

(a) State the regular value theorem.

(b) Prove that SL(n;R) = fA 2 L(R") : det(A) = 1g is an embedded submanifold ol (R"). What is its
dimension?

(c) Calculate the tangent space to SLR") at the identity matrix.

Answer for part (a). See theorem 6.17 in section 6.1.5: ff : M ! N is a map of manifolds, and ifc 2 N is
a regular value off , then f 1(c) is either the empty set, or an embedded submanifold oM . In the latter
case,f 1(c) has dimensionm n.

Answer for part (b). Apply the regular value theorem, with M = L(R"), f =det, N = R,andc = 1. It
remains only to show that 1 is a regular value of det. In turn, 1is a regular value of det if all A in det (A)
are regular points. This would meanD detj, is surjective when det(A) = 1. Since R is a one-dimensional
vector space overR, it su ces to show that D detj, is not identically zero when det(A) = 1. From the
previous problem, we can use

D detja(B) = det( A)tr( A B):

Since det(A) = 1, D detja(B) won't vanish for that reason. The only remaining task is to argue that for
xed A, the B-linear function tr A 1B is not identically zero. If it were identically zero, it woul d be true for
B =A.Buttr A 'A=trl = n 60 where n is the dimension of A. This is a contradiction, so D detja is
not identically zero.
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By the regular value theorem, since the source spack(R") has dimensionn? and the destination spaceR
has dimension 1, SLR") has dimensionn? 1.

Answer for part (c) (Pickrell). As discussed in remark 6.22, the tangent space to SR") at | is ker(D detj ).
Now,
D detj, (B) = tr (B)

so the tangent space atl consists of the matrices with zero trace.

10.6.3 Geometry nal review problem 3

(a) Determine the critical points and critical values for th e function
0 1
X 2 2 2
F:RBI RR:@yA7 & ¥V X
z 2y

(b) Show that all of the level sets ofF are embedded submanifolds (of various dimensions).

Answer for part (a). From section 6.1.5 we know thatF is critical at all points q 2 R® such that DF has
rank less than 2. We can use the adjugate criterion (proposibn 6.23) to nd such points. The Jacobian of
F is

2X 2y 2z

DF="o 1 1

The determinants of 2 2 submatrices are
2x; 2x; and 2z 2y
The critical points of F are where these are simultaneously zero, i.e. when
x=0 and z=y:

Inserting these into the expression forF gives

001
0
A =
FQy 0
y

Answer for part (b). By the regular value theorem, the level sets for regular vales are embedded submani-
folds. It remains to show that the level set of the critical value (0; 0) is also an embedded submanifold. But
that level set is just the line z = y. This is certainly an embedded submanifold ofR3, since the inclusion

map is globally 1-1.

Remark 10.1 (Pickrell). This does not contradict the regular value theorem. The reglar value theorem
says that if ¢ is a regular value of the mapf : M ! N, then f *(c) is an embedded submanifold ofM .
Here we have an example of a critical value, the inverse imagef which also happens to be an embedded
submanifold. This shows that the converse to the regular vale theorem does not hold.
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10.6.4 Geometry nal review problem 4

Determine whether the function
0 1

2 2 @XA X2 y?
‘P11 R?: 7!
$S ' 321 Xy +tz

is a coordinate for $? in the neighborhood of the north pole.

Answer. It would be tempting to compute the rank of by taking the 2 3 Jacobian, but note that we have
1 R3! R? and as shown above is a map fronR3 to R2. We need to somehow restrict to S

My approach is that a coordinate chart on S* does give a two-dimensional surface. Consider a known-good
coordinate chart, namely the graph coordinatesx;y. If were also a coordinate chart, then the transition
function from graph coordinates to would be a 1-1 function. [xxx include a picture here, with two coordinate
charts mapping out of the upper hemisphere.] Let be the transition function:

X x? y?

y &y +(1 x* y?)i?
Now, is a non-linear function, but we can use the inverse functiontheorem. That is, by linearizing, we
can use the Jacobian test:

2X 2y

D =

At the point x = y =0, this is the zero matrix. So, is not 1-1 at the north pole, which is all that remained
to be shown.

10.6.5 Geometry nal review problem 5

(a) Compute the tangent bundle of the manifold

N=f(xy;z)2R3:22 x2 y?=1q:

(b) What is the dimension of TN, as a manifold?

Remark. [xxx insert picture here.] To get an idea for what this looks like, x y =0 and graph that cross-
section on the plane. Then by rotational symmetry you'll seethat near the origin x = y =0, it looks like a
paraboloid, but away from the origin x = y = 0 it straightens out. So, it's like a cone with a rounded end.

First answer to part a. This solution uses the technique shown in section 6.3.2. Thkiuses vector calculus
and linear algebra, and is a bit tedious. The next, more e cient, solution uses the technigue of section 6.3.4.

The tangent plane is perpendicular to the normal vector. To gt the normal vector, in turn, we can observe
that N is the level set of 1 andF (x;y;z) = z2 x? y2. As in section 1.5.4, the equation for the normal is

given by r F. This is 0 1
2x
rF=Q@ 2yA:
2z
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Let g = (x;y;z) be an arbitrary point on N. Then the normal vector footed at g is nq, as given above. Any
elementv, of the tangent spaceT My is perpendicular to ng, i.e.

Ng Vvq =0:

This means
0 1 0 1

Vi \1
nt N2 ng @QpA= 2x 2y 22 @A =( 2)Vvi+( 2y)Vvp+(22)v3 =0:
V3 V3

This is a linear system, wherev is the variable we want to solve for. The coe cients are (x;y;z). These
look like variables, but they're constant for each pointq = ( x;y; z). Since the matrix has rank 1, and we are
computing its kernel, from the rank-nullity theorem we expect kernel dimension 2. So, since there are two
degrees of freedom, we rst choose; =1 and v, =0, then v; =0 and v, = 1. It remains to compute what
the vz coordinate must be in each case. The factor of 2 is irrelevant, so the equation to be solved is

Xvi+ yvo  zvz =0:
For the rst and second choices, respectively, we have
X zv3=0 and y 2zv3=0:
These givevs = x=z and y=z, respectively, and so a basis for the tangent space aj is

f(1;0,x=2); (0;Ly=2g  or  f(z,0,x);(0;2;y)g:

Let's do a quick sanity check. Pickx =0 and y=1on N. Then z2 5 x2+ y2+1, i.e. z2 = 2. Take the
uppeppoint q = (x;y;z) = 0;1; 2. Then the tangent space at (Q1; 2) should be spanned by ( 2;0;0)
and ( 0;2;1). This makes sense: [xxx need a picture here.] As a secondedk, takex = y=0and z = 1.
Then the basis vectors for the tangent space are just (10; 0) and (0; 1; 0), which is what we would intuitively
expect.

Second answer to part a.This solution uses the technique shown in section 6.3.4. Fra the graph, we know
that M looks like a cone with a rounded end. In particular, it looks ke a deformation of the plane. So,
the key observation is to parameterizeM using the graph coordinatesx and y. (How do we know to use
these coordinates? We have to intuitively know, although wehaven't had algebraic topology until the next
semester, that this manifold looks like a plane.) Since we a parameterizing usingx and y, the tangent
space will be spanned by@=@and @=@A point g 2 M has coordinates

0 1
X

=@, y A:
x2+y2+1

As in section 6.3.4, we apply@=@and @ =@tp the rectangular coordinates ofq to obtain

0 1 1 0 1 0 1 0 1
1 0 1
@x p—x - @y p—y —
X2+ y2+1 X=Z X2+ y2el X=2

We can (and should) do the sanity check as in the rst solution. Note that the z in the denominator is
non-singular, since all points on this surface have non-zerz (in fact, z  1).
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Answer to part b. We have found that, at all points g of N, the tangent spaceT Ny has dimension 2, i.e.
it is a tangent plane. Thus, TN has dimension 2. Furthermore, the dimension of the tangent gace is the
same as the dimension of the manifold [xxx write and xref].

10.6.6 Geometry nal review problem 6

(a) What is a trivial vector bundle? Give an example of a vecta bundle which is not trivial.

(b) Suppose that M is an embedded submanifold of a manifoldX . How is the normal bundle of M inside
of X de ned? What is its dimension as a manifold (in terms of the dimensions ofX and M)?

(c) Consider S” R"*'. Show that the normal bundle is a trivial bundle.
Answer to part (a). xxx move up to main body of paper: | believe the following to becorrect: Let E be a
k-dimensional bundle over a manifoldM . A (global) trivialization is a di eomorphism E = M RX which

is linear on bers. | believe that, in practice, it su ces to ¢ onstruct smoothly varying, linearly independent
sections which are de ned globally onM .

xxx include the additional commuting-diagram criterion.

XXX move up to main body: surface of revolution andS' are examples of manifolds with trivial tangent

bundles. S?, on the other hand, has a non-trivial tangent bundle. Proof of this requires appealing to the

sphere-combing theorem, but we can provide some motivatioly noting that spherical coordinates are not

de ned at the poles, graph coordinates are only de ned on herispheres, stereographic projections are de ned
everywhere exceptone pole, etc.

Answer to part (b).

Answer to part (c).

10.6.7 Geometry nal review problem 7

Compute the ow for the vector eld on S? given by

0 1
z
v =~ =@ oA
i X
Answer. We are given 0 1 0 1
X z
@ LA = @ 0 A .
y4 X

Ideally we would want univariate di erential equations. Cl early we already havey = 0 from which y = yg
for all t. Di erentiating twice gives

0 1 0 1 0 1
@yA=-@ A-@ A

N € X
|>< O|N
N o X



The univariate ODEs x + x =0 and £ + z = 0 have solutions

acost + bsint
ccost + dsint:

X

z
Putting in initial conditions gives x(0) = a and z(0) = ¢, so

X = Xgcost+ bsint
Z = Zzgcost+ dsint:

Doing this required only looking at x and z independently. Now, to nd band d, we can use the coupling of
x and z from the original equation to obtain

Zpcost dsint
Xp cost + bsint

V4
X

Xp Sint + bcost
Zp sint + dcost

IN X

Equating like terms (namely, sin and cos) givesd = xg and b=z, so

Xgcost  Zzgsint

Yy = Yo
Z = Zpcost+ Xgsint:
or 01 O 10 1
X cost O sint Xo

@QA=@0 1 0 A@yA:
4

sint 0 cost Z0

Note that this motion is rotating about the y axis.

10.6.8 Geometry nal review problem 9

(a) Suppose thatM = R3. Explain the sense in whichd : X(M) ! kK*1 (M) (the exterior derivative) is
equivalent to the gradient, curl, and divergence.

(b) Suppose that A is a vector eld on R™. Show that
d(A ydxy N o™ dXy) =div( A)dxg ™ N dXy s

(Hence the exterior derivative onm 1 forms in R™ is equivalent to the divergence.)
Answer to part (a).

Answer to part (b). This is the same as problems 10.4.1 and 10.4.1 part (b), excegeneralized from 3 tom
dimensions. Proceeding as in then = 3 case, we let

0 1
1

A
Az K

Am
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by them, we have

Al Am
Vo1 Vom X
Acttdx, N i M dxym = R Aidxy M A @GN N idXn
5 5 i=1
Vm1 Vimm

where theb notation indicates omission. Recall [xxx cite] that

X

dAi = @—AdeZ
j=1 @X

Then using the linearity of the derivative,
hd
d(Aydxy ™ i Mdxm) = d Adxg ™A @GN N nidXn
=12 3
XX
_ T 47 @A

—dxj5dx1" A ®G N N idX
i=1 j=1 @x

Now, dx; * dx; = 0 so, as in the m = 3 case above, these terms are zero except wher= j, where the dx;
from the inner sum lIs the empty spot in the outer sum, making up the full dV form each time. We now

have
|

0 !
d(Aydxyg N i Mdxy) = @ dxis ™ N dxy
i=1 @x
which is precisely div(A)dV.
10.6.9 Geometry nal review problem 10
Let ! denote the two-form de ned on R® by
I = y2dx " dz:

Leti:S?*! R® denote the inclusion.
(a) Calculate i ! in spherical coordinates.

(b) Orient S? using the outward-pointing normal vector. Set up an explicit integral expression for
Z

()*

in spherical coordinates.

Answer to part (a). Convert directly to spherical coordinates for S* (i.e. use spherical coordinates foiR3
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with  =1):

(1) = (iy)?di x)~di 2)

= (i y)Pdi x) " d(i 2)

= (sin sin )?d(cos sin )" d(cos )

= sin? sin® ( sin sind +cos cosd )~ ( sind )
(sin sind cos cosd )M (sind )

= sin? sin?
= sin® sin*d ~d:

Alternate answer to part (a). We want to write ! = y?dx” dz in spherical coordinates onS?. As in problem
10.5.2, we should be able to write
@ @
=1 —;— d ~d:
@ @
We know that a point ¢ of S*> has coordinates
1
cos sin
q= @ sin sin A
cos
) . 0
sin sin COS coS
@_¢@ cos sin A —@:@sin cos A:
@ 0 @ sin
Then, recalling that dx and dz are the coordinate-extractor functions for x and z, respectively, we have
@ @ 2 @ @
== = dx™dz —; —
@ @ Y @@
. L2 @ @ @ @
= (sin sin dx — dz — dz — dx —
( ) @ @ @ @
= sin? sin® sin sif 0
= sin® sin®

which is in agreement with the previous result.

Answer to part (b). It turns out that what Pickrell means by \explicit integral ex pression" is a Riemann
integral of the form 7 7
=2 2

sin® sin* d d:
=0 =0

It remains to get the sign right. We have @=@going latitudinally and counterclockwise (i.e. west to eas)
and @=@agoing longitudinally toward the north pole. Thus to get an outward-pointing normal, using the
right-hand rule, we would need to order our basis forT S* asf @=@ ; @ @S0, no sign change is necessary.

187



10.6.10 Geometry nal review problem 11

Let @=@denote the outward-pointing vector eld in R" nf0g.
(a) Express this vector eld in Euclidean coordinates.
(b) Compute w = (@=@ydx; ™ ::: " dx, in Euclidean coordinates.

(c) Explain why the (n  1)-form ! restricts to the standard volume form on " 1.

Answer to part (a). The vector pointing outward from the origin at a point g of R" is simply q itself. Thus
we can get an outward-pointing normal vector by normalizing g:

9 _ ,(xairiiixn)
kak X2+ i+ X2

@=@= q=

Here we think of x; as the coordinates of@=@with respect to the basisf @=@x: ::; @=@xy for TR", which

Answer to part (b). If | am understanding this correctly, | can use problem 9b. Reall that the divergence
is de ned in R", not just R3: just dot the gradient with the vector in question. The ith component of @=@

is
Xj

(X2 + 111+ x2)1=2°

Then @=@»of that is

Q Xj _ 1 Xi 2Xj (71)
@x (xZ+ 111+ x2)1=2 (X2+ 1104 x2)172 (X2 + 1104 x2)3=2
_ 1 x{
(X2 + 1104+ x2)172 (X2 4+ 114 x2)32

24 ey g2 2
Xp+ i+ X7+ Xin

(X3 + 111+ x2)3=2

+ i+ X2

Answer to part (c). This is clear geometrically: think of the area form on S?, which along with d gives
the volume form on R3. To be more formal, though, .... [xxx type up Pickrell's remarks from the review
session.]

10.6.11 Geometry nal review problem 12

Let M be a manifold.

(a) Dene H iz (M).

(b) Attempt to de ne a product (the cup product) on H g (M) by
t1 =" I

Show that this is well-de ned, and hence cohomology is an asgiative algebra. (An example: Next semester
we will see that in the case of the torusM = St S', H (M) is the exterior algebra generated by §l ;] and

[d 2]
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Answer for part (a). For any givenr, the rtth de Rham cohomology ofM , written Hgs (M), is the quotient

space of closed-forms mod exactr-forms. (How can one remember this? There are two ways: (1¢ comes
alphabetically before e; (2) Since d> = 0, an exact form is closed. Thatis, if! = d ,thend! = d®> =0.

So, taking exact forms mod closed forms wouldn't make sense.

Now, the r forms, for eachr, form a real vector space. Therth de Rham cohomology is a quotient of vector
spaces, but we sometimes forget (in the sense of section 8Labout scalar multiplication and think of this

as a quotient of abelian groups. The set of alf forms, for varying r, form a tensor algebra. When we form
the quotient, we lose the multiplication, but this can be restored by considering the cup product (see below).

Thus H gz (M) is the union of H{z (M) for all r.
Answer for part (b). To show that the cup product is well-de ned, we need to show that it is independent
of choice of coset representative. By the symmetry of the prblem it su ces to show that the cup product

is independent of the choice ofl ; showing that it is independent of the choice of is essentially the same
problem.

Suppose
2; i.e. [a]=["2]
and x . We need to show that
P ]1=[12™ I
SinceH is the quotient of closed forms by exact forms, this means (sealso section 6.6.1) that! ; !, is
exact. That is, there is a form , of order one less than the orders of the ;'s, such that

1y !2:d:

We need to show that
™ I=[t2™ I

For this to be true, we would need

for some . But recall that the set of forms is an algebra, in particular a ring, with the wedge operator as
its multiplication. So, we can undistribute:

(1 ')~ =d ~ =d:
So our remaining task is to nd such a form . One might suggest = ~ . Then
d =d ~ +( 1 ~d
wherek = ord( ). Allwe needis ~d is 0. Butd =0 since is closed: recall that homology isclosed

forms mod exact ones.

10.6.12 Geometry nal review problem 13

(a) State and prove Stokes' theorem for the standard cube irR". (On the exam | might ask you to do this
for n = 2, which amounts to Green's theorem.)

(b) Explain why the classical divergence and Stokes' theorem are special cases of our Stokes' theorem.
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Answer to part (a). First, | will do n = 2. (The solution for the n = 2 case is due largely to Dr. Pickrell
and Yuliya Gorlina.)

We need to prove 7 7
dl = !
c @c

where c is the unit square |2, Sincen=2, n 1=1,! is a 1-form and hence [xxx write and xref to basis
statement] is of the form

I = f(x;y)dx + g(x;y)dy:
To nd the left-hand side of the equation to be proved, we needd! . This is

d') = d(fdx + gdy) = d(fdx)+ d(gdy)
= %&jx+ %‘;gy AN dx + %}%jx+ %@y A dy
= %zgy" dx + %}%Ix" dy
%3 %; dx  dy:

Now we can integrate this. At this point we switch [xxx write a nd xref] from the chains-and-forms notation
to the Riemann integral. Once the double integral is in that form, we can switch the order of integration,
which is justi able by Fubini's theorem . We have

z Z 12 ,-
a = T e ety
¢ o o O @y
y=1 x=1 x=1 y=1
= @%Ix dy @fdy dx:
y=0 x=0 @x x=0 y=0 @y
By the fundamental theorem of calculus (using it in reverse) this is
z z y=1 z x=1
ai = [9(1;y) 9(0;y)] dy [f(x; 1) f(x; 0)]dx:
[ y=0 x=0

Since I'm not sure how to continue with this, it seems like a god time to leave it as is, and work on the
right-hand side for a while.

R
For the right-hand side we have ;! where @ds the counterclockwise path around the unit square. | have
labeled the four pieces of the path pathc, c;, ¢3, and ¢y:

6Y

1
Cs
1?2
'C, C.
4 2 5

0 _C -

0 1 X
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Again switching tozthe Riemagn integral, we have

! (f(y)dx+ gx;y)dy) +  (f(x;y)dx + g(x;y)dy)
@c ch ZCZ
(f(y)dx+ g(x;y)dy) +  (f(x;y)dx + g(x;y)dy)
z® “z
x=1 y=1
. (f (x; 0)dx + g(x; O)dy) + . (f (L;y)dx + g(1;y)dy)
X = y=
z x=0 YA y=0
+ (f (x; D)dx + g(x; 1)dy) + (f (O;y)dx + g(0;y)dy)
x=1 y=1
Half of these vanish as discussed in remark 2.29. Then
YA x=1 Z y=1 Z x=0 YA y=0
! f (x; 0)dx + g(1;y)dy + f(x; 1)dx + g(0;y)dy

@c x=0 y=0 x=1 y=1
YA x=1 Z y=1 Z x=1 YA y=1

f (x; 0)dx + g(1;y)dy f (x; 1)dx 0(0;y)dy)
x=0 y=0 x=0 y=0
Z z y=1
(F(x;0) f(x 1))dx+ (9(1;y) 9(0;y))dy
x=0 y=0
z y=1 Zy

. [9(1;y) 9(0;y)]ldy . [f (1) f(x 0)]dx
y= x=

+

which is what we wanted to show.

10.6.13 Geometry nal review problem 14
(@) Let M be an oriented manifold. Prove that there exists a volume formon M which is positive at all
points of M .

(b) Suppose that M is an oriented compactn-dimensional manifold without boundary. Explain why the
map 4
Hir(M;R)! R:[']7! !
M

is well-de ned. Use (a) to explain why, in this case,Hg; (M; R) is not zero.

(c) It turns out that the map in part (b) is an isomorphism. Thi s has thpe following consequence: if is an
n-form on M, then there is ann 1 form onM suchthatd =1! i | ! =0. Explain why this is true
forM = Sl

10.6.14 Geometry nal review problem 15

Calcluate the area of S (the 2-sphere with radiusr), for the Euclidean area form. Calculate the volume of
the ball of radius r in R3, for the standard volume form. How are these two quantities &stractly related?
(Hint: consider a derivative with respect to r of something, and use units. This is a rst-semester calculs
guestion related to the second fundamental theorem of caldus.)

Answer. Let B2 be the lled unit ball in R3 (i.e.ZS2 = @B). Recall that

A= dA=4r2
r?
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and Z
4

V= dav = —r 3
rB 2 3

This gives usV=A= r=3, from which V = Ar=3. | will use this fact to check my work.

To use the second fundamental theorem of calculus (theorem.26), though, we need to write something of
the form Z
;

F(r)=  f()dt
0

which by the SFTC will tell us
FUr)= f(r):

So, think of the ball as the union of nested shells, and take th limit as the number of shells goes to in nity.
The volume of a thin shell from radius a to radius b may be approximated by

4a’(b a)=4 ach

whereh = b a. Summing up n such shells, from radiusr; to rj+;, with  r = rj41 i, gives

D4 1
Vh = 4rior
i=0
Taking the limit of this nite sum gives
Z, 3
V= 4tdi= 2
0 3
SinceA(t) = 4 t 2, we can also think of this integral as
Z r
V= A()dt:
0
The SFTC says
var) = A();
which we can verify by writing
o ar ér =4r = A(r):
Alternative answer (Pickrell). Start with
4y 3
V(r) = :
(N= -3
Use the de nition of derivative to obtain
_V(r+h)y V() _ . 4 (r+h)?3 r3
v = - = -
VAN = I}|1r!no h Ih|{n0 3 h
4 r3+3r2h+3rh2+h® 2 4 _,
= 3 Mmo h —§3r =4r -

Remark. I'm a bit puzzled by both of these solutions. Pickrell asked fo how the volume and area are
\abstractly related", but both solutions are quite concret e.
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10.6.15 Geometry nal review problem 16

(a) State a change-of-variables theorem for integration.

(b) Explain why it is true for a constant integrand, the standard cube as domain, and a linear change of
variables.

Answer. For part (a), see [Lee2], p. 593. [xxx move to main body of paper and xref.] LetA; B be compact
domains of integration in R™. Let f : B! R be continuous, and letG: A! B be a smooth bijection with
smooth inverse. Then Z Z

fdv = (f G)jdet(DG)jdV:
G(A) A

xxx include a nice pullback diagram here:G:A! B,f :B! R, f G:A! R.

For part (b), | will rst do a particular example. The emphasi s here is on having a quick computation we
can do in our heads, or on scratch paper, to make sure we have ¢hdet on the correct side of the equation.

Let x;y be coordinates forR?. Let | be the unit square in R? and let u;v be given by

u 2x  _ 20 X G X
v 3y 0 3 y y
Note that G is already linear, soDG = G, and det(G) = 6. Integrate the constant function 1. From
freshman calculus we have 7 7 7
y=1 x=1
dA = dxdy =1:
| y=0 x=0
Using the change of variablesu = 2x and v = 3y, we have
z v=3 z u=2
dudv =6:
v=0 u=0

So, we may safely remember that the detG) goes on the left-hand side, and we have
z z

det(G)dA = dA:
| G(l)

[xxx replace v = 3x with v = 3x and check that the signs are correct.]

Now for part (b) per se. We are integrating a constant function ¢(x) over the standard cubel of R™, with
linear change of variablesG : R™ ! R™. Again, G is already linear soDG = G. The function c is from
G(l) to R, so to get a map froml to R we need to pullc back asc G. This helps us get thecand thec G

in the right places. Then the left-hand side is
z

(c G)det(G)dV
|

while the right-hand side is 7

cdV:
G(1)

The compositionc G is again a constant function. (l.e. cis not the identity function.) Thus the constants
pull out of both sides, and the constant det(G) pulls out of the left-hand side. We have

det(G) dv; av:
| G(l)
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All we need to do to prove these two integrals are equal is regmize that
z

dv =det( G):
G(l)
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10.7 Geometry nal
10.7.1 Geometry nal problem 1

(a) Show that 80 1 9

< X =

M= @yA2R :x?+xy+y?+xz+2z°=1

: . ;
is an embedded submanifold oR3.
(b) The point g=(1; 1; 1)isin M. Find a parameterization for M in a neighborhood ofq.
Answer to part (a). When we hearembedded submanifoldve should think regular value theorem In partic-
ular, let f : R®! R be given byf (x;y;z) = x2+ xy + y?> + xz + z2. Then M is the level set off and 1, i.e.
M = f 1(1). By the regular value theorem (theorem 6.17), if 1 is a reglar value of f , then f (1) is either
empty, or is an embedded submanifold ofR3. Since part (b) gives us a point onM, f 1(1) is not empty.
So, it remains to show that 1 is a regular value off . This is the case if all preimages of 1, i.e. all pointp of

M, are regular points off . This in turn is the case if Df j, is surjective for eachp. Sincef : R®! R, Df j,
has full rank when it is non-zero. We compute

Df = 2X+y+2z;, x+2y;, x+2z:
For all of these to simultaneously vanish at a pointp = ( x;y; z), we would have
X= 2y;x= 2z;2x+y+z=0:

The rst two force y = z, so the last becomes 2+ 2y = 0. This combined with x = 2y givesx =0, and
so we havep = (0;0;0). But this point is not on M. Since any critical point lies 0 M, all points p on M
are regular.

Answer to part (b). When we hear parameterization in a neighborhood we should think implicit function
theorem. We know by the regular value theorem that M is two-dimensional, since it is de ned by one
equation in three unknowns. As in example 3.9, we can use theheorem to nd which variable to solve for
in terms of the other two. We compute Df as above, and substituteq = (1; 1; 1):

Dfjg= 0, 1, 1:
So, we can solve foly or z. Let's use z. We have a quadratic and a linear term inz in the equation
X2+ xy + y?+ xz+ 722 =1;

suggesting that we will need to complete the square. Solvindor the z terms gives

Z2+xz = 1 x* xy y?
22+zx+§ = 1 x* xy y2+§
z+§2 =1 xyr y? 3%2
32
z = 5 1y y %
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where we select the negative square root so that willbe latx=1,y= 1.

The problem asked for a parameterization (see de nition 6.3. So, to nish up, we write

0 1
X
;T B q y K-
2
501 oxy y2 ¥
10.7.2 Geometry nal problem 2
Consider the function 0 1

X
f: 1 R: @y A7xy:
z
(a) Find the critical points and critical values for this fun ction.
(b) Consider the point g = (1;0;0). Find the direction at this point in which f increases most rapidly.
Here | give two solutions, one using projections as discusdéan section 1.3.2, and the other using Lagrange
multipliers as discussed in section 2.7.
Answer to part (a) using projections. For part (a), let q = (x;y;z) vary over S2. On R3, we have
Df 4 = (y; X 0)q:

We need to restrict this to S>. Proceeding as in section 1.3.2, we recognize that= q is normal to S>. So, we
can decompose Df 4 into components parallel and perpendicular tort. Writing u for Df 4, and recognizing
that 1 already has unit length to we don't need to scale byt r, the parallel part (which we need rst) is

20 10 130 1 0 1
y X X 2x%y
Uu=(u NNn=4@x A @QyA5@y A =@ 2xy2 A:
0 z z 2xyz
Then 0 1
y 2¢%y
Dfjrg = Ur = u ug= @x 2xy2 A:
2xyz

The critical points of f are those for whichDf j;s has rank less than 1, i.e. zero. For this to happen, all
three entries must be zero. So, the following must be simultaeously true:

8
<y(l 2x?) = 0;
XL 2 = 0;
' 2xyz = 0:
That is, p_

[y=0 or x= 1=p2 ; and

[x=0 or y= 1= 2 ; and

[x=0 or y=0 or z=0]:
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Enumerating the possibilities, we obtain the 6 critical points

0 1 0 p_1
0 1=, 2

@ o0A; @ 1=2A;
1 0

The critical values of f are the images of these 6 points, which are

0; 1=2:

Answer to part (a) using Lagrange multipliers. The manifold S? is the zero set ofg(x;y; z) = x?+y?+ 7% 1;
the function to be maximized isf (x;y;z) = xy. We put

0'd T 091
y 2Xx
0 2z
If =0,thenx=y=0and z= 1. If 60,then z=0 and we can solve for in the rsttwo equations

to nd x andy. Note that if x =0 then y =0 and we havex = y = z = 0 which is not a point on S?. So,
we may divide by x and y. We obtain

y=2X
= X:Zy
2% = 2y%

Sincez = 0 and x? + y? = 1, we obtain for 6 0 the same four points as in the previous solution. These
four, along with the north and south poles for =0, give us the critical points

0 1 0 -1
0 p

1:p2
@ 0A; @ 1=2A:;
1 0

as before. Of course, the critical values are the same as well

Answer to part (b). The direction of greatest change off on S? is simply the gradient of f restricted to S?,
which is what we just computed. So all we need to do is evaluat®f + at g =(1;0;0). We obtain

1 0 1
y 2x%y 0
Dfjrg= @x 2xy2 A=@1A:
2xyz 0
10.7.3 Geometry nal problem 5
Let
_ydx+ xdy
- X2 + y2
on R?nf0g.
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(a) Show that is closed.
R
(b) Calculate ¢, , where S' has the counterclockwise orientation.

(c) Why does your answer to (b) imply that there does not exist a function f on R2nf0g such that f = ?
Answer to part (a).
Answer to part (b).

Answer to part (c).

10.7.4 Geometry nal problem 6

Let X denote the upper hemisphere o§? with the orientation induced by the upward-pointing normal vector.
Compute the integral Z

zdx” dy:
X

Answer, due in part to Tommy Occhipinti. My (the author's) natural inclination is to treat X as the surface,
with perimeter @ Xbeing the unit circle in the x;y plane. Then Stokes' theorem would give us
z z
d = I
X @X
In this scenario, the given formz dx” dy is d! , and we need to nd out what ! is. But will this search be
futile? That is, is zdz” dy exact? Recall that exact forms are closed, since? = 0: if d! = zdx” dy then
d?! =0. But this is
d(zdx" dy)= dz* dz” dy= dx" dy” dz = dV;

which is not identically zero. So,z dx” dy is not closed, and therefore is not exact.

Since | want to invoke Stokes' theorem, | can't have X being the surface and the perimeter being the
boundary. Instead, | must think of X as being the boundary. This requires a little leap of insight we have
to also include the closed disk on thex;y plane, the oor of the dome if you will, in the boundary. (One
hopes this will not a ect the value of the integral, or at least that the contribution will easily be taken back
out. However, the integral over the oor of the dome of zdx ™ dy is zero, sincez = 0 on the oor.) Here,
the volume to be integrated is the upper half of the lled sphere: call it H. If

I = zdx” dy;

then (as above)
dl = dv:
Then this problem is easy, since 7 7 7

I = d = dv:
X H H

Now, the integral of the volume form over the whole lled unit sphere is 4= 3, so half that is 2= 3.

198



10.7.5 Geometry nal problem 9

Suppose thatz = g(y) is a smooth positive function, de ned for y 2 [a;b]. Consider the surfaceM of
revolution with boundary, obtained by revolving the graph of g around the y axis in R3. Orient M using the
outward-pointing normal vector t, and consider the coordinates;y for M. [xxx orientation of . or xref to
prev sec.]

(a) Brie y explain why the oriented area form of M is given by the expression
p__
dA=g(y) 1+g%y)?d " dy:

(b) Suppose that G(y) is an antiderivative of g(y)p 1+ gYy)2 for y 2 [a; . Show that
= G(y)d
is a well-de ned one-form onM, and that d = dA.

[xxx rmk and xref that not everything starting with a d is exact.]

(c) Use part (b) and Stokes' theorem to compute the area oM in terms of G. (Remark: this just recovers
a standard formula for the area from rst-year calculus.)

10.7.6 Geometry nal problem 10

Determine whether the following statements are true or falg. Brie y explain your answers.

(@) The form ! ; = y?dx " dz is exact in R®, by the Poincae Lemma, becauseR? is contractible.
R

(b) If ! is exact in R? nf0g, then for any closed oriented curvec in R? nf0g, =0

(c) On &, L g-gdA = 0.
@=0

(d) If X isavector eldon M andf : M ! N is a map, then we can usd to push X forward to a vector
eldon N.
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10.8 Topology homework 1

10.9 Topology exam 1 review
10.9.1 Topology exam 1 review problem 5

For each real number , de ne a group action

Z St ostimett yme(rn:

(a) Determine the values of for which this is a free action, i.e. the stabilizers are all tivial.
(b) Fixavalue of asin (a)such thatZ is acting freely. Show thatZ is not acting properly discontinuously.

Answer to part (a). Either is rational, or it is not. First consider the former case. Put = a=bin lowest
terms. Then for n = b, we have

(b:@1 )71 i (+bab) = i (+a) = i

sincea is an integer. Thus the stabilizer of is non-trivial. (Note in particular that for =0, the stabilizer
is all of Z.)

Now consider the case when is irrational. For
@i = i +n)

requires

i (+n)g 2i —g= 10 gin

which puts n 0 (mod 1), i.e. n is an integer. This of course happens whem = 0. Now suppose
(seeking a contradiction) that there is some integem such that n = m and n 6 0. Then we may divide to
obtain = n=m. This shows that an irrational humber is equal to a rational number, which is the desired
contradiction.

Thus we have shown that the action has trivial stabilizer if and only if s irrational.

Answer to part (b).

10.10 Topology nal
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11 About the references

As mentioned in the preface, this is not a standalone work. Myfocus is on providing intuition and examples
that have been short-changed elsewhere; | o er little rigorin this paper since there is no lack of that in the
literature | as described below. The following annotations are based on my experiences and the experiences
of my fellow graduate students. This is an admittedly small sample.

Calculus:

{ [Anton ] is a standard approach to calculus.
{ [HHGM ] is a reform approach to calculus; the present work is in partinspired by this text.
{ [Hildebrand ] is advanced calculus.

Linear algebra:
{ [FIS] A senior undergraduate text. The determinant is done entitely without exterior algebra.
Abstract algebra:

{ [Herstein ]: A senior undergraduate text.
{ [DF], [Grove ], [Hungerford ], [Lang ]: Graduate texts. In particular, you can nd information
here about sequences, homology, and cohomology.
Analysis:
{ [Rudin ]. Contains some information about di erential forms.

Physics approach to geometry/topology:

{ [Abr ], [Frankel ]: | nd the latter more readable; also, the former is more rigorous.
{ [Pen]: Really a pop-science book, but with plenty of mathematicad content.

Di erential geometry:

{ [Spivakl ] is a slim, senior undergraduate text which manages to inclde much of the content
of the geometry course. It includes chains, forms, and dualy, ending in a proof of generalized
Stokes.

{ [Boothby ] and [Lee2] are textbooks for a geometry/topology course. | have receed positive
reviews of the former and mixed reviews of the latter. The later is fussy with proofs, which some
readers nd obscures the big picture. [ee2] is intended to be preceded by l[eel] (below).

{ I have received very few if any positive student reviews ofConlon ] and [Spivak2 ]. Fans of the
latter tend to be faculty members.

{ [Lee3] is a follow-on to a geometry/topology course.
Algebraic topology:

{ [Hatcher ] and [Massey ]: standalone sources for algebraic topology.
{ [Leel] is intended to precede [ee2].
{ All three are textbooks for a graduate geometry/topology cairse.

Classical di erential geometry:
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{ [Guggenheimer ]: Focuses on concepts such as curvature and torsion whichorf reasons | don't
understand, we no longer consider in a rst-year geometry carse.

Math history:

{ [BMA TI: history of math from ancient times. For this reason, information on the development of
calculus is limited.

{ [Dunham ]: initial development and rigorization of single-variable calculus.

{ [Crowe ]: the advent of the vectorial system.

{ 1 am still looking for a good reference on the historical devlpment of di erential forms.

Works similar to this one:

{ [Lamb ]: succinct notes for quali er preparation.

{ [Bachman ]: a work very similar to the present one, although less ambiibus. Intended for an
undergraduate audience (immediately post-calculus) altiough there is plenty of information for
graduate students. | have discovered this work only recentl; its geometrical approach to forms
is very similiar to mine.

Encyclopediae:

{ [CRC ], [PDM 1], [PM ], and of course Wikipedia.
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12 Typesetting and computation
The soul cannot think without a picture. | Aristotle (384-322 B.C.).

This section presents software-related issues related teearning di erential geometry and the preparation
of this paper. Such topics may seem ephemeral: software chges quickly. However, central concepts and
algorithms, happily, do not.

12.1 Files and tools

The source for this paper is (as of this writing) located at
http://math.arizona.edu/~kerl/doc/prolrev/

The top-level le is prolrev.tex ; most of the contents are inbody.tex . Figures and artwork are in the
figures/ subdirectory. The index was prepared using my Perl scriptkmkidx: see

http://math.arizona.edu/~kerl/index.php?v=software

for more information. PostScript was created usingdvips ; The PDF was created usingps2pdf. The psfrag
package was used to includeALEX math symbols in the gures. (Thanks to David Bachman for the tip!)

12.2 Figures and artwork

The gures in this document were created using Inkscape and Mtlab. The latter is discussed in more detalil
in section 12.3.

The cover art suggests that we can approach geometry/topolgy using the familiar circle as a starting point,
as discussed in section [write and xref].

The back art (page 209) depicts the following:

The large and imposing edi ce of geometry-topology is consucted of simple building blocks.

The black ag is the ag of anarchy: this paper was written by a graduate student, not a faculty
member. This paper emphasizes issues of interest and/or diculty for the learner.

The ag is apping and warped by the breeze | the same breeze which turns Green's theorem into
classical Stokes.

The ag is a 2-dimensional manifold with boundary, with rank -one fundamental group.

Although the edi ce may appear well-armed and impenetrable the central feature is an entryway,
through which we are invited.

The stones of the archway are reminiscent of a chain of singat 3-cubes.

Inscribed on the keystone is the generalized Stokes theorenn pairing notation.
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12.3 Matlab

XXX paste in some examples here. Include gradient, surfacepntour, and quiver.
How-to's.

http://math.arizona.edu/~kerl/doc/prolrev/figures

list.

See Kerl .
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13 Under construction and to be merged

13.1 temp

XXX rm2r:

De nition 13.1.  Let f be a vector-to-scalar function and letu = (u;v;w) 2 R®. The directional deriva-
tive of f in the direction of u is the dot product

et @f _ef

+ V— +

Duy(f)=u rf:u@x @y W@Z.

The directional derivative u r (f) is the rate of change of f in the arbitrary direction u. Note that the
partial derivative with respect to x is the directional derivative of f in the direction of ® and likewise for
y and z. That is, the partial derivative is the fundamental notion; the directional derivative is the more
general notion which has the partial derivative as a speciatase.

Now let u vary over the unit sphere, i.e. consider allu such that kuk = 1. Then u r f is biggest whenu
points in the same direction asr f. This is true because

u r f =kukkr fkcos = kr fkcos

where is the angle betweenu and r f. This is biggest when =0, i.e. whenu andr f point in the same
direction. This means that the gradient of f points in the direction of greatest change  of f .

13.2 Jacobian matrix TBD

XXX ways to motivate:

Normal to surface (gradient as column vector)

Tangent hyperplane to embedded submanifold: kernel of graignt.
Regular-value thm (express in vr. calc. terms here)

Impl. fcn. thm. (cf. Frankel)

Inv. fcn. thm. (cf. Frankel p. 29)
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13.3 Level sets TBD

De nition 13.2. Let f : R® ! R be a vector-to-scalar function. Thelevel set of f and c is the set of
points
fq:f(q)= co

Example 13.3. B If f(x;y;z) = x?+ y? + 72, then the level set off and 1 is the unit sphereS?. C

Remark 13.4. Recall that r f points in the direction of greatest change off . When evaluated atq, it is
also the normal vector to the level sets atq, written rt. Perpendicular to the normal is along the direction
of the surface.

Remark 13.5. The point-normal form  gives an equation for thetangent plane to the level-set surface.
That is, if
d = (Xo; Yo; Zo)

then the point-normal form of the tangent plane at q is
@f @f @f
—(X Xo)+ — + —(z z9)=0:
@)g 0) @)gy Yo) @é 0)

Write this [xxx to do] in terms of (1) dot product, when r f is thought of as a vector, and (2) kernel of linear
transformation Df = r f, whenr f is thought of as a1 3 matrix. Conclude that the tangent space atq
is the kernel of Df jq.

xxx to do: header style!!

xxx rcol/rowvectwo/three macros.

xxx really need to understand r F) ndA.

If & = (a;b;d! then what is dA? Try to work in point-normal form somehow . ...

XXX notation: col/row stack.
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