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Polysemy: the coexistence of many possible meanings for a word or phrase.

Let us be patient! These severe afflictions

Not from the ground arise;

But oftentimes celestial benedictions

Assume this dark disguise.

— Henry Wadsworth Longfellow (1807-1882).

Tensors are encountered throughout math and physics. They are presented in at least
four seemingly distinct guises:

(1) Tensor products from abstract algebra.

(2) Tensors as k-linear functions T : V k → R.

(3) Tensors as k-dimensional arrays: a 0-tensor is related to a scalar, a 1-tensor is
related to an array, a 2-tensor is related to a matrix, a 3-tensor is related to a
3-dimensional array, etc.

(4) Old-fashioned tensors from physics (“transform according to . . . ”). (In this guise,
tensors appear particularly foreign. You will see lots of superscripts, subscripts,
Einstein summation, etc. Why bother? Well, this is the way tensors are usually
viewed in applications, so this is the language that your scientific collaborators will
be speaking.)
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Freeness

Definition: An object (group, ring, module, etc.) O is free on a set S ⊂ O if for any
other respective object P and a morphism f : S → P there is a unique morphism f̃ from
O to P such that f̃ |S = f .

A commutative diagram is a bit more intuitive:

S O

P

inclusion

f f̃

-
@

@
@

@
@@R ?

J. Kerl (Arizona) Tensorama February 10, 2010 3 / 18



Freeness, continued

Still . . . what? I claim that we all already know this well — at least, if O and P are
vector spaces, S is a basis for O, and f is a linear transformation. Specifying the images
of the basis vectors uniquely specifies the images of all vectors, since any vector is a
linear combination of basis elements.

We have

A(v) = A

 

n
X

j=1

vjej

!

=

n
X

j=1

vjA (ej)

where A(ej) is the jth column of A.

Example:

„

1 2
3 4

«„

1
0

0
1

«

=

„

1
2

3
4

«

i.e.

„

1
0

«

7→

„

1
2

«

and

„

1
0

«

7→

„

3
4

«

.
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Relations

Definition: a relation is some non-trivial expression (containing elements of an object)
which is equal to the identity.

Group examples: aba−1b−1 = e (commutator relation) or am = e (finite-order relation).

Intuition: A set S ⊂ O is free on S if the elements of S have only the minimal relations
required for O’s category.

Example: If G is a free group on {a, b, c}, then ab, a2, b−1ac, etc. don’t simplify. But we
must permit aa−1 = e (which we wouldn’t permit for a free semigroup) since we want G
to be a group.

Example: A is free abelian on {a, b, c}. Sample elements: 3a + 2b, −7a + 4b− c.

A free abelian group is a Z-module.
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Modules and vector spaces

If we allow rational instead of integer coefficients, we have a free Q-module. Sample
element: 2

3
a + 4

7
b− 10c.

Free means no non-trivial relations among basis elements: Ka + Lb + Mc = 0 implies
K = L = M = 0. For vector spaces V , a basis set S is linearly independent ⇐⇒ V is
free on S.

Vector spaces (free R-modules) are typically obtained in one of two (very different) ways:

(1) Start with a large V and find a small S inside.

(2) Start with (a smaller) S and form a (larger) free R-module V generated by S.
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Equivalence classes and modding

We say we work with equivalence classes. But what we often mean are coset
representatives and transformation rules.

Example: Z/5Z. Do we really think

{. . . ,−1, 4, 9, . . .}+ {. . . ,−2, 3, 8, . . .} = {. . . ,−3, 2, 7, . . .}

every time we think of addition mod 5?

No! We think
4 + 3 = 7→ 2.

We choose canonical representatives {0, 1, 2, 3, 4}. When we do modular arithmetic, we
lift to Z and add (e.g. 7). Then we transform the answer, taking it ±5 repeatedly, to get
a canonical representative (e.g. 2).
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Tensor products of vector spaces

For vector spaces1 V and W , the tensor product V ⊗W is the free vector space2 on
V ⊕W — where the S is the (huge!) set of all (v,w) pairs — modulo the relations (for
all scalars r and vectors v, w, etc.):

(i) rv ⊗w = v ⊗ rw,

(ii) (v1 + v2)⊗w = v1 ⊗w + v2 ⊗w,

(iii) v ⊗ (w1 + w2) = v ⊗w1 + v ⊗w2.

So, elements v ⊗w are equivalence classes of (v,w) pairs with these transformation
rules. But here, unlike modular arithmetic, there is no clear favorite representative for
each equivalence class. And, the generating set S is already large.

Example: in R2 ⊗ R2,

„

2
4

«

⊗

„

3
5

«

=

„

1
2

«

⊗

„

6
10

«

.

1In this talk, for simplicity, I take them to be finite-dimensional.
2A free abelian group along with the scalar operations is a vector space.
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Tensor products of vector spaces in coordinates

Theorem: R⊗ V ∼= V with r ⊗ v 7→ 1⊗ rv.
Theorem: (V1 ⊕ V2)⊗W ∼= (V1 ⊗W )⊕ (V2 ⊗W ) and likewise on the right.
Consequence: Rm ⊗ Rn ∼= Rmn with basis elements ei ⊗ fj . Specifically,

v ⊗w =

 

m
X

i=1

viei

!

⊗

 

n
X

j=1

wifj

!

=
m
X

i=1

n
X

j=1

viwj(ei ⊗ fj).

(Not all elements of V ⊗W are of the pure form v ⊗w, but all elements are linear
combinations of such.) Coefficients of v ⊗w are viwj . We can write these in a tableau:

„

v1

v2

«

⊗

„

w1

w2

«

=
w1 w2

v1 v1w1 v1w2

v2 v2w1 v2w2

;

„

1
0

«

⊗

„

0
1

«

=
0 1

1 0 1
0 0 0

.

Then

„

2
4

«

⊗

„

3
5

«

=
3 5

2 6 10
4 12 20

and

„

1
2

«

⊗

„

6
10

«

=
6 10

1 6 10
2 12 20

.

Much nicer! Now we have 2D arrays in coordinates: the link between guises (1) and (3)
from the beginning of the talk is now becoming clear. Next, guise (2).
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Linear functionals

Definition: the dual space of V is V ∗ = {λ : V → R : λ linear}. It’s the vector space of
linear functionals on V .

Representation theorem (trivial for finite-dimensional inner-product spaces; Riesz-Fréchet
for infinite-dimensional inner-product spaces): Each linear functional λ ∈ V ∗ has a
unique u in V so that λ(v) = u

T
v = u

∗

v for all v. Specifically,

λ(v) = λ

 

n
X

j=1

vjej

!

=

n
X

j=1

λ (ej) vj

defines the vector u with
uj = λ(ej).

Then

λ(v) = u
∗

v =
`

u1 u2 u3

´

0

@

v1

v2

v3

1

A = u1v1 + u2v2 + u3v3.

A linear functional (in V ∗) is a row vector. A vector (in V ) is a column vector.
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Bases for linear functionals

Given a basis {b1, . . . ,bn} for V , the dual basis {b∗

1 , . . . , b∗

n} for V ∗ is such that

b
∗

i (bj) = δij .

How to compute them? Notation for matrices of row or column vectors (e.g. n = 3):

`

u v w
´

=

0

@

u1

u2

u3

v1

v2

v3

w1

w2

w3

1

A and

0

@

λ

µ

ν

1

A =

0

@

λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3

1

A .

Then b
∗

i (bj) = δij means
0

B

@

b
∗

1

...

b
∗

n

1

C

A

`

b1 · · · bn

´

= I i.e.

0

B

@

b
∗

1

...

b
∗

n

1

C

A
=
`

b1 · · · bn

´

−1

.

Example: if b1 =

„

2
0

«

and b2 =

„

1
1

«

, then

„

b
∗

1

b
∗

2

«

=

„

2 1
0 1

«

−1

=

„

1/2 −1/2
0 1

«

.

So b
∗

1 =
`

1/2 −1/2
´

and b
∗

2 =
`

0 1
´

.
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Multilinear functionals

Definition: φ : V ⊕W → R is bilinear if it is linear in each slot. Multilinear functions
φ :
Lk

i=1
Vi → R are defined similarly.

Examples: linear functional (k = 1), dot product (k = 2), determinant (as a function not
on matrices but on k vectors in a k-dimensional vector space).

Definition of tensor product of dual spaces: for λ ∈ V ∗ and µ ∈W ∗,

(λ ⊗ µ) : V ⊕W → R := λ(v)µ(w).

This is a bilinear map; similarly, tensor products of more than two dual spaces consist of
multilinear maps.

In coordinates:

(λ⊗ µ)(v,w) = λ ⊗ µ

 

m
X

i=1

viei,

n
X

j=1

wjfj

!

=

m
X

i=1

n
X

j=1

viwjλ(ei)µ(fj).

Now, the λ(ei)’s and µ(fj)’s uniquely specify row vectors as before. So now, for tensor
products of row vectors, just as we had with tensor products of column vectors, we have
tensors as 2D arrays in coordinates. Guises (1), (2), and (3) have been unified! Next:
guise (4), by route of first going back and shedding more light on guises (2) and (3).
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Change of basis

We call elements of V , V ⊗W , etc. contravariant tensors; we call elements of V ∗,
V ∗ ⊗W ∗, etc. covariant tensors. Why?

Notation: E, F are bases for V . Write [v]E , [λ]E for column/row vectors in E
coordinates. Similarly for [v]F and [λ]F .

Example:

E = {e1, e2} =

„

1
0

«

,

„

0
1

«ff

, F = {f1, f2} =

„

2
0

«

,

„

1
1

«ff

;

[v]E =

„

3
4

«

, [λ]E =
`

3 4
´

.

What are [v]F and [λ]F ?

„

v1,E

v2,E

«

=

„

3
4

«

= v1,F

„

2
0

«

+ v2,F

„

1
1

«

=

„

2 1
0 1

«„

v1,F

v2,F

«

;

„

v1,F

v2,F

«

=

„

2 1
0 1

«

−1„

3
4

«

=

„

1/2 −1/2
0 1

«

−1 „

3
4

«

=

„

−1/2
4

«

.
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Explicit change of basis for column and row vectors, continued

Definition: The change-of-basis matrix Q from basis E to basis F , so that
[v]E = Q[v]F , is

Q =
`

f1 · · · fn

´

E
.

What about [λ]F ? Regardless of basis used, λ(v) should be the same number:

[λ]E[f1]E =
`

3 4
´

„

2
0

«

= 6; [λ]E [f2]E =
`

3 4
´

„

1
1

«

= 7.

So,

[λ]F [f1]F =
`

λ1 λ2

´

„

1
0

«

= 6; [λ]F [f2]F =
`

λ1 λ2

´

„

0
1

«

= 7.

So [λ]F =
`

λ1 λ2

´

=
`

6 7
´

. Stacking these equations together and generalizing for
arbitrary n, we have

[λ]E
`

f1 · · · fn

´

E
= [λ]F

`

f1 · · · fn

´

F
= [λ]F I, = [λ]F ,

i.e.

[λ]E Q = [λ]F .

In summary, column vectors and row vectors transform differently on change of
coordinates:

[v]E
Q
←− [v]F ; [λ]E

Q
−→ [λ]F .
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Tensors in physics

Instead of vector spaces V and V ∗ with real coefficients, use tangent bundles/cobundles
TM and T ∗M over a manifold M . The coefficients are C∞(M) functions. (There are
vector spaces attached to each point on the manifold, and the coefficients vary smoothly
as you move from one point to another.)

The change-of-basis matrix in coordinates is Q = ∂xi/∂yj , whose inverse is
Q−1 = ∂yi/∂xj . Then

[λi]F =

n
X

j=1

∂xj

∂yi
[λj ]E covariant;

[vi]F =

n
X

j=1

∂yi

∂xj
[vj ]E contravariant.

Conventions: subscripts outside derivative denominators, and superscripts inside
derivative denominators, are called covariant indices. Superscripts outside derivative
denominators, and subscripts inside derivative denominators, are called contravariant
indices.

Physicists say that a covariant/contravariant tensor, respectively, is anything which
transforms this way on change of coordinates.

J. Kerl (Arizona) Tensorama February 10, 2010 15 / 18



Aside: Tensor algebras and mixed tensors

The tensor product of vector spaces is another vector space. You can add two tensors
together, or multiply one tensor by a scalar. But if you can moreover define some way
u ∗ v to multiply one tensor u by another tensor v, you have an algebra. The product is
typically of higher dimension than either of the operands: if u ∈ V ⊗ V and v ∈ V , then
u ∗ v ∈ V ⊗ V ⊗ V . This leads to a graded algebra which I would discuss more today, if
there were time.

If u ∗ v = ±v ∗ u then we get symmetric and alternating tensor algebras, respectively:
uv and u ∧ v.

One can tensor together V ⊗ V ∗, etc. Such tensors are of mixed valence, not purely
covariant or contravariant. In fact, plain old linear transformations may be viewed as
being of this form.
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There’s more . . .

Tensors in all four of their guises have been unified — they really are all the same thing.
There is a fifth guise, which I (unfortunately) stopped thinking about shortly after (on
the second attempt) I (high-)passed my geometry-topology qualifying exam: the
geometrical guise.

Namely:

• The bivector u ∧ v is the equivalence class of all vector pairs coplanar with u and v,
with the same signed area.

• The symmetric product uv is all pairs coplanar to u and v with the same inner
product.

• The bifunctional u
∗ ∧ v

∗ measures the area spanned by two other vectors, projected
onto the plane spanned by u and v.

• We can also form equivalence classes using things like

(λ ∧ µ)(u,v) = (λ ∧ µ)(u ∧ v) = det(λ|µ) det(u|v).

These generalize to three and more dimensions. Although I don’t know the history well
enough, I suspect that it was precisely these geometric notions which led to the axioms
we have today.
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Thanks for attending!
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