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Abstract — We propose a multivariate signal model with temporal and spectral dependence, well-fitted for
the modeling of radar signals. The proposed model is a hidden Markov chain for which observations are
Spherically Invariant Random Vectors, and temporal variation is described by a copula. It is still possible to
estimate the parameters of the SIRV, and we study the robustness of the estimation under different kinds of
copulas and various strength of dependence. Finally, we explore the influence of an omitted dependence for
statistical segmentation of radar signals based on hidden Markov chains.

1 Introduction

In this article, we address the modeling and treatment of multivariate signals which are non-Gaussian and
correlated temporally and spectrally. The non-Gaussian character of radar signals motivated the introduc-
tion of the K-law and its variants for the modeling of intensities [1,7], as well as the “Spherically Invariant
Random Vectors” (SIRVs) which are their extension for multidimensional signals [16, 8]. This approach
permits a correct statistical representation of effectively measured radar signals [6], and remains sufficiently
close to the Gaussian model to permit simple interpretations, all offsetting the problems of the robustness
of the estimation and an overly rapid decay of the tails of distributions. Received radar signals are gener-
ally dependent on the distance axis, and several approaches have been already proposed to describe that
dependence [12]. The objective here is to propose a family of stochastic processes which permit one to
simultaneously describe these two characteristics: the marginals pertaining to the SIRV family and whose
covariance matrices represent the spectral correlation, and a temporal (or spatial) dependence. We are in-
terested principally in the latter property, which we introduce using copula bias [10,14], a statistical tool
still little used in signal processing (although see [3]). We address the influence of this dependence in the
context of segmentation, which is often based on hidden Markov models in which the hypothesis of the inde-
pendence of the observations (conditionally on classes researched) is given. We recall in the following section
the definitions and properties of SIRV and copulas. We next show how these allow one to construct the
proposed model. We then use the latter to propose a triplet model [15] in order to simulate the observations
not respecting the independence hypotheses of “hidden Markov chain” (HMC) models. Varying the type
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of the copula and the force of the dependence, we test the influence of this dependence on the estimation
procedure and the segmentation. We then draw conclusions regarding the robustness and the reliability
of non-supervised segmentation procedures in radar signal processing, and more generally for stationary
processes.

2 Dependent SIRVs

2.1 SIRV model and notation

A random vector Z ∈ RM is called an SIRV if it may be written as

Z = U−1/2ε (1)

where ε is a Gaussian vector distributed as N(0,Σ) called “speckle”, and U is a positive real-valued random
variable, called “texture”. The distribution of Z is therefore a continuous mix of centered Gaussians. We
extend the definition of SIRVs, such as is usually given in radar, to the case where Z might have non-
zero mean. Such distributions are said to be of elliptic contour or simply elliptic, because of the form
of their density [9]. In applications, the most-used members of this family are derived from the gamma
distribution. When the U variable follows a gamma γ(ν/2, 2/ν) distribution, Z’s distribution is Student’s
T , parameterized by the triple (m,Σ, ν), and if the variable U−1 follows a gamma γ(a, 1/a) distribution, it
has the K distribution with parameters (m,Σ, a).

The matrix Σ is proportional to the variance matrix of Z. The parameters a, ν control the speed of tail
decay, and the normal distribution appear as a limiting case of the K and T as they tend to infinity. The
densities are written

T : f(z |m,Σ, ν) =
Γ(ν+M2 )|Σ|−1/2

(πν)M/2Γ(ν2 )

(
1 +

2p(z)
ν

)−−ν+M2

(2)

K : f(z |m,Σ, a) =
2aa|Σ|−1/2

(2π)M/2Γ(a)

(√
p(z)
a

)a−M2
Ka−M2

(
2
√
ap(z)

)
(3)

where p(z) = 1
2 (z −m)′σ−1(z −m), and ′ is the transposition operator.

2.2 Copulas

A two-dimensional copula is the cumulative distribution function of two random variables distributed uni-
formly on the square [0, 1]2, [5,10,14]. The interest in copulas is that they allow one to make a link between
the joint and marginal distributions. If F̃ is a joint cumulative distribution function of the two random
vectors (V1, V2), with CDFs F1, F2, we may assert thanks to the theorem of Sklar [14] that

F̃ (v1, v2) = C(F1(v1), F2(v2)). (4)

C is also the CDF of the vector (F1(v1), F2(v2)). For this reason, the derivative function c(x, y) = ∂2

∂x∂yC(x, y)
is called the density of the copula C. Copulas generalize in any dimension M as the CDF of random variables
with uniform marginals on the hypercube [0, 1]M . We propose three different families of parametric copulas
which we will use in the simulations of section 4.

Elliptic copulas are derived by by inverting the relation of equation 4 which allows one to obtain the expression
of the copula (or of its density) by means of known multivariate families.
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The (bivariate) copula of the normal distribution is

c(u, v; ρ) = (1− ρ2)−1/2 exp
(
−ζ

2
1 + ζ2

2 − 2ρζ1ζ2
2(1− ρ)2

+
ζ2
1 + ζ2

2

2

)
(5)

with ζ1 = Φ−1(u), ζ2 = Φ−1(v), and Φ−1 the inverse of the CDF of the centered and reduced (univariate)
normal.

The Student copula has a more complex expression:

c(u1, . . . , uM ) =
Γ(ν+2

2 )Γ(ν2 )√
1− ρ2 Γ(ν+1

2 )M

(
1 + ζ21+ζ22−2ρζ1ζ2

ν(1−ρ2)

)− ν+2
2

(
(1 + ζ21

ν )(1 + ζ22
ν )
)− ν+1

2

(6)

with ζ1 = T−1
ν (u), ζ2 = T−1

ν (v), and T−1
ν the inverse of the CDF of the univariate T distribution with ν

degrees of freedom. The parameter ρ ∈ [−1, 1] corresponds to the correlation coefficient of the covariance
matrix which appears in the definition of the elliptic law. However, if these copulas are used to define the
joint distribution of the vector V1, V2, ρ no longer corresponds to the (usual) Pearson correlation between
V1, V2, but rather to the Kendall τ between two random variables. The two measures of dependence are
linked by the relation τ = 2 arcsin(ρ)/π.

Archimedean copulas constitute another generic family of copulas, defined by the functional form following
C(u, v) = φ−1(φ(u)+φ(v)), with certain conditions on the function φ (among others, it must be positive and
decreasing on the interval [0, 1]). The Clayton copula is constructed with the function φa(t) = 1

α (t−α − 1),
and is

Cα(u, v) = max
(

(uα + vα − 1)−1/α
)
. (7)

The parameter α may vary within [−1,+∞) \ {0}. It is also related to the Kendall τ by the expression
τ = α/(α+ 2).

The Gaussian copula has the property of making independent the extreme (minimal or maximal) values, in
contrast to the Student copula [10]. For the latter, the presence of an extreme value in one of the components
leads an extreme value (in the same sense) in the other variable. When the copulas are used for the modeling
of the dependence of spatial processes, they allow one to reproduce aggregation phenomena of extreme values.
The Clayton copula only correlates minimal values.

2.3 Modeling of dependence by means of copulas

Let Y = (Yn)n≥1 be a stationary process (in the strict sense) with values in RM with elliptic marginals.
We propose to model the dependence with the aid of the theory of copulas. If Y were real-valued, it would
be possible to describe all the stationary processes with the aid of a copula and the CDF of Yn, thanks to
the theorem of Sklar. However, such a construction poses two difficulties: equation 4 does not extend to
random vectors (impossibility theorem, [14]) and the manipulation of a copula of n arguments to model the
law of (Y1, . . . , Yn) when n is large poses practical problems. With the goal of proposing a sufficiently large
class of stationary processes with SIRV marginals, we introduce the dependence through the bias of a latent
Markov scalar process. The SIRV hypothesis allows one to introduce, thanks to equation 1, two processes
U = (Un)n≥0, ε = (εn)n≥0. We then suppose that U and ε are independent processes and that the speckle
process ε is IID, while the texture process U is a stationary Markov process (hypothesis similar to that
taken in [12]). To entirely understand its distribution, it suffices to give the distribution of (U1, U2) which
we express as a function of their copula C, their marginals being known of the type of SIRV seen above. The
interest in the use of a copula to model the process U is double:
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(i) The ease of construction of a Markov chain having stationary distribution with density g (and CDF
G). The transition kernel is then written g(un+1)c(G(un), G(un+1));

(ii) The richness of types of dependence which can be envisioned thanks to the numerous families of copulas
which exist (elliptic, archimedean copulas).

We have p(yn | yn−1, . . . , y1) 6= p(yn | yn−1) because the process (U,Y) is a hidden Markov chain. The
estimation of the hidden process U on the basis of the observations y1, . . . , yn can turn out to be interesting
in applications.

Remark: Similar models have already been introduced in econometry for the modeling of financial temporal
series in which the variance (or volatility) is itself stochastic [11]. However, most often it is supposed that
the logarithm of the volatility has a linear evolution. Copulas allow one to propose non-linear dynamics for
the variance process.

3 Estimation of dependent SIRVs

We seek to estimate the parameters (m,Σ, θ = ν or a) of an SIRV based on the realization y1, . . . , yN of the
preceding process, which is an identically distributed but not independent sample. We estimate nonetheless
(m,Σ, θ) based on equations determining the maximum likelihood estimator (MLE) in the independent case.
This avoids having to treat the maximization of the log likelihood of an HMC, which requires procedures
which are complex and often costly in terms of calculation time [4].

3.1 Estimation

To calculate the MLE of an SIRV, we propose an EM algorithm exploiting the texture process U [13]. The
complete log-likelihood of a joint process (U,Y) in the independent case is decomposed into two terms,
which allow one to propose a procedure of seeking the maximum likelihood occurring through a succession
of maximizations over small intervals, instead of a search over large intervals (θ = a or ν):

log p
(
yN1 , u

N
1 | m,σ, θ

)
=

N∑
i=1

log(f(yi | ui,m,Σ)) +
N∑
i=1

log(gθ(ui)). (8)

The complete log-likelihood of the HMC (U,Y) only differs by the presence of the term

N−1∑
i=1

log(c(Gθ(ui), Gθ(ui+1)))

representing the dependence between observations. Thus the estimate used under the (false) hypothesis of
independence returns to modify the EM algorithm corresponding to the true model during the update of the
parameter θ. The re-estimation formulas in the independent case are:

m(n+1) =
∑N
i=1 w

(n)
i zi∑N

i=1 w
(n)
i

and Σ(n+1) =
1
N

N∑
i=1

w
(n)
i (zi −m(n+1))(zi −m(n+1))′ (9)

with w(n)
i = E[Ui | zi,m(n), σ(n), θ(n)]. The texture parameter is obtained by the solution of a unidimensional

non-linear equation depending on the density gθ which may be written in the form

θ(n+1) = ψ(θ(n), (w(n)
i )1≤i≤N ). (10)
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3.2 Influence of dependence

The maximization of the likelihood (8) always gives consistent estimators, but ones whose variance is larger
than that of the MLE. The EM algorithm, with samples of small size, often gives a biased estimator, due
to being trapped in local maxima of the likelihood. In the case of a sufficiently large sample (N = 500),
this problem is attenuated and tables 1 and 2 allow one to evaluate the effect of the dependence on the
estimation of the tail parameter (estimated by Monte Carlo over 200 trials). We use the square root of the
mean quadratic diffence (RMQD) of the estimator in order to give an indication of the fluctuation of the
estimator, and also of its bias.

The parameters (m,Σ) are correctly estimated, and the variance of the estimators remains stable and close
to the independent case. The difference becomes notable at τ = 0.8. The tail parameter is the one most
affected by the dependence, that which returns to misestimate the multiplicative factor of the covariance of
an SIRV.

When the distribution tails are thicker (e.g. the case of the T distribution with regard to the K distribution
considered) the influence of the dependence of the texture is more important. The correlation of extremes
by the Student copula does not deteriorate the quality of the estimate with regard to the Gaussian copula.
It is, on the other hand, the type of the dependence structure which modifies the segmentation performance:
with the same τ of Kendall, the Clayton copula more strongly reduces the variance of the estimators.

4 Segmentation

4.1 Conditional dependence in the HMC

In contrast to the homogeneous case treated in section 2, we suppose that we have several zones of different
characteristics, and that these are representable by a hidden Markov process X = (Xn)n≥1 with K classes,
such that the distribution of Yn conditioned on Xn = k is elliptic with parameters (mk,Σk, θk). We seek
to estimate the process X in a non-supervised manner, using the Maximum a Posteriori Marginals (MPM)
Bayesian estimator, supposing that we have a hidden Markov chain.

We introduce a dependence between the observations, conditioned on the states through the bias of the
texture process U which allows one to evaluate the robustness (by means of the differences in the hypotheses
of the model) of the non-supervised segmentation procedures in the case where the hypothesis of condi-
tional independence of the observations is placed under suspicion. This supplementary spatial correlation
is introduced by a copula c modeling the dependence of (Un, Un+1), such that the process (X,U,Y) is a
homogeneous stationary Markov chain (this is a particular case of triplet Markov chains). This new model
also generalizes the univariate model [13], as well as the multivariate model [2].

4.2 Non-supervised segmentation with HMC-IN

The segmentations are obtained under the hypothesis of conditional independence of observations, for a
model of 3 classes in dimension 2. In the example considered, the means are m1 = (0, 0)′, m2 = (1.5, 1.5)′,
m3 = (3, 3)′, and the variances are all normalized with distinct correlation coefficients ρ1 = 0.4, ρ2 = 0.2,
ρ3 = 0.5. Finally, the tail parameters are ν1 = 5, ν2 = 10, ν3 = 15 for the T distribution, and a1 = 2.5, a2 =
5, a3 = 7.5 for the K distribution. The error rates reduce slowly with comparison to the independent case
(Gaussian case with τ = 0), and show a strong spread only in the case of the Kendall tau of 0.8. The
deviations of the error rates remain stable but become larger in the independent case for τ ≥ 0.59, indicating
a greater variablity in the quality of non-supervised segmentations, which is particularly clean in the case of
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the Clayton copula (for the T distribution and in lesser measure for the K distribution).

5 Conclusion

The statistical model proposed allows one to describe different dependence structures in the SIRV process,
often used in radar. The process (U,Y) is an HMC whose originality is the use of copulas for the modeling
of the dependence of the hidden process, and we have presented several copulas inducing different types of
dependence. A short experimental study shows that dependence reduces the estimates of the distribution
tails, moreso if the tails are large and the sample size is small. In the frame of non-supervised segmentation,
we have extended the model of the couple chain (X,U) introduced in [3] to the triplet (X,U,Y) in order
to introduce a conditional independence in the observations. The influence of the latter remains weak when
the classes are well separated (notably by distinct means), but it is notable when the dependence increases
strongly. A deeper study needs to be taken when the classes have close characteristics (among others,
zero means) and to identify the families of copulas likely to represent the dependence of real radar data.
The development of estimation methods based on the true likelihood of the model also constitute an axis
of development, in order to apply non-supervised segmentation methods in the context of Markov triplet
models [15].

A Selected vocabulary items

French English
Fonction de répartition (FDR) Cumulative distribution function (CDF)
Éstimateur de maximum vraisemblance (EMV) Maximum likelihood estimator (MLE)
Taux d’erreur Error rates
Écart-type Deviation

B Copulas and Sklar’s theorem

(The following is from the Oxford Dictionary of Statistics.)

A copula is a function that relates a joint CDF to marginal CDFs of the individual variables. If the
marginals are known but the joint is unknown, then a copula can be used to suggest a suitable form for the
joint distribution.

Let F be the multivariate distribution function for the random variables X1, . . . , Xn and let the CDF of Xj be
Fj for all j. Define random variables Uj = Fj(Xj), so that the marginal distribution of each Uj is uniformly
distributed on the unit interval. Assume that for each value uj there is a unique value xj = F−1(uj) (i.e.
assume that the marginal CDFs are invertible) and let the joint CDF of U1, . . . , Un be C. Then

C(u1, . . . , un) = P (Uj < uj for all j) = F{F−1
1 (u1), . . . , F−1

n (un)},

for all u1, . . . , un ∈ (0, 1) since Uj < uj if and only if Xj < F−1
j (uj). The function C is called the copula.

An equivalent relation to the above is

C{F1(x1), . . . , Fn(xn)} = F (x1, . . . , xn),

for all x1, . . . , xn where uj = Fj(xj) for each j. Sklar’s theorem states that, for a given F , there is a unique
C such that this equation holds.
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Note that it may well not be possible to express the inverse functions F−1 in closed form (cf. the multivariate
normal distribution).

Assuming that the copula and the marginal CDFs are differentiable, the corresponding result for PDFs is

f(x1, . . . , xn) = c{F1(x1), . . . , Fn(xn)}f1(x1), . . . , fn(xn).

If X1, . . . , Xn are independent, then the left-hand side factors and we have

c{F1(x1), . . . , Fn(xn)} ≡ 1.

Thus the copula encapsulates the interdependencies between the X variables and is therefore also known as
the dependence function. The joint PDFof U1, . . . , Un is

c(u1, . . . , un) = f(x1, . . . , xn)/{f1(x1) · · · fn(xn)},

where xj = F−1(uj) for each j.
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