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The probability model

State space: ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions.
Point positions: X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ.

The Hamiltonian arises from consideration of the Bose gas [Betz and Ueltschi]:

H(π) =
T

4

N
X

i=1

‖xi − xπ(i)‖
2 +

N
X

ℓ=1

αℓrℓ(π).

X’s (for now) are on the cubic unit lattice. Gibbs distribution: P (π) = e−H(π)/Z. Not
important for today’s talk: αℓ’s are cycle weights; rℓ(π) counts the number of ℓ-cycles in
π.

High T : identity only. Low T : uniform distribution. Intermediate T : individual jump
lengths remain short, but below a Tc, long cycles form. Quantification of ∆Tc as
function of interaction strength is discussed in my dissertation (March 2010).
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Metropolis sampling

The expectation of a random variable S is

E[S] =
X

π∈SN

P (π)S(π).

The number of permutations, N !, grows intractably in N . The expectation is instead
estimated by summing over some number M (105 or 106) typical permutations. The
sample mean 〈X〉M is now a random variable with its own variance.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of detailed
balance, autocorrelation, batched means, quantification of variance of sample means, and
finite-size-scaling analysis of finite-lattice computational results.

Metropolis step (analogue of single spin-flips for the Ising model): swap permutation
arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles:

As usual, the proposed change π → π′ is accepted with probability min{1, e−∆H}.
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Winding numbers: SO, SAR, and band-update algorithms

Figure part 1: a long cycle on the torus almost meets itself in the x direction.

Part 2: after a swap-only step (above), one cycle winds by +1, and the other by −1.
Metropolis steps create winding cycles only in opposite-direction pairs; total Wx(π) is
still zero.

Part 3: if we reverse one cycle (zero-energy move), Wx(π) is now 2. This is the
swap-and-reverse algorithm. This permits winding numbers of even parity in each of the
three axes.

One idea to get all winding numbers: band updates. Compose π with a winding L-cycle
τ . We obtain π′ = τπ, with winding number shifted by ±1 along a specified axis.

Problem: acceptance rate is approximately e−L; too low.
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Worm algorithm

Another idea: Adapt PIMC worm methods (Ceperley and Pollock 1986, and many others
since), which break and re-join Brownian bridges. Here, open and re-close cycles. An
open cycle will be able to wander around the torus, tunneling through the
winding-number energy barrier which closed permutations have.

Use permutations on N + 1 points: the (N + 1)st is the wormhole point, w. Closed
permutations have π(w) = w; open permutations have π(w) 6= w.

Goal: invent energy function H ′, Gibbs distribution P ′, and Metropolis algorithm for
SN+1 such that the marginal distribution on SN+1, conditioned on closed permutations,
matches the RCM Gibbs distribution. Then, random variables will be sampled only at
closed permutations.

Theorem: Let SN →֒ SN+1 by π(w) = w. If H(π) = H ′(π) for all π ∈ SN , then

P ′(π | π ∈ SN ) = P (π).

for all π ∈ SN .
J. Kerl (Arizona) A worm algorithm for random spatial permutations February 22, 2010 5 / 11



Extended random-cycle model

Extended lattice: Λ′ = Λ ∪ {w}. Extended energy:

H ′(π) =
T

4

N
X

i=1
π(xi) 6=w

‖xi − xπ(i)‖
2 +

N
X

ℓ=2

αℓrℓ(π) + γ1SN+1\SN
(π).

Define partition function Z′ and Gibbs distribution P ′ as usual.

As long as the energy function for the ERCM and the RCM agree on closed
permutations, the marginality condition holds.

• We are free to define energy terms in H ′ for open permutations (the γ factor is just
one possibility), as long as they vanish on closed permutations.

• This worm method will work for any Hamiltonian on the model of random spatial
permutations — not only for the one given above.
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Metropolis steps/sweeps for the worm algorithm

Irreducibility, aperiodicity, and detailed balance have been proved for Metropolis steps,
using an H ′ with γ term as above. Metropolis sweep: open, zero or more head/tail
swaps, close. RVs are sampled only at closed permutations.

Open at x w.p.

Close w.p.

Head swap at x w.p.

∆H

Tail swap at x w.p.

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H
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Stopping time

Good news: examination of random-variable plots for L = 10, comparing SAR to worm,
shows that similar results are produced — other than, of course, the winding-number
histogram itself.

Problem: The the open worm tips wander around randomly within the L box, and fail to
reconnect as L increases. Specifically, histograms show that the distribution of the
wormspan ‖π(w) − π−1(w)‖ peaks around L/2.

SAR and worm CPU times are both ∼ aN + bN2. SAR’s b is tiny; worm’s b is not.
Interesting L (40-80 or so) are out of reach for the worm algorithm.
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Other ideas

Other ideas for addressing the winding-number problem include the following:

• Be content with even winding numbers. Be sure to quantify the shift in critical
temperature by means of multiple random variables, some of which rely on winding
phenomena and some of which do not. This approach is taken in my dissertation.

• Band updates (above) have too-low acceptance rate.

• Temporarily pinch the torus geometry somehow in the SAR algorithm, such that the
distance penalty for wrapping around the torus is decreased.

• Temporarily reduce and restore the temperature T in the SAR algorithm — this is
an annealing method. This approach brings with it a performance problem:
re-thermalization would need to be performed after each annealing step.

• Modify the worm algorithm to direct the worm somehow. At the time the worm is
opened, add a distance weight of ±L in the x, y, or z direction which will be
removed by a wrap around the torus, increasing or decreasing that winding-number
component by 1. Our attempts to do this have not satisfied detailed balance.

• Review the PIMC literature again and seek other inspiration.

• Go to Athens . . .
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For more information, please visit http://math.arizona.edu/~kerl.

Thank you for attending!
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Extra slide: random spatial permutations derived from Bose gas

Start with the Bose-gas Hamiltonian H(X) = −
PN

i=1 ∇
2
i +

P

1≤i,j≤N
U(xi − xj),

where U is a hard-core potential of radius a.

Write the partition function Z = Tr L2
sym

(e−βH) = Tr L2

`

P+e−βH
´

= Tr L2

`

e−βHP+

´

where P+ f(x1, . . . ,xN) := 1
N!

P

π∈Sn
Mπf(x1, . . . ,xN ) and

Mπ(fx1, . . . ,xN ) := f(xπ(1), . . . ,xπ(N)). That is,
Tr L2

sym
(e−βH) = 1

N!

P

π∈SN
Tr L2

`

e−βHMπ

´

.

Then:

• Interpret e−βHMπ as an expectation over Brownian motions.

• Write e−βHMπ as an integral operator, and find the kernel.

• Compute Tr (e−βHMπ) in terms of Brownian bridges.

• Sum over π ∈ SN to obtain Z = Tr L2
sym

(e−βH). Now Z is a sum over

permutations π of e−HP (X,π).

• Decouple the non-interacting from the interacting terms in the permutation

Hamiltonian, so that we may write e−H
(0)
P

(X,π)−H
(1)
P

(X,π).

• Use a cluster expansion to drop all but 2-jump interactions, and find the logarithm
of e−HP (X,π). We recognize the random-cycle model with an explicit 2-jump
interaction V .
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