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Review of quantum teleportation and entanglement swapping

Quantum teleportation: perfect case

Quantum computation involves manipulation of qubits: ψ = c |0〉 + d |1〉 with
|c|2 + |d|2 = 1. Quantum devices require quantum wires: devices to move qubits from
point A to point B.

Alice, in possession of qubit ψ at point A, can’t measure her qubit; this would collapse
(modify) its state. Using local operations and classical communication (LOCC), though,
Alice can communicate her qubit to Bob.

A B A′
Before After

A′′ψ

ψ

Ingredients: An entangled pair (Bell state) of qubits A and B, e.g. 1√
2
|00〉 + 1√

2
|11〉, a

classical wire, and the message qubit ψ.
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: perfect case

Gates are linear transformations on C
2, C

2 ⊗ C
2, etc. Useful ones here are

H =
1√
2

„

1 1
1 −1

«

(Hadamard), I =

„

1 0
0 1

«

,

X =

„

0 1
1 0

«

, Z =

„

1 0
0 −1

«

,

CNOT =

0

B

B

@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C

C

A

(Kronecker format).
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: perfect case

Start with

|ψ〉 ⊗ |β00〉 =
1√
2

h

c |0〉 + d |1〉
ih

|00〉 + |11〉
i

=
1√
2

h

c |0〉( |00〉 + |11〉) + d |1〉( |00〉 + |11〉)
i

.

Apply CNOT at the first two slots (a local operation for Alice):

1√
2

h

c |0〉( |00〉 + |11〉) + d |1〉( |10〉 + |01〉)
i

.

Apply a Hadamard matrix at the first slot (also a local operation for Alice):

1

2

h

(c |0〉 + c |1〉)( |00〉 + |11〉) + (d |1〉 − d |0〉)( |10〉 + |01〉)
i

=
1

2

h

(c |000〉 + c |011〉 + c |100〉 + c |111〉) + (d |011〉 + d |000〉 + d |110〉 + d |101〉)
i

=
1

2

h

|00〉(c |0〉 + d |1〉) + |01〉(c |1〉 + d |0〉) + |10〉(c |0〉 − d |1〉) + |11〉(c |1〉 − d |0〉)
i

.
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: perfect case

Now Alice measures the first two qubits in the basis { |00〉, |01〉, |10〉, |11〉} and
communicates the result classically to Bob.

• If she obtains |00〉 then Bob has c |0〉 + d |1〉. Bob applies I and recovers ψ.

• If she obtains |01〉 then Bob has c |1〉 + d |0〉. Bob applies X and recovers ψ.

• If she obtains |10〉 then Bob has c |0〉 − d |1〉. Bob applies Z and recovers ψ.

• If she obtains |11〉 then Bob has c |1〉 − d |0〉. Bob applies Z ◦X and recovers ψ.

Those operations are all local for Bob.
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: imperfect case

This can be done even with a non-maximally entangled pair of qubits, i.e. a |00〉 + b |11〉
with |a|2 + |b|2 = 1. But now the message qubit ψ is successfully moved from point A to
point B only with singlet conversion probability (SCP) which depends on a and b.

First one converts the pair a |00〉 + b |11〉 into the perfect singlet 1√
2
|00〉 + 1√

2
|11〉. This

succeeds with probability p which is 2(1 − |a|2) if |a| ≤ |b|, else 2(1 − |b|2).

Then, one does quantum teleportation as in the perfect case.
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Review of quantum teleportation and entanglement swapping

Entanglement swapping: perfect case

The next step toward constructing a quantum network is to chain a pair of links. There
are two options.

(1) Simply teleport ψ from A to B, then from B to C.

(2) Entanglement swapping changes A-B and B-C links into a B-B link (which is
discarded) and an A-C link. Using quantum teleportation, a message qubit ψ may then
be moved from point A to point C. Here we discuss only step 1, since step 2 is just as
before. Thus, ψ doesn’t appear in the figures here.

Before
AA BB

After
CC

β
(12)
00 β

(34)
00 β

(14)
00

β
(23)
00

Which approach is better? That is the key point under discussion today.
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Review of quantum teleportation and entanglement swapping

How entanglement swapping works: perfect case

Start with β
(12)
00 = 1√

2

h

|00〉(12) + |11〉(12)
i

and β
(34)
00 = 1√

2

h

|00〉(34) + |11〉(34)
i

. These

maximally entangled pairs are the A-B and B-C links. Then

β
(12)
00 ⊗ β

(34)
00 =

1√
2

h

|00〉(12) + |11〉(12)
i

⊗ 1√
2

h

|00〉(12) + |11〉(12)
i

=
1

2

h

|0000〉 + |0011〉 + |1100〉 + |1111〉
i

(∗).

The key idea is that Bob, sitting between Alice and Charlie, measures the two qubits in
his possession onto the Bell basis which is

β
(ij)
00 =

1√
2

h

|00〉(ij) + |11〉(ij)
i

, β
(ij)
01 =

1√
2

h

|01〉(ij) + |10〉(ij)
i

,

β
(ij)
10 =

1√
2

h

|00〉(ij) − |11〉(ij)
i

, β
(ij)
11 =

1√
2

h

|01〉(ij) − |10〉(ij)
i

.

To apply that to (*), it’s helpful to invert these four equations to find the standard basis
in terms of the Bell basis.
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Review of quantum teleportation and entanglement swapping

How entanglement swapping works: perfect case

We obtain

|00〉(ij) =
1√
2

h

β
(ij)
00 + β

(ij)
10

i

, |01〉(ij) =
1√
2

h

β
(ij)
01 + β

(ij)
11

i

,

|10〉(ij) =
1√
2

h

β
(ij)
01 − β

(ij)
11

i

, |11〉(ij) =
1√
2

h

β
(ij)
00 − β

(ij)
10

i

.

Then (*) becomes

1

2
√

2

h

|0〉(1)(β(23)
00 + β

(23)
10 ) |0〉(4) + |0〉(1)(β(23)

01 + β
(23)
11 ) |1〉(4)

+ |1〉(1)(β(23)
01 − β

(23)
11 ) |0〉(4) + |1〉(1)(β(23)

00 − β
(23)
10 ) |1〉(4)

i

.

Measurement along the Bell basis at (23) yields one of the four possibilities

(1/
√

2)
h

|0〉(1)β(23)
00 |0〉(4) + |1〉(1)β(23)

00 |1〉(4)
i

= β
(23)
00 ⊗ β

(14)
00 ,

(1/
√

2)
h

|0〉(1)β(23)
01 |1〉(4) + |1〉(1)β(23)

01 |0〉(4)
i

= β
(23)
01 ⊗ β

(14)
01 ,

(1/
√

2)
h

|0〉(1)β(23)
10 |0〉(4) − |1〉(1)β(23)

10 |1〉(4)
i

= β
(23)
10 ⊗ β

(14)
10 ,

(1/
√

2)
h

|0〉(1)β(23)
11 |1〉(4) − |1〉(1)β(23)

11 |0〉(4)
i

= β
(23)
11 ⊗ β

(14)
11 .

J. Kerl (Arizona) Lattice quadrupling Oct 1, 2008 12 / 37



Review of quantum teleportation and entanglement swapping

Entanglement swapping: perfect and imperfect cases

Alice and Charlie may then do quantum teleportation using the (14) states. Any of the
four Bell basis states may be used for teleportation.

Since the measurement outcome at (23) specifies the states at (1) and (4), one could

apply quantum gates to put β
(14)
kℓ into the state β

(14)
00 . However, this would require

non-local quantum operations, and the paradigm under consideration is LOCC.

In density-matrix terminology, one says that after entanglement swapping, the (14) state
is mixed: it has a 4-point classical probability distribution.

* * *

As with quantum teleportation, this can again be done if the A-B and B-C links start off
non-maximally entangled. It is shown in Perseguers et al., section III, that the average
SCP p does not change.
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Review of the 2D square lattice
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Review of the 2D square lattice

Quantum communication on the 2D square lattice; doubling

One may form a 1D chain of links. The probability of successful end-to-end
communication over N links is pN , which goes to zero in the infinite limit. One may
instead leverage the well-known results of percolation to attempt to achieve higher
teleportation probability on a 2D lattice. Perseguers et al. consider many lattice
geometries; I confine my discussion to the square lattice.

On the left is a square lattice formed of quantum-teleportation links. One may ask for
the probability of communicating a qubit ψ (not shown) from point A to point B.

In the middle figure, we isolate Bob nodes and perform entanglement swapping twice per
circle. The Bob nodes are discarded; what remains, in the right-hand figure, is a doubled
lattice.

AA

A′

B′B

B
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Review of the 2D square lattice

Doubling the 2D square lattice

In both cases, suppose that A is far from B, as are A′ and B′. On the other hand, A
and A′, as well as B and B’, occupy adjacent corners of a square. One may
communicate along the black lattice from point A to point B, or along the grey lattice
from point A′ to point B′. Zoom out for a clearer look:

BB
B′B′

AA
A′A′

Recall that the percolation probability p is the same for the original lattice as for each of
the doubled lattices.

Question: Which technique gives higher end-to-end teleportation probability — the
original lattice or the doubled lattice?
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Review of the 2D square lattice

Doubling the 2D square lattice

For the doubled lattice: If p > pc = 0.5, there are infinite clusters C, C′ (black and grey,
respectively) with probability 1. Successful communication from A to B requires
A,B ∈ C. These two events are (asymptotically) independent, so we have

P (A ∈ C) = θ(p), P (B ∈ C) = θ(p), P (A,B ∈ C) = θ2(p).

Likewise, P (A′, B′ ∈ C′) = θ2(p).

Taking advantage of both lattices, we can communicate from A’s area to B’s area if
either path is open. We want to find P (A,B ∈ C or A′, B′ ∈ C′).

Note that if events U and V are independent, P (U ∪ V ) does not factor but P (U ∩ V )
does. The inclusion-exclusion formula allows us to replace a union with an alternating
sum of intersections, which factor. We find

P (A,B ∈ C or A′, B′ ∈ C′)

= P (A,B ∈ C) + P (A′, B′ ∈ C′) − P (A,B ∈ C and A′, B′ ∈ C′)

= 2θ2(p) − θ4(p) = θ2(p)(2− θ2(p)).
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Review of the 2D square lattice

Doubling the 2D square lattice

For the non-doubled lattice, by comparison, there is a single infinite cluster C. We want

P (A,B ∈ C or A,B′ ∈ C or A′, B ∈ C or A′, B′ ∈ C).

Perseguers et al. claim (but omit the proof) that this is asymptotically π2(p) where

π(p) = P (A or A′ ∈ C)

= P (A ∈ C) + P (A′ ∈ C) − P (A,A′ ∈ C)

= 2θ(p) − ρ(p)

where the second line again follows from inclusion-exclusion. In the third line, we have
used the notation

ρ(p) = P (A,A′ ∈ C).
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Review of the 2D square lattice

Proof of claim

Use inclusion-exclusion and the shorthand P (AB) := P (A,B ∈ C), etc.:

P (AB or AB′ or A′B or A′B′)

= P (AB) + P (A′B) + P (AB′) + P (A′B′)

− P (ABB′) − P (AA′B) − P (AA′BB′) − P (AA′BB′) − P (AA′B′) − P (A′BB′)

+ 4P (AA′BB′) − P (AA′BB′)

= P (AB) + P (A′B) + P (AB′) + P (A′B′)

− P (ABB′) − P (AA′B) − P (AA′B′) − P (A′BB′) + P (AA′BB′).

Factor out asymptotically independent events:

P (AB or AB′ or A′B or A′B′)

= P (AB) + P (A′B) + P (AB′) + P (A′B′)

− P (A)P (BB′) − P (B)P (AA′) − P (B′)P (AA′) − P (A′)P (BB′) + P (AA′)P (BB′)

= 4θ2 − 4θρ+ ρ2 = (2θ − ρ)2.
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Review of the 2D square lattice

Comparison

To estimate π2(p), Perseguers et al. use the FKG inequality, namely, that increasing
events are positively correlated. Thus

ρ(p) = P (A,A′ ∈ C) ≥ P (A ∈ C)P (A ◦–◦A′) = θ(p)τ (p)

where τ (p) := P (A ◦–◦A′) is the probability that A and A′ are connected. This
probability is clearly bounded below by p2, but sharply: there may be circuitous paths
connecting opposite edges of a corner.

In summary, the probability of successful communication on the doubled lattice is

Pdouble = θ2(p)(2− θ2(p)),

versus on the non-doubled lattice

Psingle = π2(p) = (2θ(p) − ρ(p))2 ≤ θ2(p)(2 − τ (p))2.

The doubled lattice is better if Pdouble > Psingle, i.e. if

(2 − τ (p))2 ≤ 2 − θ2(p).

At pc, where θ = 0, it suffices to show τ ≥ 2 −
√

2. This was done numerically.

J. Kerl (Arizona) Lattice quadrupling Oct 1, 2008 20 / 37
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

The first part of the figure shows the non-quadrupled lattice. The second part of the
figure shows that each node actually has 6 qubits, although this detail is omitted from
the rest of the figure for simplicity.

The third part shows the quadrupled lattice. In a manner analogous to the 2D case,
center nodes do measurements onto the Bell basis and Bob themselves out of
pariticipation. Four interlocking lattices — red, green, blue, and black — remain.

The fourth part shows the labeling of A1, A2, A3, and A4 which are analogs of A and A′

in the 2D case.

A1

A2

A3

A4

As before, we ask whether successful communication on the quadrupled lattice is more
likely than on the non-quadrupled lattice.
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

For the quadrupled lattice: If p > pc ≈ 0.2488126, there are infinite clusters C1, C2, C3,
and C4 (red, green, blue, and black, respectively) with probability 1. Successful
communication from Ai to Bi requires Ai, Bi ∈ Ci for i = 1, 2, 3, 4. These two events
are (asymptotically) independent, so we have

P (Ai ∈ Ci) = θ(p), P (Bi ∈ Ci) = θ(p), P (Ai, Bi ∈ Ci) = θ2(p).

Taking advantage of all four lattices, we can communicate from A1’s area to B1’s area if
any of the four paths are open. Using inclusion-exclusion, we find

P
`

∪4
i=1(Ai, Bi ∈ Ci)

´

=
4

X

i=1

P (Ai, Bi ∈ Ci) −
X

i

X

j 6=i

P (Ai, Bi ∈ Ci and Aj , Bj ∈ Cj)

+
X

i

X

j 6=i

X

k 6=j

P (Ai, Bi ∈ Ci and Aj , Bj ∈ Cj and Ak, Bk ∈ Ck)

− P
`

∩4
i=1(Ai, Bi ∈ Ci)

´

= 4θ2(p) − 6θ4(p) + 4θ6(p) − θ8(p)

= θ2(p)(4− 6θ2(p) + 4θ4(p) − θ6(p)).
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

For the non-quadrupled lattice, there is a single infinite cluster C. One can show that

P
`

∪4
i=1 ∪4

j=1 (Ai, Bj ∈ C)
´

reduces, as in the 2D case, asymptotically to σ2(p) where

σ(p) := P (∪4
i=1Ai ∈ C).

Proof: See the next slide.

As shown on slide 20, Perseguers et al. then used inclusion-exclusion and FKG to split
the long-scale event A,A′ ∈ C into the event A ∈ C, with well-known probability θ(p),
and the short-scale event A ◦–◦A′.

I found that this was not productive for 3D. Inclusion-exclusion expansion of σ(p) gives
four terms: positive, negative, positive, and negative. For the second and fourth terms we
can use FKG; for the third term we need not a lower bound but an upper bound. Here I
was stuck at the end of the spring semester and didn’t see hope of further progress.

John LaPeyre pointed out to me recently, though, that σ(p) can be directly attacked
numerically. I don’t need to do the inclusion-exclusion expansion at all. I simply need to
see if σ2(p) is greater than the polynomial in θ(p) on the previous slide.
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Quadrupling the 3D rectangular lattice

Proof of claim

Apply inclusion-exclusion to the outer union. Let Ei = ∪4
m=1(Ai, Bm ∈ C). Then

P (∪4
i=1Ei) =

X

i

P (Ei) −
X

i6=j

P (Ei, Ej) +
X

i6=j 6=k

P (Ei, Ej , Ek) − P (E1, E2, E3, E4).

Now

P (Ei) = P
`

∪4
m=1(Ai, Bm ∈ C)

´

= P
`

Ai ∈ C;∪4
m=1(Bm ∈ C)

´

,

P (Ei, Ej) = P
`

Ai, Aj ∈ C;∪4
m=1(Bm ∈ C)

´

and similarly for P (Ei, Ej , Ek) and P (E1, E2, E3, E4). Also note that Ai ∈ C is
asymptotically independent of Bm ∈ C. So

P (∪4
i=1Ei) =

2

4

X

i

P (Ai ∈ C) −
X

j 6=i

P (Ai, Aj ∈ C)

+
X

k 6=j 6=i

P (Ai, Aj , Ak ∈ C) − P (A1, A2, A3, A4 ∈ C)

3

5

ˆ

∪4
m=1(Bm ∈ C)

˜

=
ˆ

∪4
i=1(Ai ∈ C)

˜ ˆ

∪4
m=1(Bm ∈ C)

˜

= σ2(p).
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Monte Carlo simulations

Monte Carlo simulations
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Monte Carlo simulations

Monte Carlo simulations

Overview:

• For M = 20, 25, 30, 35, 40, 45, . . . as far as patience and CPU time hold out, and for
various values of p above pc, estimate

σM (p) := PM

`

∪4
i=1(Ai ∈ C)

´

for M ×M ×M lattices. (Note that this is now strictly a percolation question:
quantum information is out of the picture.)

• For each fixed p, use finite-size scaling to extrapolate σ(p) = limM→∞ σM (p).

• Find limpցpc
σ(p). One expects this to follow a power law, as θ(p) does.

It will be helpful to do this also for τ (p) — P (A ◦–◦A′) — to recover the 2D results from
Perseguers et al., and also to estimate θ(p) — P (A ∈ C) — for the 2D and 3D cases.
These comparisons against known results provide a sanity check for my finite-size scaling.
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Monte Carlo simulations

Monte Carlo simulations for fixed M and p

The algorithms are simple.

To estimate a single PM value for one p, do N trials detecting the event ∪4
i=1(Ai ∈ C).

Average these over the N trials to estimate PM of that event. When choosing N , recall
that the sample mean tends centrally toward a normal distribution and that the normal’s
standard deviation goes as 1/

√
N . (I.e. to get another decimal place in the estimate of

PM (E) for some event E, one needs to run 100 times as many experiments.)

For each trial:

• Populate the bonds of the lattice. Each is open with probability p.

• When computing PM (A ◦–◦A′), do a cluster walk (described below).

• When computing θM (p) or σM (p), mark all clusters and identify the largest one (as
described below). Once the largest cluster is marked, it is easy to find if one point
(for θ) or any of a specified four (for σ) are in that cluster.
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Monte Carlo simulations

Cluster walking

To see if A ◦–◦A′, a naive algorithm almost works:

• Start at site A.

• Make a list of the 0 to 4 nearest-neighbor sites which are connected to A by an open
bond.

• If any of those sites is A′, then A ◦–◦A′. Stop.

• Otherwise, repeat this process (by recursively calling the subroutine) for each of the
neighbors.

• Once the recursions are complete with no more unmarked neighbors to visit, A is
not connected to A′. Stop.

Problem: you can chase around in a circle indefinitely whenever there is a loop in the
bond graph.

Solution: Make a matrix of site marks, all initialized to zero. Mark each site as you visit
it. When recursively calling the subroutine, recurse only into non-visited sites. Infinite
recursion successfully avoided.
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Monte Carlo simulations

Cluster walk with M = 14 and p = 0.51: before and after

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o o o

o . - . . - . . - . . . . . . . - . . - . o o . - . . - . . - . @ . . . @ . - . @ - @ o

o | | | | | o o | | | | | o

o . - . - . - . - . . . - . - . - . . - . . . - . o o . - . - . - . - . . @ - @ - @ - @ @ - @ . @ - @ o

o | | | | | | | | o o | | | | | | | | o

o . - . . . - . . . . . - . - . . - . - . . o o . - . . . - . . . . @ - @ - @ @ - @ - @ . o

o | | | | | | | | o o | | | | | | | | o

o . - . - . . . - . . - . . - . . . . . - . o o . - . - . . . - . . - . @ - @ @ . . . - . o

o | | | | | | | | o o | | | | | | | | o

o . . . . - . - . . - . . - . - . - . . - . - . o o . . . . - . - . . - . @ - @ - @ - @ . - . - . o

o | | | | | | | | o o | | | | | | | | o

o . - . . - . - . . - . . - . - . - . - . . . - . o o . - . . - . - . . - . @ - @ - @ - @ - @ . . - . o

o | | | | | | | | | o o | | | | | | | | | o

o . - . . . - . - . - . . . . - . - . . - . - . o o . - . . . - . - . - . @ @ @ - @ - @ . - . - . o

o | | | | | | | o o | | | | | | | o

o . . . . . - . - . A . - . - . - . . . - . o o . . . . . - . - . A @ - @ - @ - @ . . - . o

o | | | | | | | | | o o | | | | | | | | o

o . . . . - . - . - . . - A’ . - . . . . - . o o . . . . - . - . - . @ - A’ @ - @ @ @ . - . o

o | | | | | | | | | | o o | | | | | | | | | | o

o . . . . - . . - . - . - . - . . - . - . - . - . o o . . . . - . . - . - @ - @ - @ @ - @ - @ - @ - @ o

o | | | | | | o o | | | | | | o

o . - . - . - . . - . . - . . . . . - . - . . o o . - . - . - . . - . . - @ @ @ . @ - @ - @ . o

o | | | | | | o o | | | | | | o

o . . . - . . - . . . - . . - . . - . - . . o o . . . - . . - . . @ - @ . - . @ - @ - @ . o

o | | | | | | | o o | | | | | | | o

o . . - . . - . - . - . - . . . - . . - . - . - . o o . . - . . - . - . - . - . . . - . @ - @ - @ - @ o

o | | | | o o | | | | o

o . - . . - . . - . - . - . - . - . . - . . - . - . o o . - . . - . . - . - . - . - . - . . - . @ - @ - @ o

o | | | | | | | o o | | | | | | | o

o . - . - . . . . . - . . . . - . . . - . o o . - . - . . . . . - . . . . - . . @ - @ o

o o o o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Monte Carlo simulations

Cluster marking and sizing

Cluster marking:

• Again keep a matrix of site marks, now serving as cluster numbers, all initially set to
zero.

• Set cluster number = 1.

• For each site A:

• If A’s cluster number is non-zero (site A has already been visited), continue to the
next site.

• In the site-marks matrix, mark A with the current cluster number.
• For each bonded neighbor of A, recursively call the subroutine.
• After the recursion, increment the cluster number by 1.

Cluster sizing:

• Walk through the sites of the lattice, counting the size of each cluster.

• Remember the cluster number of the largest cluster. Call this C.
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Monte Carlo simulations

Lattice before and after cluster numbering: M = 14, p = 0.6

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o o o

o . - . . - . - . - . . - . . - . - . - . . . . o o 1 - 1 2 - 2 - 2 - 2 2 - 2 2 - 2 - 2 - 2 . . 3 o

o | | | | | | | | | o o | | | | | | | | | o

o . . . - . - . . - . - . - . . - . - . - . . . o o 1 2 2 - 2 - 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 4 3 o

o | | | | | | o o | | | | | | o

o . - . - . - . - . . - . - . . - . - . . - . . - . o o 2 - 2 - 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 4 - 4 o

o | | | | | | | | o o | | | | | | | | o

o . . . - . - . . . - . . - . . . - . . - . o o . 2 2 - 2 - 2 2 2 - 2 2 - 2 5 4 - 4 4 - 4 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . . - . . - . - . - . . . . - . - . - . o o 2 2 - 2 2 - 2 2 - 2 - 2 - 2 2 5 4 - 4 - 4 - 4 o

o | | | | | | | o o | | | | | | | o

o . - . . - . - . - . . - . . . . - . - . . - . o o 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . - . - . . . - . - . - . . - . - . - . - . o o 6 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 o

o | | | | | | | o o | | | | | | | o

o . . - . . . - . . - . - . - . . . - . - . - . o o 6 2 - 2 2 2 - 2 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 o

o | | | | | | | | | | | | o o | | | | | | | | | | | | o

o . . . . - . - . - . - . . . . - . - . . - . o o . 2 2 2 - 2 - 2 - 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . - . - . - . . . . - . - . - . - . - . . . - . o o 2 - 2 - 2 - 2 7 8 2 - 2 - 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . - . . . - . . . - . . . . - . - . - . . o o 2 - 2 2 7 - 7 8 2 - 2 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . . - . . - . - . - . . - . . . - . - . - . . o o 2 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . - . . . - . - . . . - . - . - . . . - . o o 2 - 2 - 2 2 2 - 2 - 2 2 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . . . - . - . - . - . - . . - . - . . . . o o 2 - 2 2 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 9 2 2 o

o | | | | | | | o o | | | | | | | o

o . . - . - . . . . - . - . - . - . - . . . . o o . 2 - 2 - 2 2 . 2 - 2 - 2 - 2 - 2 - 2 9 . . o

o o o o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Finite-size scaling

Finite-size scaling
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Finite-size scaling

Finite-size scaling

Finite-size scaling analysis is in progress. Thoughts gleaned from Kennedy and LaPeyre:

• M and ξ (correlation length) are both length scales.

• For p comfortably above or below pc, M passes ξ quickly and infinite values σ(p)
are obtained quickly.

• For p near pc, one must somehow extrapolate σM (p) to σ(p).

• ξ can be estimated numerically.

• Kennedy conjectures σM (p) = σ(p)F (M/ξ), for some F .

• See perhaps Stauffer’s text.

• Wehr: Do the comparison just for one or more p’s off pc. This is more easily
achieved and might be sufficiently newsworthy.

See the next slide for some data, obtained as follows.

For p from 0.241 up to 0.279 in steps of 0.001:

For M from 20 to 75 in steps of 5:

For three trials:

Plot σM (p).
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Finite-size scaling

Finite-size scaling: σM (p) vs. p

0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275
p

0.0

0.2

0.4

0.6

0.8

1.0

�M(p)
Each series is for one L, from 20 to 75 by 5s
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Finite-size scaling

Finite-size scaling: σM (p) vs. M

20 30 40 50 60 70 80
M

0.0

0.2

0.4

0.6

0.8

1.0

�M(p)
Each series is for one p, from 0.241 to 0.279
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Conclusions

Conclusions

• All finite-lattice questions raised here are easily solved by simulation.

• Finite-size-scaling analysis needs to be completed — after my oral exam!

• Thank you for your time!
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