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Unnatural Language Processing for the Uninitiated:
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Why

I finished grad school in May 2010 and started work at Two Sigma in June 2010. The
summer before that, I was hard at work1 writing my dissertation, and beginning to put
the Big Job Search into gear.

I’ve always been enchanted by Lewis Carroll’s Jabberwocky, including a few translations;
foreign languages have, as well, also fascinated me as long as I can remember2. Moreover,
Jabberwocky is only 28 lines long; one is left wanting more. At some point, I realized that
Markov-chain techniques might give me a tool to explore creating more not-quite-words.

Results:

• It works, well enough.

• It has some power to classify written utterances in various languages.

• Really, though, it was just a two-day lark project. Then I went back to more serious
work (such as finding a job).

1While playing online Scrabble, have you ever checked (hoping-hoping-hoping) that motch, say, or filious, or
helving, was some rare but legitimate English word? (One of those three is.)

2Then I became a programmer and realized I could make a living learning new languages. Groovy, man!
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What: Lewis Carroll’s Jabberwocky / le Jaseroque / der Jammerwoch

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

≪Garde-toi du Jaseroque, mon fils!

La gueule qui mord; la griffe qui prend!

Garde-toi de l’oiseau Jube, évite

Le frumieux Band-à-prend!≫

Er griff sein vorpals Schwertchen zu,

Er suchte lang das manchsam’ Ding;

Dann, stehend unterm Tumtum Baum,

Er an-zu-denken-fing. . . .

Many of the above words do not belong to their respective languages — yet look like they
could, or should. It seems that each language has its own periphery of almost-words. Can
we somehow capture a way to generate words which look Englishy, Frenchish, and so on?

It turns out Markov chains do a pretty good job3 of it. Let’s open up that particular
black box and see how it works.

3The method Carroll used for some of his neologies was the portmanteau, the packing or splicing together,
of pairs of words: the same process gives us bromance and spork.
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The abstract how
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Probability spaces (the first of a half-dozen mathy slides)

A probability space∗ is a set Ω of possible outcomes∗∗ X, along with a probability
measure P , mapping from events (sets of outcomes) to numbers between 0 and 1
inclusive. Example: Ω = {1, 2, 3, 4, 5, 6}, the results of the toss of a (fair) die.

What would you want P ({1}) to be? Given that, what about P ({2, 3, 4, 5, 6})? And of
course, we want P ({1, 2}) = P ({1}) + P ({2}).

The axioms for a probability measure encode that intuition. For all A,B ⊆ Ω:

• P (A) ∈ [0, 1] for all A ⊆ Ω

• P (Ω) = 1

• P (A ∪B) = P (A) + P (B) if A and B are disjoint.

Any function P from subsets of Ω to [0, 1] satisfying these properties is a probability
measure. Connecting that to real-world “randomness” is an application of the theory.

(*) Here’s the fine print: these definitions work if Ω is finite or countably infinite. If Ω is uncountable, then we need to restrict our attention to a σ-field

F of P -measurable subsets of Ω. For full information, you can take Math 563.

(**) Here’s more fine print: I’m taking my random variables X to be the identity function on outcomes ω.

J. Kerl (Arizona Two Sigma) Markov Jabberwocky: Through the Sporking Glass August 26, 2009 January 25, 2012 6 / 31



Independence of events

Take a pair of fair coins. Let Ω = {HH,HT, TH,TT}. What’s the probability that the
first or second coin lands heads-up? What do you think P (HH) ought to be?

H

T

H T

1/4 1/4

1/41/4

A = 1st is heads

B = 2nd is heads

Now suppose the coins are welded together — you can only get two heads, or two tails:
now, P (HH) = 1

2
6= 1

2
· 1

2
= P (H∗) · P (∗H).

H

T

H T

1/2 0

1/20

A = 1st is heads

B = 2nd is heads

We say that events A and B are independent if P (A,B) = P (A)P (B).
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PMFs and conditional probability

A list of all outcomes X and their respective probabilities is a probability mass function
or PMF. This is the function P (X = x) for each possible outcome x.

1/61/61/61/61/6 1/6

Now let Ω be the people in a room such as this one. If 9 of 20 are female, and if 3 of
those 9 are also left-handed, what’s the probability that a randomly-selected female is
left-handed? We need to scale the fraction of left-handed females by the fraction of
females, to get 1/3.

F

M

L R

3/20 6/20

9/202/20

We say

P (L | F ) =
P (L,F )

P (F )
from which P (L,F ) = P (F ) P (L | F ).

This is the conditional probability of being left-handed given being female.
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Die-tipping and stochastic processes

Repeated die rolls are independent. But suppose instead that you first roll the die, then
tip it one edge at a time. Pips on opposite faces sum to 7, so if you roll a 1, then you
have a 1/4 probability of tipping to 2, 3, 4, or 5 and zero probability of tipping to 1 or 6.

A stochastic process is a sequence Xt of outcomes, indexed (for us) by the integers
t = 1, 2, 3, . . .: For example, the result of a sequence of coin flips, or die rolls, or die tips.

The probability space is Ω× Ω× . . . and the probability measure is specified by all of the
P (X1 = x1, X2 = x2, . . .). Using the conditional formula we can always split that up
into a sequencing of outcomes:

P (X1 = x1, X2 = x2, . . . , Xn = xn) =P (X1 = x1)

· P (X2 = x2 | X1 = x1)

· P (X3 = x3 | X1 = x1, X2 = x2)

· P (Xn = xn | X1 = x1, · · · , Xn−1 = xn−1).

Intuition: How likely to start in any given state? Then, given all the history up to then,
how likely to move to the next state?
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Markov matrices

A Markov process (or Markov chain if the state space Ω is finite) is one such that the

P (Xn = xn | X1 = x1, X2 = x2, . . . , Xn−1 = xn−1) =P (Xn = xn | Xn−1 = xn−1).

If probability of moving from one state to another depends only on the previous outcome,
and on nothing farther into the past, then the process is Markov. Now we have

P (X1 = x1, . . . , Xn = xn) =P (X1 = x1)

· P (X2 = x2 | X1 = x1) · · · · P (Xn = xn | Xn−1 = xn−1).

We have the initial distribution for the first state, then transition probabilities for
subsequent states.

Die-tipping is a Markov chain: your chances of tipping from 1 to 2, 3, 4, 5 are all 1/4,
regardless of how the die got to have a 1 on top. We can make a transition matrix. The
rows index the from-state; the columns index the to-state:





















(1) (2) (3) (4) (5) (6)
(1) 0 1/4 1/4 1/4 1/4 0
(2) 1/4 0 1/4 1/4 0 1/4
(3) 1/4 1/4 0 0 1/4 1/4
(4) 1/4 1/4 0 0 1/4 1/4
(5) 1/4 0 1/4 1/4 0 1/4
(6) 0 1/4 1/4 1/4 1/4 0




















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Markov matrices, continued

What’s special about Markov chains? (1) Mathematically, we have matrices and all the
powerful machinery of eigenvalues, invariant subspaces, etc. If it’s reasonable to use a
Markov model, we would want to. (2) In applications, Markov models are often
reasonable4.

Each row of a Markov matrix is a conditional PMF: P (X2 = xj | X1 = xi).

The key to making linear algebra out of this setup is the following law of total probability:

P (X2 = xj) =
∑

xi

P (X1 = xi, X2 = xj)

=
∑

xi

P (X1 = xi)P (X2 = xj | X1 = xi).

PMFs are row vectors. The PMF of X2 is the PMF of X1 times the Markov matrix M .
The PMF of X8 is the PMF of X1 times M7 (assuming the same matrix is applied at
each step), and so on.

4For the current project, a Markov model produces decent results for language-specific Jabberwocky words,
while [I claim] bearing only slight resemblance to only one of the ways in which people actually form new words.
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The concrete how: back to words!
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Phase 1 of 2: read the dictionary file

Word lists (about a hundred thousand words each) were found on the Internet: English,
French, Spanish, German. The state space is Ω×Ω× . . . where Ω is all the letters found
in the dictionary file: a-z, perhaps ô, ß, etc.

After experimenting briefly with different setups, I settled on a probability model which is
hierarchical in word length:

• I have P (word length = ℓ).
• Letter 1: P (X1 = x1 | ℓ). Then P (Xk = xk | Xk−1 = xk−1, ℓ) for k = 2, . . . , ℓ.
• I use separate Markov matrices (“non-homogeneous Markov chains”) for each word

length and each letter position for that word length. This is a lot of data! But it
makes sure we don’t end words with gr, etc.

PMFs are easy to populate. Example: dictionary is apple, bat, bet, cat, cog, dog.
Histogram of word lengths:

[

0 0 5 0 1
(ℓ = 1) (ℓ = 2) (ℓ = 3) (ℓ = 4) (ℓ = 5)

]

Then just normalize by the sum to get a PMF for word lengths:
[

0 0 5/6 0 1/6
(ℓ = 1) (ℓ = 2) (ℓ = 3) (ℓ = 4) (ℓ = 5)

]
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Example

Dictionary is apple, bat, bet, cat, cog, dog. Word-length PMF, as above:
[

0 0 5/6 0 1/6
(ℓ = 1) (ℓ = 2) (ℓ = 3) (ℓ = 4) (ℓ = 5)

]

Letter-1 PMF for three-letter words:
[

2/5 2/5 1/5
(b) (c) (d)

]

Letter-1-to-letter-2 transition matrix for three-letter words:








(a) (e) (o)
(b) 1/2 1/2 0
(c) 1/2 0 1/2
(d) 0 0 1









Letter-2-to-letter-3 transition matrix for three-letter words:








(t) (g)
(a) 1 0
(e) 1 0
(o) 0 1








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Phase 2 of 2: generate the words using CDF sampling

How can we sample from a non-uniform probability distribution? Think of the PMF as a
dartboard. We throw a uniformly wild dart. Outcomes with bigger P should take up
bigger area on the dartboard.

Theorem: This works. Technically:

• We write a cumulative distribution function, or CDF. Whereas the PMF is
f(x) = P (X = x), the CDF is F (x) = P (X ≤ x). (Put some ordering on the
outcomes.)

• Let U (the dart) be uniformly distributed on [0, 1].
• Then F−1(U) (appropriately interpreted) has the distribution we want. (See my

September 2007 grad talk Is 2 a random number? for full details.)

Example: PMF for letter 1 of three-letter words is
[

0.4 0.4 0.2
(b) (c) (d)

]

.

CDF for letter 1 of three-letter words is
[

0.4 0.8 1.0
(b) (c) (d)

]

.

If U comes out to be 0.6329, then I pick letter 1 to be c. If U comes out to be 0.1784,
then I pick letter 1 to be b. Etc. I also make a CDF for each row of each Markov matrix.
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Word generation, continued

To generate a word, given the Markov-chain data obtained from a specified dictionary file:

• Use CDF sampling to pick a word length ℓ from the word-length distribution.

• Use the letter-1 CDF for word length ℓ to pick a first letter.

• Go to that letter’s row in the letter-1-to-letter-2 transition matrix for word length ℓ.
Sample that CDF to pick letter 2.

• Keep going until the ℓth letter.

• Print the word out.
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Three-letter memory

The non-Markov part of the story: Using Markov chains, as described here, I got decent
words, but not always. Real-word correlations go more than one letter deep.

Example: Using a German dictionary, my program generated the 5-letter word bller. This
made sense: There are b l words in German, e.g. bleib. There are l l words in
German, e.g. alles. But my Markov model only looks at correlations between adjacent
letters, and thus it didn’t detect that bll never happens in German.

For revision two of the project, I did all the steps described in the previous slides, but now
with the following data:

• I have P (word length = ℓ) as before.

• For first letters, P (X1 = x1 | ℓ).

• For second letters, P (X2 = x2 | X1 = x1, ℓ).

• For the rest, P (Xk = xk | Xk−2 = xk−2, Xk−1 = xk−1, ℓ).
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Results, and a little (but not too much) head-scratching
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Full output vocabulary with a tiny word list

Dictionary is bake, balm, bare, cake, calm, care, cart, case, cave. Here are all possible
outputs (all of Ω×Ω× . . .) using two-letter and three-letter memory, respectively. Words
appearing in the output but not in the input word list are marked with ∗.

ω P (ω) ω P (ω)

bake 0.0740741 bake 0.1111111

balm 0.0740741 balm 0.1111111

bare 0.0740741 bare 0.0740741

bart* 0.0370370 bart* 0.0370370

base* 0.0370370 cake 0.1111111

bave* 0.0370370 calm 0.1111111

cake 0.1481481 care 0.1481481

calm 0.1481481 cart 0.0740741

care 0.1481481 case 0.1111111

cart 0.0740741 cave 0.1111111

case 0.0740741

cave 0.0740741

When larger word lists are used, Ω is far larger than the input word list: i.e. there are far
more mimsy and mome than were and the. (More on this below.)
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Results with real word lists

For full-size word lists, I don’t try to enumerate all possible outputs — I just generate
100 or so at a time. (From here on out I use the three-letter-memory model.)

When I feed word lists from different languages into the same computer program, I get
different outputs. Hopefully, you can tell which is which.

churency kingling supprotophated doconic linictoxly stewalorties murine hawkinesses

texueux roseras plaçâtes exhumèrent orileffé cinquetassions laissiez regre-nèses

sauceptant montrenards résäısmez enjupillâmes rat̂ıt fausive

perónimo bolón sanfija morricete esmotorrar bisfato filamberecer estempoĺı ḿıcleta

zaŕıfero senestrosia desalificapio

Böservolle techtausfälle Nah wohlassee verschützen Probinus träßcher Postenpland

einprückt Bußrfere höhegendeter

occlamo domitor nestum inhibeo prohisus equino eribro obvolla exteptor exibro abduco

loci equa occasco

For medium-sized word lists (a few thousand words), we can enumerate all possible
outputs and compute their probabilities ... any guesses as to the top ten?

J. Kerl (Arizona Two Sigma) Markov Jabberwocky: Through the Sporking Glass August 26, 2009 January 25, 2012 20 / 31



... a moment for some external validation ...
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Top-ten (and bottom-ten) lists

Input corpus size and output #Ω:

English “GSL-2000” Deutsch Français Español

In 2,284 999 8,410 997
Out 20,920 4,417 2,178,894 5,262

Top and bottom ten:

Word P Wort P Mot P Palabra P

mill 0.0008756 einen 0.0023929 administration 0.0002272 aśı 0.0030120

attraction 0.0008295 zum 0.0020100 dire 0.0001982 ya 0.0020080

hold 0.0008209 Vor 0.0020100 chutes 0.0001952 único 0.0020080

baste 0.0007505 vor 0.0020100 peux 0.0001921 tal 0.0020080

tide 0.0007297 nur 0.0020100 jette 0.0001911 por 0.0020080

suppose 0.0007005 ihren 0.0020100 aides 0.0001911 para 0.0020080

sour 0.0006567 alte 0.0020100 sage 0.0001902 ni 0.0020080

come 0.0006567 allem 0.0020100 modes 0.0001698 este 0.0020080

stain 0.0006129 nicht 0.0015075 salle 0.0001661 con 0.0020080

then 0.0005837 neute 0.0015075 plan 0.0001585 ante 0.0020080

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

depertist 8.189e-8 heides 4.54762e-6 goutertiel 2.586e-12 abserén 2.3241e-6

depertism 8.189e-8 heidel 4.54762e-6 coutertiel 2.586e-12 antréır 1.9124e-6

depertian 8.189e-8 beidet 4.54762e-6 boutertiel 2.586e-12 instinta 1.8592e-6

depertial 8.189e-8 beides 4.54762e-6 séertiemiel 2.508e-12 histinta 1.8592e-6

misertist 6.142e-8 beidel 4.54762e-6 géertiemiel 2.508e-12 enseŕır 1.8592e-6

misertism 6.142e-8 Kintet 3.98819e-6 féertiemiel 2.508e-12 matencil 1.7113e-6

misertian 6.142e-8 Kintem 3.98819e-6 sononarios 1.691e-12 catencil 1.7113e-6

misertial 6.142e-8 Kintel 3.98819e-6 mononarios 1.691e-12 enserén 1.5494e-6

hescestive 4.114e-8 Kintei 3.98819e-6 lononarios 1.691e-12 sontinta 9.960e-7

descestive 4.114e-8 wolitel 3.94127e-6 hononarios 1.691e-12 enstinta 9.296e-7
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Note on the top-ten lists

Reassuring things:

• Probabilities do, in fact, sum to one (bug check!)

• Real words tend to have higher probability.

Troubling things:

• Why are so many P ’s the same?

• Why are the values of NP (where N is corpus size) so often integers or simple
fractions, such as 2, 7/4, 5/6? (E.g. P (mill) = 2/2284.)

• If mill and administration are numbers 1 and 2 on the list, how is that not a bug???

The answer to all three questions is the same.
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Fractions which simplify

Let’s walk through computation of P for mill, hold, and attraction.

P(____) = 493 / 2284 P(____) = 493 / 2284

P(m___ | ____) = 27 / 493 P(h___ | ____) = 30 / 493

P(mi__ | m___) = 7 / 27 (mail, mend, mile, milk) P(ho__ | h___) = 8 / 30 (half, hope, hunt)

P(mil_ | mi__) = 4 / 7 (mile, mind) P(hol_ | ho__) = 3 / 8 (holy, home)

P(_ill | _il_) = 7 / 14 (wild, will) P(_old | _ol_) = 5 / 8 (fold, hole, holy, roll)

P( __________) = 87 / 2284

P(a_________ | __________) = 5 / 87 +--------------------------------------------------------------+

P(at________ | a_________) = 2 / 5 | There are only five 10-letter words starting with ’a’ |

P(att_______ | at________) = 2 / 2 | in the English GSL-2000 corpus. They are: |

P(_ttr______ | _tt_______) = 2 / 2 | altogether, appearance, artificial, attraction, attractive. |

P(__tra_____ | __tr______) = 2 / 2 +--------------------------------------------------------------+

P(___rac____ | ___ra_____) = 2 / 2

P(____act___ | ____ac____) = 2 / 2

P(_____cti__ | _____ct___) = 9 / 9

P(______tio_ | ______ti__) = 18 / 19 (only exception: attractive)

P(_______ion | _______io_) = 26 / 26

P (mill) =
2

2284
; P (hold) =

15

8 · 2284
; P (attraction) =

2 · 18

19 · 2284
.
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War and Peace

An apparent issue with using a word list as input is that words like the and attraction
each appear equally often — namely, just once in the word list. Using a word list with
repeats (e.g. an English translation of War and Peace), the top ten output words are
more like the top ten input words.

$ wc -l wap-input-distinct.txt $ wc -l wap-input-freq.txt $ wc -l wap-output-distinct.txt

565,620 wap-input-distinct.txt 17,531 wap-input-freq.txt 27,795,523 wap-output-distinct.txt

Rank Input word Count Rank Output word P

1 the 34544 1 the 0.061073
2 and 22225 2 and 0.039293
3 to 16673 3 to 0.029477
4 of 14888 4 of 0.026321
5 a 10548 5 a 0.018648

11 with 5663 11 it 0.009897
12 it 5598 12 with 0.009712
38 have 1975 38 pierre 0.003189
39 pierre 1963 39 were 0.003177
40 prince 1928 40 an 0.002876

127 napoleon 583 127 us 0.000747
220 oh 317 220 napoleon 0.000372
136 am 545 136 whem 0.000647
137 long 544 137 princh 0.000636
236 wife 295 236 firse 0.000344
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Some applications, and conclusion
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An application: language scoring

Aramian Wasielak’s idea: run a word (real or not) through the Markov-chain data for all
tabulated languages, computing the probability of the word:

P (word length = ℓ) · P (X1 = x1 | ℓ) · P (X2 = x2 | X1 = x1, ℓ) · · ·

(last four columns.) Then, for each word, normalize those numbers to get a score
between zero and one (first four columns).

Word En score Fr score Sp score De score En P Fr P Sp P De P

cat 1.000 0.000 0.000 0.000 5.5 · 10
−6

0 0 0

baguette 0.015 0.985 0.000 0.000 4.7 · 10
−9

3.1 · 10
−7

0 0

wurst 0.180 0.000 0.000 0.820 1.2 · 10
−7

0 0 5.5 · 10
−7

palapa 0.014 0.056 0.930 0.000 9.0 · 10
−9

3.6 · 10
−8

6.0 · 10
−7 0

fesh 1.000 0.000 0.000 0.000 9.3 · 10
−7

0 0 0

location 0.719 0.098 0.000 0.181 1.9 · 10
−7

2.6 · 10
−8

0 4.8 · 10
−8

xyzzy 0.000 0.000 0.000 0.000 0 0 0 0

brillig 0.000 0.000 0.000 1.000 0 0 0 2.5 · 10
−9

slithy 1.000 0.000 0.000 0.000 2.1 · 10
−7

0 0 0

toves 0.000 0.000 0.000 0.000 0 0 0 0

outgrabe 0.000 0.000 0.000 0.000 0 0 0 0

frumieux 0.067 0.895 0.000 0.037 4.5 · 10
−11

6.0 · 10
−10

0 2.5 · 10
−11

griff 0.742 0.139 0.000 0.118 7.4 · 10
−7

1.3 · 10
−7

0 1.1 · 10
−7

vorpal 1.000 0.000 0.000 0.000 1.3 · 10
−9

0 0 0

muggle 1.000 0.000 0.000 0.000 1.5 · 10
−6

0 0 0

expecto 0.000 0.000 1.000 0.000 0 0 8.1 · 10
−7 0

patronum 1.000 0.000 0.000 0.000 2.0 · 10
−10

0 0 0
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Other possibilities

In this project, my goal was to construct words out of letters, using language-specific
empirical knowledge of transition probabilities from one letter to the next. One can do
something similar, constructing sentences out of (true) words, using language-specific
empirical knowledge of transition probabilities from one word to the next. Google for
Garkov and Rooter. See also Cam McLeman’s page on language/math experiments.

Shane Passon’s idea: Using more languages (e.g. German, Dutch, Swedish; French,
Spanish, Catalan, Italian; Polish, Czech, Russian; etc.) can we adapt the scoring
mechanism to measure relatedness of languages?

All the machinery here works on letters — specifically on written language. Better results
might be obtained by using not letters, but units such as e, n, ou, gh. This requires a
language expert to decide what the pieces are. Or does it? Can we automate detection
of these digraphs, trigraphs, and so on?

While Markov chains are merely phenomenological in this context, they are fully
legitimate in the study of how words change over time [Modi].

Lastly, what separates mere portmantarkov arithmetic from art? What makes Long time

the manxome foe he sought so satisfying — and how does that work?
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Vielen Dank für Ihre Aufmerksamkeit!

Je vous remercie de votre attention!

Gracias por su atención!

Thank you for attending!
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Extra slide(s) in case of questions

Jabberwocky (Lewis Carroll)

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the mome raths outgrabe.

‘Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!’

He took his vorpal sword in hand:
Long time the manxome foe he sought —

So rested he by the Tumtum tree,
And stood awhile in thought.

And as in uffish thought he stood,
The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

‘And has thou slain the Jabberwock?
Come to my arms, my beamish boy!

O frabjous day! Callooh! Callay!’
He chortled in his joy.

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the mome raths outgrabe.

Le Jaseroque (Frank L. Warrin)

Il brilgue: les tôves lubricilleux
Se gyrent en vrillant dans le guave.

Enm̂ımés sont les gougebosqueux
Et le mômerade horsgrave.

≪Garde-toi du Jaseroque, mon fils!
La gueule qui mord, la griffe qui prend!

Garde-toi de l’oiseau Jube, évite
Le frumieux Band-à-prend!≫

Son glaive vorpal en main il va-
T-à la recherche du fauve manscant;

Puis arrivé; à l’arbre Té-Té,
Il y reste, réfléchissant.

Pendant qu’il pense, tout uffusé,
Le Jaseroque, à l’œil flambant,

Vient siblant par le bois tullegeais,
Et burbule en venant.

Un deux, un deux, par le milieu,
Le glaive vorpal fait pat-à-pan!

La béte défaite, avec sa téte,
Il rentre gallomphant.

≪As-tu tué le Jaseroque?
Viens à mon coeur, fils rayonnais!

Ô Jour frabbejeais! Calleau! Callai!≫

Il cortule dans sa joie.

Il brilgue: les tôves lubricilleux
Se gyrent en vrillant dans le guave.

Enm̂ımés sont les gougebosqueux
Et le mômerade horsgrave.

Der Jammerwoch (Robert Scott)

Es brillig war. Die schlichte Toven
Wirrten und wimmelten in Waben;

Und aller-mümsige Burggoven
Die mohmen Räth’ ausgraben.

≫Bewahre doch vor Jammerwoch!
Die Zähne knirschen, Krallen kratzen!

Bewahr’ vor Jubjub-Vogel, vor
Frumiösen Banderschnätzchen!≪

Er griff sein vorpals Schwertchen zu,
Er suchte lang das manchsam’ Ding;

Dann, stehend unterm Tumtum Baum,
Er an-zu-denken-fing.

Als stand er tief in Andacht auf,
Des Jammerwochen’s Augen-feuer

Durch tulgen Wald mit Wiffek kam
Ein burbelnd Ungeheuer!

Eins, Zwei! Eins, Zwei! Und durch und durch
Sein vorpals Schwert zerschnifer-schnück,

Da blieb es todt! Er, Kopf in Hand,
Geläumfig zog zurück.

≫Und schlugst Du ja den Jammerwoch?
Umarme mich, mein Böhm’sches Kind!

O Freuden-Tag! O Halloo-Schlag!≪

Er schortelt froh-gesinnt.

Es brillig war. Die schlichte Toven
Wirrten und wimmelten in Waben;

Und aller-mümsige Burggoven
Die mohmen Räth’ ausgraben.
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Afternote 1

Matt A., Vikram, and I asked another question about language scoring: what are the
most cosmopolitan (evenly-scored) words, and the most language-characteristic words?
For both, I ran all four full word lists through the scoring routine. For the former, I sorted
to find least difference between max and min normalized score. For the latter, I found
those with highest (i.e. 1.0) scores for each language, but since there were so many 1.0’s,
I looked at the non-normalized column to break ties.

Cosmopolitan English French Spanish German

1. obliger 21. porter 1. rested 1. moirai 1. tapadero 1. gestalten

2. fade 22. trine 2. mucks 2. bouillons 2. mosquito 2. verboten

3. tramel 23. mille 3. tuff 3. abaisses 3. habanero 3. schlieren

4. vertus 24. satin 4. haes 4. abaissions 4. desperado 4. befallen

5. plane 25. orache 5. pike 5. abaque 5. caballero 5. auslander

6. cause 26. rapider 6. hows 6. abaissent 6. comprador 6. schnecke

7. modeler 27. genie 7. buffs 7. abaisserons 7. armadillo 7. schottische

8. place 28. have 8. tuffs 8. abaques 8. caudillo 8. klatsches

9. sonder 29. mimer 9. dowed 9. abaissiez 9. sabadilla 9. einsteins

10. filmer 30. lauras 10. copped 10. abaissaient 10. cuadrilla 10. gesundheit

11. trace 31. niche 11. jibs 11. abaisse 11. quebracho 11. schottisches

12. ford 32. lancer 12. rapped 12. boudoir 12. cascarilla 12. zeitgeber

13. folia 33. interne 13. prow 13. abaisserais 13. amontillado 13. gegenschein

14. rasper 34. intender 14. skin 14. abaisserait 14. picadillo 14. autobahnen

15. absorber 35. probe 15. ripped 15. abaisserent 15. pimiento 15. wunderkind

16. hetaira 36. framer 16. recked 16. abaissasses 16. impresario 16. lebensraum

17. sente 37. normal 17. dogging 17. abaisseriez 17. enchilada 17. hausfrauen

18. robustas 38. postiche 18. daws 18. gridirons 18. burladero 18. gesellschaft

19. rote 39. vagus 19. yaws 19. abaissasse 19. pistolero 19. gemeinschaft

20. rase 40. intoner 20. dyes 20. abaissez 20. guayabera 20. kindergarten
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