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JOHN KERL

1. Timeline, professional development, and outreach activities

I am finishing my fourth year of a five-year PhD program. The period of support (summer and fall 2009)
will begin my fifth year. The spring of 2009 saw the following:

• I successfully completed my comprehensive examination in January 2009. I exposited a recent paper
of Daniel Ueltschi [1], which my dissertation research is extending.

• Ueltschi was present in Tucson on a sabbatical semester; he and I are collaborating closely on my
dissertation research. In particular, my funding this semester is from Ueltschi’s NSF grant. (In
spring of 2008 I was also funded under Ueltschi’s grant. The work I did at that time preceded my
comprehensive examination, but that work has led seamlessly into my dissertation.)

• I obtained access to the ICE cluster in the University of Arizona’s High Performance Computing
center. This reduces compute time, relative to my previous use of the math department’s chivo
cluster, by an order of magnitude.

• The local March 2009 workshop on Entropy and the Quantum, organized by Daniel Ueltschi and
Robert Sims, drew several visitors from the international mathematical-physics community. Among
these was Volker Betz, Ueltschi’s co-worker at Warwick and chief collaborator. During the workshop
(as I write this proposal), Betz and I are exploring a question in bulk flow of permutation cycles.

• Also during the workshop, John LaPeyre and I are sketching out a joint paper which follows on
work of Perseguers, Wehr, et al. [2]. My portion is an independent study project under Jan Wehr in
spring of 2008. I obtained interesting results that spring, and presented them to the UA mathematical
physics seminar in October 2008; it would benefit me professionally to write these results up nicely
and submit them for publication.

• In the spring of 2009, I am taking Bill Faris’ course on Discrete-Time Stochastic Processes, which
reinforces my current knowledge of Markov chains. I am also taking Theory of Statistics from Walter
Piegorsch. This is a core course in the statistics program; it requires no small amount of effort, but
it completes coursework for my PhD minor in statistics.

• For fall 2008 and spring 2009, I am organizing the weekly Graduate Student Colloquium. I am also
serving as this year’s student representative to the department’s graduate committee. In addition
to the light committee work per se, I am organizing the weekly grad tea as well as weekly lunches
with the departmental colloquium speaker. I also contributed significantly to the department’s
recruitment workshop in March 2009.

The period of support, summer and fall 2009, will include the following:

• Principally, I will continue my research. This is discussed in detail below.
• I will deliver a contributed talk (already accepted) at the Conference on Stochastic Processes and

Their Applications in July in Berlin. I will present my worm algorithm for the random cycle model.
• As time permits, I may visit Daniel Ueltschi in Marseille before that conference.
• Working with John LaPeyre, I will write up the above-described percolation results for publication.

Date: April 6, 2009.
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• I have spoken with the department’s graduate director about my participation in the department’s
August integration workshop for incoming graduate students; he was very enthusiastic. I will work
side by side with incoming grads throughout the five-day workshop, guiding them through team-
based discovery-method projects which help them transition to advanced mathematics.

• Tom Kennedy currently has a group consisting of three graduate students, two undergraduates,
and himself making a multi-tiered examination of self-avoiding random walks. I have received his
agreement about my participation, which will include regular team meetings and the bridging of
computational and theoretical results.

• I will present the progress of my research to the UA mathematical physics seminar in the fall.
• I will complete my final course — Probability and Random Processes in Engineering, in the Electrical

Engineering department — in fall 2009, satisfying an out-of-department requirement.

In my final semester at the UA I will continue my dissertation work, with timely graduation in May 2010. I
will, of course, be spending much of the year applying for employment. Thus, it is my desire to accomplish
as much during the summer and fall as possible. VIGRE support will help me to achieve that goal.

2. Plan of study and research

My research is under Daniel Ueltschi, formerly of the University of Arizona, currently at the University
of Warwick. We are studying the effects of interparticle interactions on the critical temperature of Bose-
Einstein condensation. Ueltschi is spending a sabbatical semester at the UA for spring 2009; by the time of
his return to Warwick, I will be working largely independently. We will continue to communicate; as well,
my local advisor, Tom Kennedy, is up to date on my research and I will be working with him to bring the
dissertation to completion.

2.1. Historical context. Bose and Einstein [3, 4] predicted in the 1920s that non-interacting particles with
integer spin may collapse into a macroscopic occupation of the ground state of the external potential. Einstein
predicted a critical temperature for the phenomenon. Thousands of research papers have investigated BEC
theoretically, as well as experimentally following the 1995 Nobel-prize-winning successes of Anderson et al.
[5]. Of the many questions that could be asked about BEC, we restrict attention to that of the effects of

interbosonic interaction strength a on the condensate’s critical temperature T
(a)
c . Several research groups

working over the last three decades have obtained widely varying results; see [6] for a survey. Current
consensus within the theoretical physics community [6] is that

∆Tc =
T

(a)
c − T

(0)
c

T
(0)
c

(1)

is linear in a for small a. The main goal of this project is to determine the constant of linearity with a high
degree of certainty, for various interaction models.

2.2. Background. One begins with a Hamiltonian for particles with two-body interactions. Specifically,
consider a system of N bosons in a cube Λ ∈ R

d of size L and volume Ld. The positions of the particles
are either on a unit lattice, so N = Ld with density ρ = 1, or continuously distributed according to a point
process with variable density ρ = N/V . The interparticle potential U is in terms of a scattering length a,
where a is nominally the radius of a hard-core potential. The Hamiltonian for pair-interacting particles is

H = −

N
∑

i=1

∆i +
∑

i<j

U(xi − xj)(2)

where ∆i is the Laplacian and U is a multiplication operator. This operator acts in the space L2(ΛN )sym of
symmetric, square-summable wavefunctions with periodic boundary conditions.
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One may write down the partition function ZΛ,N = Tr(e−βH) and apply a multi-particle Feynman-Kac
formula, involving permutation symmetry of bosonic wave functions, to obtain a Hamiltonian in which
permutation jumps rather than particles interact. (The derivation is sketched in [1, 7], and was worked out
in full detail in my written comprehensive paper.) A cluster expansion, to first order in the scattering length
of the particles, yields a Hamiltonian on SN with only jump-pair interactions:

(3) HP (x1, . . . ,xN , π) =
1

4β

N
∑

i=1

‖xi − xπ(i)‖
2 +

∑

i<j

V (xi,xπ(i),xj ,xπ(j)).

The jump-pair interaction V (xi,xπ(i),xj ,xπ(j)) may be interpreted as the collision probability for a pair of
Brownian bridges running from xi and xj to xπ(i) and xπ(j), respectively, in time 2β.

Equation 3 gives rise to a Gibbs distribution P (π) = e−H(π)/Z (point positions are either held fixed on the
lattice, or integrated out on the continuum) on the N ! permutations of the N bosons. Then, one may compute
the expectation of various random variables in the finite system. For [1, 7, 8] as well as my computational
work in spring 2008, the random variable of interest was the fraction fI of sites in macroscopic cycles. As
suggested by figure 1, one may use fI as an order parameter namely, a quantity which is zero on one side of
a phase transition and non-zero on the other. For finite systems, the fI(L, T ) is smooth in T ; as L increases,
the graph approaches a non-analyticity at Tc.
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Figure 1. Order parameters fI and fS for finite systems.

Direct use of the Brownian bridge jump-pair interaction is prohibitive both analytically and numerically.
The following approaches have been taken:

• One may drop interactions altogether. This model was examined using Markov chain Monte Carlo
methods in [8], with particles distributed on a cubic unit lattice. (To date, [8] is the only work in the
literature on the lattice case: my dissertation extends this territory.) One recovers the critical density
for the Bose gas in the non-permutation Hamiltonian (equation 2), and finds experimentally that
the occurrence of infinite macroscopic cycles corresponds to condensation as predicted by Feynman
[9]. An analogous result is proved in [7] for non-interacting particles distributed on a continuum.

• One may drop all jump-pair interactions except the most strongly interacting ones, namely, two-
cycles [7]. Letting N2(π) denote the number of two-cycles in the permutation π, one has a simple
Hamiltonian of the form

HP (x1, . . . ,xN , π) =
N

∑

i=1

1

4β
‖xi − xπ(i)‖

2 + αN2(π).(4)
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In [10], the N2 concept is extended to the form

HP (x1, . . . ,xN , π) =
N

∑

i=1

1

4β
‖xi − xπ(i)‖

2 +
N

∑

ℓ=2

αℓNℓ(π)(5)

where Nℓ(π) counts the number of ℓ-cycles in the permutation π. Here, it is not known how to
compute the αℓ’s to match the Brownian-bridge interactions. Nonetheless, one may examine this
model for its intrinsic interest — say, with αℓ constant in ℓ.

• Recent, unpublished collaboration between Betz and Ueltschi obtains lower and upper bounds on
the Brownian-bridge interactions; these can be computed easily. Collision probability for Brownian
bridges is increased when paths cross. Thus, Betz expects permutation jumps to be preferentially
aligned or anti-aligned.

2.3. Current work. I am presently pursuing two threads: (1) re-working individual MCMC simulations,
each of which produces an order-parameter data point, and (2) extrapolation and finite-size scaling which
permit determination of the critical temperature from order-parameter data.

In spring 2009, Ueltschi and I began to consider the superfluid fraction fS rather than fI as an order
parameter. As figure 1 suggests, the two order parameters have the same critical temperature but different
critical exponents. The choice of fS as order parameter was motivated by consideration of path-integral
Monte Carlo (PIMC) studies [11, 12, 13, 14, 15, 16, 17, 18, 19]. (One may think of PIMC as sampling
from Brownian-bridge interactions.) The superfluid fraction is a simple function of the winding number : for
a given permutation, one counts the number of windings around the 3-torus (with topology emplaced by
periodic boundary conditions) in each direction.

We soon discovered that the Metropolis sampling algorithm of [8] suffers from a serious defect: it creates
winding cycles only with opposite signs, so that permutations are created with zero winding number. Another
concern (as yet unexplained) is that the superfluid fractions we are seeing experimentally on the lattice exceed
the unit interval.

To sample permutations with non-zero winding number, I reviewed the above-cited PIMC studies, where
the same problem arises, then adapted the PIMC concept of a worm algorithm to our random-cycle model.
Namely, one opens, rearranges, and closes permutation cycles. The open cycles are free to wrap around the
torus before closing. As shown in figure 2, an open cycle on N points may be viewed as a cycle on N + 1
points. I take the (N +1)st point to be non-spatial : it lies at no distance from any lattice point. This degree
of freedom allows Metropolis udpates to explore the full configuration space of lattice permutations on the
3-torus.

Closed cycle on N = 3 points. Open cycle on N = 3 points. Open cycle viewed as a
permutation on N + 1 = 4 points.

Figure 2. Open cycles as permutations on N + 1 points.

I have proved several results for Metropolis updates on the extended (N + 1)-point system, including the
aperiodicity and detailed-balance conditions. Full details will be provided in my dissertation.
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The second thread of my current efforts, given the ability to correctly determine the finite order parameter
fS(T, L), is to take the L → ∞ limit. One technique, which I am developing ad hoc, is to extrapolate
pointwise in T from data such as those in figure 1 to the true fS curve for L = ∞. At this point, it becomes
easy, using log-log plots and linear regression, to read off the critical temperature with error bars. In parallel,
I am employing a finite-size scaling technique adapted from several PIMC studies [12, 17, 18, 19]. Here one
assumes that the finite system’s fS(T, L) is of the form

fS(T, L) =
1

L
Q

((

T − Tc

Tc

)

L1/ν , ζL−δ/ν

)

(6)

for some analytic function Q and some parameters ν, ζ, and δ. Taylor-expanding to first order in the small
arguments, followed by some algebra, permits a two-step regression analysis of the MCMC data resulting in
a determination of Tc with error bars.

My research goals for the summer and fall, in addition to other activites as detailed as the start of this
proposal, are quite precise:

• Write the worm-algorithm, superfluid-fraction, extrapolation, and finite-size-scaling chapters of my
dissertation.

• Quantify ∆Tc for the N2 model on the lattice; compare to the continuum result in [1].
• Quantify ∆Tc for the Nℓ model on the lattice with constant Nℓ. This topic is completely open in

the literature.
• Investigate angle correlation and ∆Tc for the Betz-Ueltschi lower-bound and upper-bound interac-

tions. This topic is also completely open in the literature.
• All computations this summer will be done on the lattice. Point-process simulations may be per-

formed in the fall, if we deem that to be of interest for the dissertation. A Poisson point process is
a tractable approach; the true point process for the Bose gas is very difficult to obtain.

• Let ℓmax be the length of the longest cycle in a permutation; let NfI be the number of cycles
in macroscopic cycles. For non-interacting and N2-interacting spatial permutations, 〈ℓmax〉/NfI is
empirically found to be the same (approximately 63%) as for uniformly distributed permutations.
For Nℓ interactions, this is no longer the case. This phenomenon needs to be characterized.

The above is the current list of priorities, although other questions will certainly suggest themselves through
the seven-month period of support.
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