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1. Timeline

I am currently in my third year of a five-year PhD program. The period of support (fall 2008) will begin my
fourth year. During that time, I will take two courses, continue my research, and complete my comprehensive
examination.

• In fall 2008, I will take Mathematical Physics (Math 541), which will emphasize classical statistical
mechanics, and Quantum Mechanics (Physics 570A), which will fulfill half of my out-of-department
coursework requirement. Both courses will provide key grounding for my research area (described in
detail below).

• I will continue to participate in the mathematical physics seminar. I presented my spring 2008 work
this April; this fall I will describe ongoing progress.

• My comprehensive examination will take place in the fall; I will exposit a paper of Volker Betz and
Daniel Ueltschi [6] which is the basis for my dissertation research.

The combination of coursework, comprehensive exams, and continued research will be challenging; hence my
request for VIGRE support for the fall.

This summer, before the period of support, I will be attending the summer school on Current Topics in
Mathematical Physics at the Erwin Schrödinger Institute. I will spend the remainder of the summer preparing
for the comprehensive examination.

In the longer term, I will take second-semester Quantum Mechanics (Physics 570B) and Theory of Statistics
(Math 566) in spring of 2009. The former will complete my out-of-department requirement; the latter will
complete my PhD minor in Statistics. I will then be well prepared for continued research and summer
school(s)/conference(s) in summer 2009, followed by research and dissertation in the academic year of 2009-
2010 (my fifth year) with timely graduation in May of 2010.

2. Professional development and outreach activities

I will be organizing the departmental weekly Graduate Colloquium for the upcoming year; I have finalized this
agreement with Dan Champion, the current coordinator. Duties include scheduling speakers and publicizing
the series.

Tom Kennedy has approved my request to serve as super TA for his graduate probability (564) course for
fall 2008. I took this course in spring of 2007 and enjoyed it thoroughly. In particular, Tom’s pedagogy
as well as the course content changed the course of my career. I am excited about probability and equally
eager to work with and learn from Tom; I will convey this excitement to the students. Math 564 has for
decades been cross-listed with the undergraduate 464 course; now, for the first time, 564 will be convened
separately. The course is non-measure-theoretic: it bridges an important gap between the undergraduate
curriculum and the fully abstract treatment in Math 563. In particular, the course plays a key role as a core
course for the new Graduate Interdisciplinary Program in Statistics, and is expected to have high graduate
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enrollment. Thus, my contributions can positively influence many students as well as the Mathematics and
Statistics programs in general.

As a supplementary plan, I have consulted with Dorin Dumitrascu, who has led high-school visitations this
year. Since Dorin will not be coordinating these visits next fall, we will be under new leadership. According
to Bill Velez, that leadership will not be chosen until the fall. I will be working with that as-yet-unnamed
faculty member to help schedule speakers and provide transportation. As well, I will conduct my own
presentations.

I had been a bit reluctant to give such talks in the past. Although I am a frequent and avid contributor to
the Graduate Colloquium (see Part I of this application), I did not know what I could say to high-school
students. About a month ago, though, I realized that I do have an appropriate topic. Before graduate school,
when working at Lockheed Martin in an engineering role, I heard that the Cassini probe’s newly acquired
orbit around Saturn would be circularized by firing reverse thrust at periapsis, rather than apoapsis as my
(errant) intuition would have suggested. To help me visualize this, I coded up a Runge-Kutta solver for
the two-body problem (and later, I implemented a three-body solver) with graphical controls for thrust:
namely, thrust was applied only during the duration of a mouse press, in a specified direction with respect
to the velocity vector. As a result of that experiment, it became clear to me why periapsis is the appropriate
location for a circularizing burn: it has everything to do with the fact that non-thrusted trajectories in the
two-body case are ellipses. The subsequent orbit must pass through the point at which thrust was ceased
on the previous orbit; yet, kinetic energy was lost and so the semimajor axis of the orbit must shorten.
This topic combines theoretical, computational, and graphical results, in a way that gave me (and will give
students) a yes-I-can attitude toward problem solving, mathematics, and the universe beyond our planet.

3. Plan of study and research

My research is under Daniel Ueltschi, formerly of the University of Arizona, currently at the University of
Warwick. We are studying the effects of interparticle interactions on the critical temperature of Bose-Einstein
condensation.

3.1. Background. Bose-Einstein condensation is the macroscopic occupation of a lowest-energy quantum
state by a system of bosons. The effect was theoretically predicted in the mid 1920s, but it occurs at such a
low temperature — at the nanokelvin scale! — that it received relatively little attention. Only in 1995 were
Bose-Einstein condensates produced in the laboratory by E. Cornell and C. Wiemann, using sophisticated
cooling techniques. They, along with W. Ketterle, were awarded the 2001 Nobel Prize for this work. BECs
have now enjoyed a resurgence of interest by theorists as well as experimentalists. Their practical applications
at this point might be compared to electromagnetism in the mid 1800s: they contain unknown possibilities,
but it is certain that there is new physics to be discovered.

The work of S. Bose and A. Einstein [1, 2] predicts a critical temperature Tc for the so-called ideal Bose gas
consisting of N non-interacting particles in a domain Λ ⊂ R

d. R. Feynman’s approach [3] is as follows. The
Hamiltonian for the N -particle system is

H = −
N

∑

i=1

∆i +
∑

i<j

U(xi − xj)(1)

where ∆i is the Laplacian and U is a multiplication operator modeling the interaction potential. This op-
erator acts in the space L2(ΛN )sym of symmetric, square-summable wavefunctions with Dirichlet boundary
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conditions. Feynman then expands the partition fuction ZΛ,N = Tr(e−βH) in the Feynman-Kac representa-
tion [4]:

(2)

ZΛ,N =
1

N !

∫

ΛN

dx1, · · ·dxN

∑

π∈SN

∫

dW 2β
x1,xπ(1)

(w1) · · · dW 2β
xN ,xπ(N)

(wN )

· exp







−1

2

∫ 2β

0

dτ
∑

i<j

U(wi(τ) − wj(τ))







.

Here, SN is the group of permutations on N symbols and β is proportional to inverse temperature as usual;
dW 2β

xi,xπ(i)
is the Wiener measure for trajectories wi running from xi to xπ(i) in time 2β. Feynman then

considers the lengths of cycles formed by permutations in SN , claiming that Bose-Einstein condensation
occurs if and only if there are infinite cycles in the thermodynamic limit, namely, N, |Λ| → ∞ with fixed
density N/|Λ|.

Ueltschi considers a cube Λ ∈ R
d of size L and volume Ld. The interparticle potential U is in terms of a

scattering length a, where a is nominally the radius of a hard-core potential. The state space of random
permutations in the Feynman-Kac representation is ΩΛ,N = ΛN × SN . Letting ℓx(π) denote the length of
the permutation cycle containing a site x, the density of sites in cycles of specified length — the quantitative
setting for Feynman’s infinite cycles in the thermodynamic limit — is defined to be

(3) ρm,n(π) =
1

V
#{i = 1, . . . , N : m ≤ ℓxi

(π) ≤ n}.

The expected value of this density is taken with respect to permutation probabilities:

(4) EΛ,N [ρm,n] =
1

ZΛ,NN !

∫

ΛN

dx1 · · ·xN

∑

π∈SN

ρm,n(π)e−H(x1,...,xN ,π).

That is, energy (of a permutation) is the logarithm of probability (of a permutation), as is usual in statistical
mechanics, and the denominator is a normalizing factor. A thermodynamic limit of this expectation quantifies
the probability of the occurrence of infinite cycles. The new H appearing here is a Hamiltonian for positions
and permutations. Applying a cluster expansion in the small parameter a to the bosonic Hamliltonian
(equation 1), one obtains

(5) H =
1

4β

N
∑

i=1

‖xi − xπ(i)‖2 +
∑

i<j

V (xi, xπ(i), xj , xπ(j)).

The central point of Ueltschi’s approach is that the energy has been recast in terms of permutations: the new
Hamiltonian H is more amenable to analysis than the original Hamiltonian H. Terms in the first sum count
lengths of permutation jumps; terms in the second sum count interactions between pairs of permutation
jumps. (Higher-order interactions between triples of jumps, etc., are omitted.) For the interjump potential
V , one obtains

(6) V (x, y, x′, y′) =

∫

[

1 − e−
1
4β

R 4β

0
U(w(s)) ds

]

dŴ 4β
x−x′,y−y′(w)

where x jumps to y, x′ jumps to y′, and dŴ is a unit-normalized Wiener measure on Brownian bridges
w running from x − x′ to y − y′ in time 4β. It can be shown that V (x, y, x′, y′) is the probability that a
Brownian bridge from x − x′ to y − y′ intersects the ball of radius a.

In the non-interacting case, one has scattering length 0 which corresponds to V = 0 in equation 5. This
model was treated in [5]. A detailed exposition of the interacting model is in [6], with a summary in [7].
Intermediate between the non-interacting and interacting models is the N2 model of [6], wherein the only
interactions that are retained in equation 5 are those between the jump pairs comprising two-cycles. For
technical reasons, the N2 model is significantly more efficient to simulate than the interacting model, and so
merits continued attention.
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3.2. Current results. I have worked under Daniel Ueltschi in the spring of 2008. To date, the following
progress has been obtained.

The non-interacting results of [5] were first reproduced. This gave me confidence in my Monte Carlo simula-
tions. The computational approach is as follows: Given an inverse temperature β and a lattice configuration
of N = Ld points, for L ranging from 10 to 50 and d = 1, 2, 3, generate a sequence of permutations on the N
points. These permutations are generated using the Metropolis-Hastings algorithm (a particular algorithm
of Monte Carlo type), sampling from the non-uniform probability distribution which is implicit in the right-
hand side of equation 4. Compute the sample means ρ0,k(π) over all the permutations π generated. Using
this averaged ρ0,k, estimate the probability that the origin is in a long-range cycle. Repeat this process,
varying β, to find the critical βc (and thus the critical temperature Tc) at which the transition to long-range
cycles occurs.

A key problem at the start of the project was the detection of thermalization. The Metropolis-Hastings
algorithm is justified theoretically by an invariant distribution of a particular Markov chain. However, the
full Markov matrix is never written down: indeed, for this problem, with a system of 1000 particles, the matrix
would have dimensions 1000! by 1000! In practice, it is generally difficult to detect when the Metropolis-
Hastings simulation has reached an invariant distribution, or has thermalized in statistical-mechanics jargon.
The work of Gandolfo and Ruiz [5] used manually detected thermalization. I implemented an automatic
thermalization criterion based on counting the number of turning points of a time-smoothed system energy
function. The result matches the manual detection results across the full range of parameter values.

The N2 model was simulated soon thereafter, although I deferred tabulated computations of critical tem-
perature until recently, as Daniel and I were pressing hard toward progress on the fully interacting model.
Currently, N2 simulations are in progress on a departmental minicluster. The computational approach is as
outlined at the start of this section, except that now one also varies the scattering length a in order to esti-
mate the critical temperature Tc(a). It is already clear that N2 interactions do raise the critical temperature;
continued simulations will allow me to quantify the interaction dependence of the critical temperature.

The main difficulty in simulating the interacting model has been computation of the interjump potential
V (·). The defining equation (equation 6) is in terms of Brownian bridges: for each proposed permutation
modification in a step of the Metropolis-Hastings algorithm, one must sum over all affected interactions
between pairs of permutation jumps. For each interaction pair, one must generate Nb Brownian bridges,
each sampled at Np points on a time-step mesh from 0 to 4β. For each bridge, one must detect whether
the trajectory of the bridge has intersected the ball of radius a centered at the origin. None of these steps
is conceptually difficult, yet the product of the number of operations is quite large. Thus, we assessed the
parameters Nb and Np and considered techniques to avoid redundant computation.

It is well known that that the standard deviation of Brownian motion is
√

∆t for a time-step mesh of ∆t.
Since the time step is ∆t = 4β/Np, one must increase Np by a factor of 100 in order to reduce the motion’s
standard deviation by a factor of 10. The standard deviation of a Brownian bridge is different: it scales as
t(T − t)/T . Nonetheless, the standard deviation of a Brownian bridge is of order

√
∆t. Thus, it is perhaps

no surprise that the bridge size Np must be exceedingly large (in experiments, on the order of 500,000) in
order for V (·) to stabilize. Interestingly, increasing Nb only decreases the error bars around the stochastic
value V (·); bias can only be removed by increasing Np.

One may reduce the excessive time burden of these computations by precomputing a database of Brownian
bridges which run from the origin in R

d back to the origin in time 1. Then, one may draw from that database
to rescale, using a simple change of variable, to an arbitrary bridge.

One may further reduce the computational burden by taking advantage of symmetries of V (·). The potential
function V (·) is rotationally invariant; likewise, the probability that a Brownian bridge from x− x′ to y − y′

intersects the ball of radius a centered at the origin will not change if the bridge is run backward. Thus

V (x, y, x′, y′) = V (x′, y′, x, y).
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As well, since only the differences x − x′ and y − y′ matter, we have, for all real b, c, the double translation
invariance

V (x + b, y + c, x′ + b, y′ + c) = V (x, y, x′, y′).

Taking advantage of all these symmetries, we may write the potential in terms of r1 = ‖x′−x‖, r2 = ‖y′−y‖,
and θ being the angle between x − x′ and y − y′. Then, one may tabulate equation 6 over a range of r1, r2,
θ, β, and a, and then use interpolation at run time.

Creation of the bridge database, with Np = 500, 000 and Nb = 1000, is feasible: one needs many hours of
compute time and several hundred megabytes of disk space, but the database, once computed, is reusable.
Creation of the V (·) database appeared more daunting. Fortunately, Betz and Ueltschi have recently devel-
oped a Riemann-integral formula for V (·), which is valid to lowest order in a. Now, the Brownian-bridge
database is unnecessary. The V database has been generated and is in computational use at present. (By
change-of-variable tricks we may yet be able to obtain a closed-form expression for V (·). If so, we will
certainly use it.)

As with the N2 case, it is clear that the interactions raise the critical temperature as expected from recent
consensus within the physics community. Currently-running simulations are providing the data needed to
quantify this dependence of critical temperature on scattering length.

3.3. Future work. The results obtained up to this point may be extended in theoretical and experimental
directions. We will begin pursuing these directions during the period of support.

• The first order of business is to unfreeze particle positions: they were held frozen only as a conve-
nience. The positions follow a point process; however, the process it is not currently known. One
may conjecture a Poisson process, but it has been shown [8] that the positions for bosons in a con-
densate do not satisfy a large-deviation principle which would be expected for Poisson. Thus, one
may choose to nonetheless simulate a Poisson process — in terms of initial placement of particles,
as well as particle motion during Monte Carlo simulations — and learn whatever lessons are to be
had. Also, though, one would like to characterize the true point process at the theoretical level.

• It is known that Bose-Einstein condensation occurs only in dimension d = 3. Yet one could replace
the ‖xi−xπ(i)‖2 term in the Hamiltonian by a more general ξ(xi, xπ(i)) to study effects in dimensions
1 and 2.

• The cluster expansion used to obtain equation 5 is non-rigorous and needs mathematical justification.
It is expected to work for a much smaller than interparticle spacing (e.g. on the cubic lattice). For
the point process, where interparticle spacing may approach the scattering length a, further work
will be required.
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