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Chapter 1

Scientific context

1.1 Theory

In 1924, the physicist Satyendra Nath Bose examined the quantum statistics of pho-
tons. In 1925, collaborating with Bose, Albert Einstein realized that the same could
be done with non-interacting massive particles. He also discovered the condensation
phenomenon: a macroscopic occupation of the (single-particle) ground state of the
external potential [LSSY]. Moreover, Einstein predicted a critical temperature for
the phenomenon. This temperature was so low — at the nanokelvin scale — that
Bose-Einstein condensation attracted little interest in the physics community.

Feynman in 1953, along with Penrose and Onsager in 1956 [Feynman, PO], devel-
oped the theoretical notion of long permutation cycles in the Feynman-Kac represen-
tation of the Bose gas. Feynman claimed that long cycles correspond to Bose-Einstein
condensation.

András Sütő referred to the existence of long permutation cycles as cycle per-
colation. He proved in 1993 that BEC implies cycle percolation in the ideal (non-
interacting) gas [Sütő1], and proved the converse in 2002. Sütő moreover proved in
the 2002 paper that there are infinitely many macroscopic cycles in the condensation
of the non-ideal Bose gas.

For the ideal Bose gas, BEC is defined as the macroscopic occupation of the
single-particle ground state of the external potential. For an interacting Bose gas,
Hamiltonian eigenfunctions do not factor and thus there are no single-particle ground
states. BEC is carefully defined for interacting systems [LSSY] in terms of the largest
eigenvalue of a density-matrix operator. The 1983 work of Buffet and Pulè [BP]
examines the macroscopic occupation of the zero Fourier mode.

1.2 Experiments

Liquid helium was produced in the laboratory by Kammerlingh Onnes in 1908; Fritz
London in 1938 [London] connected superfluidity of liquid helium with Bose-Einstein
condensation. Atoms of liquid helium, however, are strongly interacting — they
attract only weakly, due to helium being a noble gas, but there are strong repulsive
effects due to the high density of the liquid. Thus, Einstein’s non-interacting theory
could not explain the phenomenon.

Several groups attempted during the 1990s to produce BECs in vapors of spin-
polarized hydrogen, but were not able to achieve low enough temperatures. The
group of Cornell and Wieman [AEMWC], using hybrid cooling methods, successfully
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brought rubidium atoms to well below the critical temperature and made numerous
measurements on the resulting condensates. (Cornell, Wieman, and Ketterle received
the 2001 Nobel prize in physics for this work.)

Interest in BECs was sparked by this experimental success: thousands of papers,
both theoretical and experimental, have been published on BECs in the years since.
The work of Cornell and Wieman was of interest for several reasons:

• Condensates were directly imaged. Measurements were taken of temperature,
density, position, velocity, particle number, and the fraction of the condensate
occupying the ground state of the 3D harmonic trapping potential.

• The method was able to vary temperature and density through wide ranges;
the condensate fraction was varied from zero to 100 percent.

• The gaseous rubidium condensate was weakly interacting — permitting a per-
turbative analysis which liquid helium, with its strong interactions, did not al-
low. (Note in particular that recent mathematical studies are weak-interaction
theories; they are valid only to first order in the scattering length.)

1.3 Critical temperature

Recall that Einstein predicted a critical temperature Tc for the ideal Bose gas. It is
a long-standing question to discover the effects of scattering length a on the critical
temperature. Moreover, one may fix the density ρc(a) and obtain a critical tem-
perature Tc(a) = 1/βc(a) or vice versa; both of these critical parameters depend on
the scattering length a. One expects the critical combination of parameters to be a
manifold in (ρ, β, a) space. (See figure 1.1.)
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Critical line a = 0, ρ = ζ(3/2)/(4πβ)3/2

Weak-interaction regime

Figure 1.1. Critical manifold in (ρ, β, a) for small a.

Much is known about the a = 0 line of this critical manifold; off a = 0, even the
crude shape has been under debate. The following findings are described by [BBHLV]:
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The superfluid transition temperature of liquid helium is lower than that of an ideal
gas of the same density. Thus, assuming that helium superfluidity is a strongly inter-
acting BEC, one would expect interactions to decrease the critical temperature for
the strongly interacting case. Various theoretical work (tabulated below) suggested
either an increase or a decrease in critical temperature; path-integral simulations for
low density (i.e. weak interactions) suggested that the critical temperature increases
with scattering length, for small scattering length. The emerging consensus is that

∆Tc(a) =
Tc(a) − Tc(0)

Tc(0)

is linear in a for small a, i.e.

∆Tc(a) = ca + O(a2).

The following summary of the theoretical work on this question is found in [SU09].
(See also [AM, KPS, NL04] for a review on the widely varying analytical and simula-
tional results on Tc(a); see [BBHLV] for a thorough listing of the progress up to 2001
and [SU09] for an up-to-date survey.)

• 1964: Huang : ∆Tc(a) ∼ (aρ1/3)3/2, increases

• 1971: Fetter & Walecka: ∆Tc(a) decreases

• 1982: Toyoda: ∆Tc(a) decreases

• 1992: Stoof : ∆Tc(a) = c aρ1/3 + o(aρ1/3), c > 0

• 1996: Bijlsma & Stoof : c = 4.66

• 1997: Grüter, Ceperley, Laloë: c = 0.34

• 1999: Holzmann, Grüter, Laloë: c = 0.7; Holzmann, Krauth: c = 2.3;

• 1999: Baym et. al.: c = 2.9

• 2000: Reppy et. al.: c = 5.1

• 2001: Kashurnikov, Prokof’ev, Svistunov : c = 1.29

• 2001: Arnold, Moore: c = 1.32

• 2004: Kastening : c = 1.27

• 2004: Nho, Landau: c = 1.32
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1.4 Context of dissertation

The work of Ueltschi and Betz [BU07, U06, U07] extends the permutation point of
view originated by Feynman, Penrose, and Onsager, drawing on the work of Sütő,
Buffet, and Pulè [Feynman, PO, Sütő1, Sütő2, BP] to develop a model of random
spatial permutations. (See chapter 2 for precise definition of the model.) In the
permutation representation, this condensate transition manifests itself as the onset
of long permutation cycles. The central point of this approach is that the system
energy has been recast in terms of permutations, which are amenable to analysis and
simulation. This permits a new perspective on an old question: the main goal of
Ueltschi and Betz’s long-term project is to quantify the shift in critical temperature,
as a function of scattering length, for non-ideal Bose gases in the small-scattering-
length regime.

The interaction terms for the permutation representation of the Bose gas are
difficult to compute. Moreover, it is interesting to consider the model of random
spatial permutations (which we sometimes refer to as the random-cycle model) for
its own sake. Thus, Ueltschi, Betz, Gandolfo, Ruiz, and the author take various
approaches with varying degrees of fidelity to the physical Bose-gas model. In section
2.1, we will see a random-cycle model for N particles which is parameterized by N
cycle weights {αℓ} = α1, . . ., αN which encourage or discourage permutation cycles
of lengths ℓ = 1, . . . , N . The remainder of this section involves results that may be
obtained, analytically or simulationally, when various constraints are placed on the
cycle weights.

In the papers [U07, BU07], Betz and Ueltschi examine the Bose-gas permutation
weights with point positions allowed to vary in the continuum; an exact expression
for the critical temperature is stated and proved for a simplified interaction model in
which only two-cycles interact. The cycle-weight parameter α2 is expressed in terms
of the scattering length a; all other cycle weights are set to zero. In [BU08], this
approach is extended to a model in which all the cycle weights αℓ may vary, but with
the constraint that αℓ goes to zero faster than 1/ log(ℓ). Here, an expression for the
shift in critical temperature is found, as a function of all N cycle weights. It is key to
note that these αℓ’s are not computed directly from the physical scattering length a;
rather, the result obtained is true for any cycle weights {αℓ} satisfying the decaying-
cycle-weight hypothesis. In [BU10], Ueltschi and Betz estimate, to first order, cycle
weights {αℓ} for the Bose gas.

Betz, Ueltschi, and Velenik [BUV09] examine cycle weights {αℓ} with various
hypotheses, including the Ewens [Ewens] case in which cycle weights are constant for
all cycle lengths ℓ. These random permutations are non-spatial, i.e. T = 0 in the
vocabulary of chapter 2. Their work is relevant to section 3.4 of this dissertation.

As is often the case in statistical mechanics, the study of this interacting system
necessitates the use of computational methods — specifically, Markov-chain Monte
Carlo. In [GRU], a simulational approach is taken for points held fixed on the cubic
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unit lattice in the non-interacting case (αℓ ≡ 0 in the language of chapter 2).
This dissertation, the only known simulation approach to the interacting model,

applies MCMC methods to the case where N = L3 points are held fixed on the fully
occupied cubic unit lattice, with small additional probability weights depending on
cycle lengths. This extends from[GRU] as well as [BUV09]. We find that even though
lattice positions are used, and even though the decaying-cycle-weight hypothesis is
invalidated, one nonetheless recovers the shift in critical temperature as predicted in
the decaying-cycle-weight model of [BU08].

1.5 Literature review

In addition to the many references made in previous sections of this chapter, we point
out the following.

The papers [GCL97], [KPS], [Ceperley], and [NL04] are among path-integral
Monte Carlo simulational approaches to Bose-Einstein condensation — perhaps the
closest relatives to the numerical work done in [GRU] and in this dissertation.

The doctoral dissertations of Peter Grüter and Markus Holzmann are paradig-
matic examples of clear dissertation writing [Grüter, Holzmann]; the latter also pro-
vided insight into finite-size scaling.

Mean longest cycle for uniformly distributed (i.e. non-interacting, non-spatial)
permutations (T = 0 and α = 0 in the language of chapter 2) was discussed by [SL],
following a question posed by Golomb on the basis of experimental data [Golomb].
See also sections 2.4 and 2.5. Non-uniformly distributed non-spatial permutations
with constant cycle weights (T = 0 and α 6= 0 in the language of chapter 2) arose in
mathematical biology [Ewens].

Background in quantum mechanics and statistical mechanics may be found in
[Griffiths], [Huang], and [Sakurai].

Worm algorithms for path-integral Monte Carlo, which inspired the random-
spatial-permutation worm algorithm of chapter 7, are used throughout simulational
physics. See in particular [BPS06] and [PST98].

Finite-size scaling techniques are employed for path-integral Monte Carlo simu-
lations in [GCL97], [HK99], [KPS], [NL04], [PC87], [PGP08], and [PR92]. Citation
trails in the above-cited works lead back to [Barber]. Some background information
is found in [LB]. An excellent survey, encompassing and explicating all the above
methods — truly a blessing for the aspiring learner — is [PV].

Markov chain Monte Carlo methods are discussed in [LB]; this dissertation has
been influenced most heavily by [Berg]. Indeed, my appendix B is an elaboration
on Berg’s discussion of integrated autocorrelation time. The probability background
necessary for either Landau and Binder or Berg may be found, with increasing levels
of sophistication, in [Lawler], [GS], and [Øksendal]. The standard reference for sta-
tistical analysis, including confidence intervals, is [CB]. More practical aspects of the
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statistical reduction of experimental data are found in [Young].
The Mersenne Twister [MN] is the pseudo-random-number generator used in the

this dissertation’s computational work. Another good generator is pseudo-DES [NR].
Moreover, any numerical dissertation without a reference to Numerical Recipes is
incomplete; its inclusion here is as good a point as any to end the literature review.

1.6 Originality of dissertation

Last, we delineate the originality of work presented in this dissertation. Chapters 1-3
are a rephrasing and an elaboration on [BU07, BU08, U07]. Chapter 4 is quite stan-
dard; the contribution made here is to present familiar general results in the specific
context of random permutations. The essential SO algorithm of chapter 5, with a
small modification, was presented in [GRU]; likewise for the SO ∆H computations
in chapter 8. The treatment here is the first correctness proof of the SO algorithm.
The SAR algorithm of chapter 5 was suggested by Daniel Ueltschi. The band-update
algorithm (chapter 6) is due to the author. The worm algorithm and its correctness
proof (chapter 7) are due to the author, along with the remaining ∆H computations
of chapter 8. The remaining chapters, 9-12, are also original work. Appendix A
briefly summarizes part of [BU07, U07]. Appendix B is a new take on an old ques-
tion; see also [Berg]. The correlated-uniform Markov process is original, as is the
explicit comparison of batched and non-batched means for exponentially correlated
stationary Markov processes.


