
114

Chapter 10

Batching of MCMC runs

As described in chapter 9, the C program mcrcm is given a set of parameters as
follows: L, T , interaction type and interaction parameter α, algorithm type (i.e. SO,
SAR, band-update, or worm) and number of sweeps. Then a sequence of random
permutations is generated, and sample means of random variables are computed over
that sequence. The result is, for example, that the system energy H had sample mean
4939.7 with sample standard deviation 155.6.

One wishes, however, to find patterns in such data. In particular, as described in
chapter 11: for various interactions α, for larger and larger L permitting extrapolation
to the thermodynamic limit, one wishes to estimate the critical temperature Tc at
which various order parameters (section 3.7) have a point of non-analyticity in the
infinite-volume limit.

The C language was chosen for mcrcm, due to its efficiency for large-scale com-
putations. (Data sets discussed in this dissertation have taken approximately 5.5
CPU-years; the choice of C has proved worthwhile, as an early Python implementa-
tion ran a factor of 40 times slower.) For the relatively lightweight task of scheduling
parallel-processing tasks over multiple parameter values, extracting and collating sam-
ple statistics of random variables, and viewing the results — tasks for which the CPU
time is measured in minutes, at most — it suffices to use easier-to-code scripting
languages such as Bash or Python. Examples are shown in subsequent sections. The
author has developed a flexible Python module, taskutil.py, for automating most
of the tasks described in this chapter. However, such content is non-mathematical,
of dubious value to an already lengthy mathematics dissertation. Equivalent, but
briefer and simpler, scripting snippets in Bash will be shown instead.

10.1 Collecting data over multiple parameter values

Given a choice of parameter nacc (number of sweeps), and choices of parameters L,
T , and α as described in chapter 2, a simple example of running mcrcm programs to
compute sample statistics of random variables is as follows:

nacc=100000

datadir=sar_nacc_${nacc}

Ls="40 60 80"

Ts="6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20"

alphas="0.000 0.001 0.002"

mkdir -p $datadir

115

for L in $Ls; do

for T in $Ts; do

for alpha in $alphas; do

file=$datadir/L_${L}_T_${T}_rell_alpha_${alpha}.txt

mcrcm L=$L T=$T rell alpha0=$alpha nacc=$nacc > $file

done

done

done

For example, one of the loop iterations will execute the command

mcrcm L=40 T=6.70 rell alpha0=0.001 nacc=100000

and direct the output (as described in section 9.18) to the file

sar_nacc_100000/L_40_T_6.70_rell_alpha_0.001.txt,

the contents of which were shown in section 9.18. In total, 81 such files will be
produced. Next one may wish to, say, select out only the values of mean fS — the
sample mean of fS (sections 3.6 and 9.14) — from all 81 files.

The author’s taskutil.py module implements this basic idea, with various elabo-
rations. For example, one might divide the 81 tasks into 3 tasks for 27 processors each,
with processors running in parallel. One might also wish to implement restart logic in
case of unexpected downtime (e.g. due to a thunderstorm), wherein the script sees if
a given file has already been completed rather than launching an already-completed
task.

10.2 Extracting data over multiple parameter values

Given a list of data files as described in the previous section, one may wish to extract
out a specified sample statistic for a specified random variable. A simple sample
script which does this is

RV_name="mean_fS"

nacc=100000

datadir=sar_nacc_${nacc}

Ls="40 60 80"

Ts="6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20"

alphas="0.000 0.001 0.002"

for alpha in $alphas; do

echo "alpha = $alpha"

for L in $Ls; do

for T in $Ts; do

file=$datadir/L_${L}_T_${T}_rell_alpha_${alpha}.txt

116

RV=‘grep $RV_name $file | awk ’{print $NF}’‘

echo $L $T $RV

done

done

echo ""

done

alpha = 0.000

40 6.40 1.0506240

40 6.50 0.8573933

...

alpha = 0.1

40 6.40 1.3394773

40 6.50 1.2505133

...

Such output may be analyzed or plotted as desired. Examples were shown throughout
chapter 9.

10.3 Parallel processing

As discussed in section 10.1, when one is examining a set of (L, T, α) parameter
values, one invokes an mcrcm executable for each particular triple of (L, T, α). If
sufficiently many processors are available, there is no reason one cannot run, say,
(L = 40, T = 6.5, α = 0.1) at the same time as (L = 40, T = 6.5, α = 0.2). In
high-performance computing jargon, such parallelism is called trivially parallel or
embarrassingly parallel. The author uses three such paradigms:

• On a single-processor laptop, mcrcm programs are launched in sequence, as in
section 10.1.

• On the University of Arizona Department of Mathematics chivo cluster, which
is four hosts with two CPUs each, one might (to be civil to other users) pick
three hosts, running one parameter set on each, further prefixing with Unix
nice -10.

• On the University of Arizona High Performance Computing Center’s ICE clus-
ter, which is a single host with over 1000 CPUs shared by dozens of on-campus
researchers, one might request, say, 32 CPUs and divide the parameter set
among those CPUs.

What has not been implemented is parallelization of mcrcm itself. As of this
writing, there is no need to do so.

