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Chapter 11

Results

11.1 Finite-size scaling methodology

Finite-size scaling takes the form of a hypothesis, or rather a set of hypotheses, which
is tested against the data. See [PV] for an excellent survey of techniques; see section
11.2 for a derivation of the formulas.

We have an infinite-volume random variable S(T ), e.g. any of the order parameters
defined in section 3.7. The finite-volume quantity is SL(T ). Define t = (T − Tc)/Tc.
Examine, say, 0.99 < t < 1.01. The first hypothesis is that the correlation length
ξ(T ) follows a power law

ξ(T ) ∼ |t|−ν, T → Tc

For the infinite-volume quantity, we also expect a power-law behavior

S(T ) ∼ tρ, (−t)ρ, or |t|ρ, i.e. ξ−ρ/ν.

(The domain of validity is t < 0 or t > 0 depending on whether the order parameter
S is left-sided or right-sided, respectively.) One moreover hypothesizes that for T
near Tc, SL(T ) and S(T ) are related by a universal function QS which depends on T
only through the ratio L/ξ:

SL(T ) = L−ρ/νQS(L1/νt) ∼ L−ρ/νQS((L/ξ)1/ν). (11.1.1)

The flow of data and respective uncertainties are as follows:

• Markov chain Monte Carlo simulations, with error bars determined using the
method of integrated autocorrelation time (see [Berg] and our appendix B),
yield SL(T, α) data points. There are five order parameters S, six values of L
(30, 40, 50, 60, 70, 80), nine values of α, and a few dozen values of T for each
α.

• For each S, L, and α, we use SL(T, α) values for all available values of T and
α to estimate 1 ρ̂S(L). (Critical exponents are assumed to be independent of α
for small α, or with weak enough dependence on α that that dependence is lost
in the noise.) Error bars may be propagated from the MCMC simulations, or
computed from regression uncertainties.

1We use the statistics convention wherein ρ̂ is an experimental estimator for the exact (but
unknown) value ρ.
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• Extrapolating ρ̂S(L) in L → ∞ results in the five estimated critical exponents
ρ̂S. Uncertainties are computed from the regression analysis.

• Once the critical exponents have been estimated, we obtain T̂c,S(α) for each
of the five order parameters S and for each α. Uncertainties are computed by
visual inspection of the crossing plots discussed in section 11.5.

• Once the critical exponents and Tc have been estimated, one should be able to
obtain plots of the universal function QS which is, up to sampling variability,
independent of L, T , and α. This verifies that the finite-size-scaling hypothesis
was the correct approach to use.

• The shift in reduced critical temperature is as in equation (2.3.1). Error bars
are computed from regression uncertainties.

11.2 Derivation of finite-size scaling

A clear explanation is found in on-line notes of Claudia Brüns of the Argelander
Institute for Astronomy of the University of Bonn. (We are unwilling to provide
a bibliographic reference to an internet address, which may change in the future.
Nonetheless, we feel compelled to acknowledge the author to whom this expalanation
is due.) Those notes are are reproduced essentially verbatim in this section, except
for change of notation.

For T away from Tc, ξ ≪ L and so SL(T ) is not affected by lattice size. The finite-
volume quantity SL(T ) corresponds to the infinite-volume quantity S

∞
(T ), and we

know S
∞

(T ) ∝ ξ−ρ/ν as discussed in the previous section. For T near Tc, on the other
hand, the correlation length ξ approaches the system size L so SL(T ) ∝ ξ−ρ/ν ≈ L−ρ/ν .
As well, SL(T ) differs significantly from S

∞
(T ) via the constant of proportionality.

Combining these two regimes into a single expression gives

SL(T ) = ξ−ρ/νRS(L/ξ) (11.2.1)

where

RS(L/ξ) ∝
{

constant, ξ ≪ L

(L/ξ)−ρ/ν , ξ → L.
(11.2.2)

The infinite-volume correlation length ξ = ξ
∞

(T ) is unknown, so we define a scaling
function QS to get rid of it:

QS(L/ξ) = (L/ξ)ρRS((L/ξ)ν), (11.2.3)

i.e.

RS(L/ξ) = (L/ξ)−ρ/νQS((L/ξ)1/ν). (11.2.4)
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Figure 11.1. Order parameters fmax and 1/ξ for L = 40, 60, 80 and α = 0 and
0.001. The remaining order parameters fS, fW , and fI behave similarly to fmax but
with not all with the same critical exponents.

The scaling function QS is finite for ξ → L:

QS(L/ξ) = (L/ξ)ρRS((L/ξ)ν) (11.2.5)

QS(L/ξ) ∝ (L/ξ)ρ · ((L/ξ)ν)−ρ/ν = 1. (11.2.6)

Placing equation (11.2.4) into equation (11.2.1) yields

SL(T ) = ξ−ρ/ν(L/ξ)−ρ/ν · QS((L/ξ)1/ν) (11.2.7)

= L−ρ/νQS(L1/νξ−1/ν) (11.2.8)

= L−ρ/νQS(L1/νt). (11.2.9)

11.3 Determination of L-dependent critical exponents

For each of order parameter S, interaction parameter α, and box length L, we examine
all S(L, T, α) data for which S > ε, with ε taken from the plots to ensure that we
examine the portions of the curves corresponding to non-zero order parameter in the
infinite limit (see figure 11.1). For 1/ξ, this means T > Tc; for the other four order
parameters, this means T < Tc. From plots such as those in figure 11.1, we choose ε
to be 0.1 for 1/ξ, 0.01 for fmax, 0.01 for fI , 0.05 for fS, and 0.01 for fW . For each S, α,
and L, we then apply linear regression to S(L, T )1/ρS for varying ρS. We find ρ̂S(L)
which optimizes the correlation coefficient [Young] of the linear regression. Results
are shown in figure 11.2. Given ρ̂S(L) along with its corresponding linear-regression
parameters m̂ and b̂, we may plot a power-law fit to the simulational data. One such
comparison plot is shown in figure 11.3.
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Figure 11.2. On the left: determination of critical exponent ρ̂S(L, α) for order
parameter fS, as the value which minimizes linear-regression error for SL(T, α)1/ρ.
Visually, one sees ρ̂S(L = 80, α = 0.0) ≈ 0.59. On the right: estimated critical
exponents for L = 30, 40, 50, 60, 70, 80.

α Mean Std.err. Count

0.000 0.6242981 0.0000897 78
0.0001 0.6243312 0.0001079 78
0.0002 0.6245691 0.0000921 72
0.0005 0.6245402 0.0001062 66
0.0008 0.6244347 0.0000856 72
0.001 0.6244779 0.0001020 60
0.002 0.6246345 0.0001154 42
0.003 0.6245906 0.0001559 48
0.004 0.6245966 0.0001964 42

Table 11.1. fmax/fI as a function of α. An upward trend is visible, but it is not
pronounced.
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Figure 11.3. Power-law fit vs. raw simulational data for order parameter fS, α = 0.
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ν̂ 0.5559 ± 0.0037
ρ̂S 0.6201 ± 0.0065
ρ̂W 0.7750 ± 0.0073
ρ̂I 0.7451 ± 0.0052
ρ̂M 0.7486 ± 0.0059

Table 11.2. Extrapolated estimates of the infinite-volume critical exponents, found
from the vertical intercept of figure 11.2.

11.4 Extrapolation of critical exponents for the infinite-volume

limit

Next, for each S, given estimates ρ̂S(L) for increasing values of L, we plot ρ̂S(L)
versus 1/L. The vertical intercept of this plot estimates the infinite-volume exponent
ρ̂S(α). (See figure 11.2.) Results are shown in table 11.2.

11.5 Determination of critical temperature

Given the above estimators of the critical exponents, the crossing method [PV] es-
timates Tc(α). Namely, we plot Lρ̂/ν̂SL(T ) as a function of T . At T = Tc we have
t = 0 and Lρ/νSL(T ) = QS(0), regardless of L (equation (11.1.1)). Thus, these curves
will cross (approximately, due to sampling variability) at T = Tc. If they do not,
the finite-size-scaling hypothesis is not verified. (Note in particular that for order
parameter 1/ξ whose critical exponent is ν, we apply the crossing method to LSL(T )
as a function of T : thus, the Tc(α) estimate using 1/ξ is independent of ν̂.) See for
example figure 11.4. Results are in table 11.3 and figure 11.6

Using order parameters fS and fW , which depend on winding phenomena, one
does not see clear crossing behavior. We suggest that either this is related to the
even-winding-number issue discussed in section 5.4, or fS and fW are not good order
parameters for this model. We suspect the former; in every manner except this
crossing issue, fS and fW behave as expected. (In the absence of clear crossing
behavior for fS and fW , for the sake of discussion we nonetheless provide best visual
estimates for T̂c(α) for fS and fW . These will not be used for further analysis toward
our final result.)

11.6 Verification of finite-size-scaling hypothesis

Now that we have estimated ρS, ν, and Tc(α) for each of the five order parameters S,
we may plot LρS/νSL(T, α) as a function of L1/νt. This is a plot of the scaling function
QS. If the hypothesis is correct, the curves for all L should coincide, or collapse, to
within sampling error — which they do (e.g. figure 11.5).
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Figure 11.4. The crossing method to estimate Tc(α) for order parameter fI , with
ρ̂ and ν̂ as above: Tc(α) corresponds to the horizontal coordinate of the intersection
point of the plots. The upper-right-hand plot is a close-up of the upper-left-hand
plot. Order parameters fS and fW , which depend on winding phenomena, do not
exhibit clear crossing behavior.
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Figure 11.5. Collapse plot for order parameter 1/ξ.
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11.7 Determination of the shift in critical temperature

As discussed in section 2.5, we are seeking a linear relationship between ∆Tc(α) and
α, with constant c. This can be visualized in figure 11.7, which is obtained from the
Tc,S(α) data of figure 11.6 using equation (2.3.1). We start with all the (α, ∆Tc(α))
data points from section 11.5. We omit values obtained using fS and fW , due to the
aforemention lack of crossing behavior. We also omit values obtained using α = 0.004,
since the critical-temperature plots of figure 11.6 suggests that this starts to exceed
the domain of linear approximation. We perform a linear regression with error bars
[Young] on the (α, ∆Tc(α)) data points. We use a slope-only fit, rather than a slope-
intercept fit, since ∆Tc(α) has zero intercept by its very definition. We find

c = 0.618 ± 0.086 (2 σ error bar).

Within experimental uncertainty, this result, for points on the lattice with Ewens
cycle-weights, matches the c value of equation (2.5.3) for point positions varying on
the continuum with decaying-cycle-weight interactions.

11.8 Constancy of the macroscopic-cycle quotient

As discussed in section 2.5, we hypothesize that the macroscopic-cycle quotient fmax/fI

in the infinite-volume limit is dependent on α but is constant in T where it is defined,
i.e. for T < Tc since fI = 0 for T > Tc. This may be visualized by comparing figures
such as 2.4: one sees that fmax and fI appear to have the same critical exponent.
Alternatively, one may plot the ratio fmax/fI (figure 11.8). In the infinite-volume
limit, fI is zero for T > Tc and so we are interested only in the values of the quotient
for T < Tc. In that region, the quotient does indeed appear to be constant in T .

We test this constancy hypothesis as follows. The respective critical exponents
are ρM and ρI . The estimators are ρ̂M and ρ̂I , computed by averaging over several
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Figure 11.7. Shift in critical temperature, and linear fit, as function of α. Recall
from equation (2.3.1) that ∆Tc(α) = Tc(α)−Tc(0)

Tc(0)
. Order parameters fS and fW were

omitted from the fit, due to lack of crossing behavior; α = 0.004 was omitted due to
onset of curvature of Tc(α). The heavy solid line shows a linear fit with empirically
determined constant of proportionality; the lighter solid line is the comparison value
of Betz and Ueltschi (slope 2/3) for decaying cycle weights and continuum point
positions.
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α Using 1/ξ Using fS Using fW Using fI Using fmax

0.000 6.8689 6.8730 6.8727 6.8760 6.8767
0.0001 6.8728 6.8756 6.8790 6.8810 6.8784
0.0002 6.8748 6.8763 6.8785 6.8773 6.8786
0.0005 6.8734 6.8776 6.8778 6.8790 6.8777
0.0008 6.8754 6.8763 6.8789 6.8803 6.8814
0.001 6.8748 6.8775 6.8784 6.8789 6.8790
0.002 6.8772 6.8840 6.8865 6.8826 6.8850
0.003 6.8824 6.8884 6.8880 6.8886 6.8884
0.004 6.8860 6.8890 6.8882 6.8910 6.8892

Table 11.3. Critical temperature as a function of α. All values have error bars of
approximately 0.003.

different values of L and α as described in section 11.4. Treating these estimators as
normally distributed (as justified by the raw data), we obtain the standard deviations
of the ρ̂M,I(L, α) samples, along with the standard deviations of the means ρ̂M,I :

ρ̂M = 0.7482 ρ̂I = 0.7445

sM = 0.0428 sI = 0.0374

nM = 50 nI = 50

sM/
√

nM = 0.006059 sI/
√

nI = 0.005295.

The difference ρ̂M − ρ̂I is also normally distributed about the true mean ρM − ρI ,
but ρ̂M and ρ̂I are not independent since they are sample means of random variables
computed from the same Markov chain Monte Carlo sequence of permutations. Thus
we use

Var(ρ̂M − ρ̂I) = Var(ρ̂M ) + Var(ρ̂I) − 2Cov(ρ̂M , ρ̂I).

Computing the sample covariance of the ρ̂M(L, α) and ρ̂I(L, α) data series, we obtain
the covariance and resulting standard error sd of the difference

Cov(ρ̂M , ρ̂I) = 0.0004 sd/
√

n = 0.0070.

Normalizing, we find

ρ̂M − ρ̂I = 0.0037
ρ̂M − ρ̂I

sd/
√

n
=

0.0037

0.0070
= 0.5293.

We hypothesize ρM − ρI = 0; the estimated value ρ̂M − ρ̂I lies comfortably within
a standard deviation of this. We note, moreover, that the value of fmax/fI , while
constant in T , trends upward with α (see table 11.1 and figure 11.9). This merits
further investigation.
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Figure 11.8. Macroscopic-cycle quotient fmax/fI for α = 0, 0.002.
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11.9 Conclusions

(1) For annealed point positions, equation (2.5.2) gives Tc(0) ≈ 6.625. Our result
Tc(0) = 6.873± 0.006 (2 σ error bar) unambiguously shows that the lattice structure
modifies the critical temperature, even in the non-interacting (α = 0) case.

(2) As detailed in section 11.7, we find that the reduced shift in critical tempera-
ture as a function of interaction parameter α is

∆Tc(α) ≈ Tc(α) − Tc(0)

Tc(0)
= cα

with

c = 0.618 ± 0.086 (2 σ error bar).

This is compatible (section 2.5) with the related result of [BU08]. Even though the
lattice structure changes the critical temperature (conclusion 1), the shift in critical
temperature is unaffected.

(3) As described in section 2.4, Shepp and Lloyd [SL] find that E[ℓmax]/N ≈ 0.6243
for uniform-random (non-spatial) permutations. For spatial permutations, we define
a macroscopic-cycle quotient E[ℓmax]/NfI which is the ratio of mean maximum cycle
length as a fraction of the number of sites in long cycles. Our result (table 11.1 and
figure 11.9) is compatible with that of Shepp and Lloyd for the non-interacting case,
with an increase which appears to be linear as a function of interaction parameter α.

(4) We proved correctness for the pre-existing SO algorithm [GRU]; we invented
the SAR, band-update, and worm algorithms, and proved them correct. The band-
update algorithm suffers from a too-low acceptance probability; the worm algorithm
suffers from a too-long stopping time; the SO algorithm prohibits (with very high
probability) non-zero winding numbers. The SAR algorithm is our current best op-
tion, even though it only permits even winding numbers. Solving the deficiencies of
the band-update or worm algorithms would be worth the effort.

(5) The order parameter 1/ξ is the most convenient to use for our problem: in
the finite-size-scaling analysis, the crossings are independent of estimated critical
exponent ν̂. The order parameters fI and fmax are second-most convenient; one
must estimate their critical exponents, but they are usable. The order parameters
fS and fW , which depend on winding phenomena, do not pass the finite-size-scaling
hypothesis. Either they are not good order parameters for the model of random
spatial permutations, or they would benefit from a full-winding-number algorithm as
discussed in the previous paragraph.


