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Chapter 3

Random variables

Having in hand the definition of the probability model from chapter 2, the next logical
step is to define random variables. In particular, we seek order parameters — random
variables which allow us to identify the phase transition to long cycles. Specific
random variables used in this dissertation are as follows. For each, the relevant
theory sections (in this chapter) and experiment sections (in chapter 9) are pointed
to.

• System energy and energy density: these are as discussed in section 2.1; explicit
computation is discussed in section 9.8.

• The number of ℓ-cycles in the permutation for ℓ = 1, 2, . . . , N : the definitions
are familiar from elementary algebra; computation is discussed in section 9.9.

• Cycle length, spatial cycle length, and correlation length: sections 3.2 and 9.10.

• Mean jump length and maximum jump length: sections 3.3 and 9.11. These are
used to confirm the hypothesis of short jump lengths as mentioned in section
3.6.

• Fraction of sites in cycles of specified lengths, and fraction of sites in long cycles:
section 3.4 and (theory) and 9.12 (experiment).

• Longest cycle length and macroscopic-cycle quotient: sections 3.5 and 9.13.

• Winding numbers, scaled winding number, and fraction of sites in winding
cycles: sections 3.6 and 9.14.

A word on notation: given a random variable X, let Q = E[X]. For each quantity
Q, one should distinguish between the finite-volume value QL(T ) and the infinite-
volume limit Q∞(T ) = limL→∞ QL(T ). For this chapter, omitted subscripts are
disambiguated by context. The difference becomes significant in chapter 9; at that
point, we will carefully distinguish between QL(T ) and Q∞(T ).

3.1 Differences and distances on the torus

We first define the natural difference-vectors and distances on the 3-torus. Namely,
for z ∈ Λ, we define a zero-centered modulus vector mL(z). For x,y ∈ Λ, this gives
rise to a difference vector dΛ(x,y) and a distance ‖x − y‖Λ. The former are needed
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for winding numbers (section 3.6); the latter are needed for the Hamiltonian (section
2.1), spatial cycle length and correlation length (section 3.2), and jump length (section
3.3). Specifically, we have the following:

mL(z) =





mL(z1)
mL(z2)
mL(z3)



 (3.1.1)

nL(z) = n ∈ Z which minimizes |z + nL| (3.1.2)

mL(z) = z + nL(z)L (3.1.3)

dΛ(x,y) = mΛ(x − y) (3.1.4)

‖z‖Λ = ‖mΛ(z)‖. (3.1.5)

For example, suppose L = 20, x = (0, 0, 18), and y = (0, 0, 1). Then dΛ(x,y) =
(0, 0,−3) and ‖x−y‖Λ = 3. This is called a zero-centered modulus since mL(z) takes
values from −L/2 to L/2. There is an antipodal problem when L is even: the distance
is well-defined on the torus, but differences are ambiguous at L/2 in any of the three
slots. For example, if L = 20, x = (0, 0, 18), and y = (0, 0, 8), then ‖x − y‖Λ = 10
but dΛ(x,y) = (0, 0, 10) or (0, 0,−10). However, as mentioned in sections 2.3, 3.6,
6.2, and 9.11, we work in the short-jump-length regime. Specifically, in section 9.11
we find that for T near Tc, jump length remains below 5, with probability very near
1, regardless of how big L is.

We now show that equation (3.1.5) is compatible with the definition of ‖ · ‖Λ from
equation (2.1.2) on page 21. namely,

‖x − y‖Λ = min
n∈Z3

{‖x − y + Ln‖}.

Proposition 3.1.6. We have

‖x − y‖Λ = ‖dΛ(x,y)‖. (3.1.7)

Proof. For brevity, let z = x − y. Since the square-root function is one-to-one and
increasing on non-negative reals, it suffices to show

‖mΛ(z)‖2 = min
n∈Z3

{‖z + nL‖2}.

Starting with the right-hand side, we have

min
n∈Z3

{‖z + nL‖2} = min
n1∈Z

min
n2∈Z

min
n3∈Z

{

(z1 + n1L)2 + (z2 + n2L)2 + (z3 + n3L)2
}

= min
n1∈Z

{

(z1 + n1L)2
}

+ min
n2∈Z

{

(z2 + n2L)2
}

+ min
n3∈Z

{

(z3 + n3L)2
}

= mL(z1)
2 + mL(z2)

2 + mL(z3)
2

= ‖mΛ(z)‖2.



32

3.2 Cycle lengths and correlation length ξ

Definition 3.2.1. Fixing π ∈ SN and x ∈ Λ, the cycle length ℓx(π) is the smallest
positive integer a such that πa(x) = x. This is nothing more than the length of the
cycle containing x: if x is in a 3-cycle, then ℓx(π) = 3. We define the spatial cycle
length

sx(π) =

ℓx(π)
∑

j=1

‖πj(x) − πj−1(x)‖Λ.

This is simply the sum of Euclidean jump distances for all permutation jumps in the
cycle containing x. We may at times instead write, respectively,

ℓi(π) = ℓxi
(π) or si(π) = sxi

(π).

For example, for the point configuration X and the permutation π in figure 3.1,
we have

ℓ1(π) = ℓ2(π) = ℓ3(π) = ℓ4(π) = 4, ℓ5(π) = ℓ6(π) = ℓ7(π) = 3, and ℓ8(π) = 1.

x1

x2

x8

x7

x6

x5

x3

x4

‖x5 − xπ(5)‖

Figure 3.1. A configuration of X and π with N = 8.

Definition 3.2.2. If x and y are in a common cycle of π, we say that x is connected
to y; otherwise we say that x is not connected to y. These are written

x ◦–◦y and x ◦–6 –◦y.

In the former case, we write
ℓx,y(π)

for the smallest positive integer a such that πa(x) = y. This is the number of
permutation jumps from x to y.
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Definition 3.2.3. We may average cycle lengths and spatial cycle lengths (definition
3.2.1) over all points x:

ℓ(π) =
1

N

∑

x∈Λ

ℓx(π) s(π) =
1

N

∑

x∈Λ

sx(π).

Now, E[ℓx] = E[ℓy] for all x,y ∈ Λ, and both are the same as E[ℓ] as shown in the
lemma below. Experimentally, however, as discussed at the beginning of chapter 4, we
cannot compute expectations over all π ∈ SN ; we must content ourselves with sample
means over some sequence of M permutations π1, . . ., πM , obtained in an MCMC
simulation. We may increase the sample size by a factor N (thereby decreasing the
sample variance by a factor of N , by the central limit theorem) if we average over all
points x. For each permutation, we may compute ℓ(π) by averaging ℓx(π) over all N
point positions, and likewise for sx(π) and s.

Lemma 3.2.4. For all x ∈ Λ, E[ℓ] = E[ℓx].

Proof. The left-hand side is

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π).

Since both sums are finite, we have

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π) =
∑

π∈SN

PGibbs(π)
1

N

∑

x∈Λ

ℓx(π)

=
1

N

∑

x∈Λ

∑

π∈SN

PGibbs(π)ℓx(π) = E[ℓx].
(3.2.5)

The equality E[ℓx] = E[ℓx] follows from translation invariance on the 3-torus.

In summary, we have

ℓx(π) = min{a > 0 : πa(x) = x} sx(π) =

ℓx(π)
∑

j=1

‖πj(x) − πj−1(x)‖Λ

E[ℓx] =
∑

π∈SN

PGibbs(π)ℓx(π) E[sx] =
∑

π∈SN

PGibbs(π)sx(π)

ℓ(π) =
1

N

∑

x∈Λ

ℓx(π) s(π) =
1

N

∑

x∈Λ

sx(π)

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π) E[s] =
∑

π∈SN

PGibbs(π)s(π).
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The quantities on the second line are convenient for theoretical use; the quantities on
the fourth line (due to the larger sample size) are preferable for experimental use.

We define a correlation length ξ to be

ξ = E[s]. (3.2.6)

Computational details are in section 9.10.

3.3 Mean and maximum jump length

Definition 3.3.1. Let

jx(π) = ‖π(x) − x‖Λ

be the length of the permutation jump starting at site x; let

j(π) =
1

N

N
∑

i=1

jxi
(π).

The mean jump length at site x is simply

E[jx] =
∑

π∈SN

PGibbs(π)‖π(x) − x‖Λ.

By linearity of expectation, this is the same as the average over all sites:

E[j(π)] = E[jx1
(π)].

As was the case for ℓ and s in section 3.2, we approximate the uncomputably large sum
over all N ! permutations by a random sequence of M permutations, and the sample
mean is random. By the central-limit theorem argument in section 3.2, the variance
of the sample mean of j is a factor of N smaller than the variance of the sample mean
of jx, since the sample size is MN instead of M . Additional computational details
are discussed in section 9.11.

3.4 Fraction of sites in infinite cycles fI

If one wants to quantify the temperature-dependent onset of long cycles (section 2.3),
then one can define a random variable which counts the fraction of sites in long cycles.
In the infinite limit, one looks for infinite cycles. One could define

fI(∞) = 1 −
∑

k≥1

PGibbs(ℓ0 = k) (3.4.1)
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where ℓ0(π) is as defined in section 3.2. For finite volume, where simulations are done,
the right-hand side of (3.4.1) is always 0: every site is in a cycle of some finite length.
One might then define

fI(N) = 1 −
∑

k<ε(N)

PGibbs(ℓ0 = k) (3.4.2)

where ε(N) is such that ε(N) → ∞ as N → ∞ but ε(N)/N → 0. For example,
one may take ε(N) =

√
N . This is chosen so that as N → ∞, one obtains fI(∞).

In [BU07] it is found, among other results, that mesoscopic cycles are unimportant:
for T > Tc, there are only microscopic cycles; for T < Tc, there are only microscopic
and macroscopic cycles. The ε(N) cutoff is designed to separate the former from the
latter.

For practical computation, [GRU] begin by defining

ρ =
N

V
,

where V = L3 is the volume, i.e. ρ is the particle density. For 1 ≤ m ≤ n ≤ N , define

̺m,n(π) =
1

V
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

This random variable, taking values between 0 and ρ, is the density of sites in cycles
of specified length. One may also consider the related random variable

fm,n(π) =
1

N
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

which is ̺m,n/ρ. (Of course, on the unit lattice where N = L3 and ρ = 1, the two
random variables fm,n(π) and ̺m,n(π) are identical.) This runs from 0 to 1 and is
the fraction of sites in cycles of specified length. For figure 3.1 on page 32, we have
f2,3(π) = 3/8. Then E[fε(N),N ] matches equation (3.4.2) as follows:

E[fε(N),N (π)] =
1

N
E [#{i = 1, . . . , N : ℓi(π) ≥ ε(N)}]

=
1

N
E

[

N
∑

i=1

1ℓi(π)≥ε(N)(π)}
]

=
1

N
PGibbs(ℓi(π) ≥ ε(N)).

This is the same as PGibbs(ℓ0(π) ≥ ε(N)) by translation invariance. Then

PGibbs(ℓ0(π) ≥ ε(N)) =
∑

k≥ε(N)

PGibbs(ℓ0 = k) = 1 −
∑

k<ε(N)

PGibbs(ℓ0 = k) = fI(N).

In practice, a single cutoff of the form ε(N) is not used; one estimates the infinite-
limit behavior in a different way. To see how to do this, we next invoke results of
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[Sütő2] and [BUV09] regarding the behavior of E[f1,k] as a function of k/N in the
infinite limit. The former, [Sütő2], applies in the non-interacting case; the latter,
[BUV09], applies in the Ewens case but with non-spatial permutations, which are
equivalent to random spatial permutations with T = 0. For the non-interacting case,
E[f1,k] is a straight line of slope 1 as shown in the upper left of figure 3.2. At T = 0,
it fills the full diagonal; cycle lengths have uniform distribution. At T > Tc, the
diagonal vanishes into the upper-left corner; there are no long cycles. The transition
to criticality occurs at T such that the diagonal becomes visible. See also [Lugo].
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Figure 3.2. Qualitative behavior of limN→∞ E[f1,k] as a function of k/N in the
non-interacting (upper left) and non-spatial large-α Ewens-interacting (upper right)
cases. Lower left and lower right show the behavior for finite N .

In finite volume, E[f1,k] is rounded as shown in the bottom left of figure 3.2. Thus,
one wishes to draw a tangent-line approximation for the infinite-volume behavior, and
take fI to be one minus the vertical intercept. This avoids use of a specific, arbitrary
cutoff ε(N), replacing it instead with a graphical estimator which makes use of all
available data. See also section 9.12 for computational details, including the handling
of sampling variability.

For Ewens interactions, the diagonals are curved as shown in the upper right of
figure 3.2. For the small α values considered in this dissertation, however, this Betz-
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Ueltschi-Velenik sag in the curve is less than the sampling variability in the data
itself (see the plots in section 9.12). Thus, the sag is not relevant to our discussion.
It should also be remarked that the author has performed larger-α simulations for
which the sag is indeed observed simulationally.

3.5 Macroscopic-cycle quotient fmax/fI

Definition 3.5.1. For a permutation π in SN , define

ℓmax(π) = max
1≤i≤N

ℓi(π). (3.5.2)

For a spatial permutation, this is precisely the same as

ℓmax(π) = max
x∈Λ

ℓx(π). (3.5.3)

We write

fmax = E[ℓmax]/N. (3.5.4)

Definition 3.5.5. The macroscopic cycle quotient, written fmax/fI for brevity, is
given by

macroscopic cycle quotient =

{

E[ℓmax]
NfI

, fI 6= 0

0, fI = 0.
(3.5.6)

Intuition was discussed in sections 2.4 and 2.5; computational details are discussed
in section 9.13.

3.6 Winding numbers, fS, and fW

The box Λ = [0, L]3 with periodic boundary conditions is topologically equivalent
to the 3-torus. Permutation cycles wind around the 3-torus some number of times
in the x, y, and/or z directions. The sub-Tc onset of long cycles corresponds to the
appearance of cycles which wrap around the torus in one or more of the three axes.
If a cycle goes around once in the clockwise direction, we want to say it has sign +1;
likewise, we want sign −1 for the counterclockwise direction. The following definition
formalizes this intuition.

Definition 3.6.1. The winding number (really a 3-tuple of numbers) of a permutation
π is

W(π) = (Wx(π), Wy(π), Wz(π)) =
1

L

N
∑

i=1

dΛ(π(xi),xi) (3.6.2)
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where dΛ is the difference vector defined in equation (3.1.4). This simply counts
the integer number of wraps of π’s cycles around the 3-torus in each of the three
directions. We also write

W2(π) = W(π) · W(π) = Wx(π)2 + Wy(π)2 + Wz(π)2. (3.6.3)

Definition 3.6.4. The scaled winding number is

fS =
E[W2]L2

3βN
=

E[W2]T

3L
.

See [PC87] for the physical derivation. For us, it simply needs to be scaled by L2/N =
1/L in order to be an intensive parameter.

Definition 3.6.5. Let cx(π) consist of all sites in the same cycle as x:

cx(π) = {y ∈ Λ : y = πa(x), a = 0, 1, 2, . . . , N − 1}.

Let wx(π) be the winding vector for x (which is clearly the same for all sites in the
same cycle as x):

wx(π) =
1

L

∑

y∈cx(π)

dΛ(π(y),y),

where the difference vectors are again interpreted as in section 3.1. Note that all
three slots of wx(π) are necessarily integer-valued. We say that π winds through x if
x has a non-zero winding vector:

tx(π) =

{

1, wx(π) 6= (0, 0, 0);

0, wx(π) = (0, 0, 0).

We use these to define the fraction of sites in winding cycles:

fW (π) = E

[

1

N

∑

x∈Λ

tx(π)

]

.

Computational details are discussed in section 9.14.

3.7 Order parameters: quantifying long cycles

Of the random variables presented in this chapter, the following, referred to as order

parameters, may be used to locate the critical temperature Tc(α) below which long
cycles begin to appear. The first four are non-zero for T < Tc and zero for T > Tc.
Since ξ blows up below Tc, 1/ξ goes to zero below Tc. See also figure 3.3.
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• fmax := E[ℓmax]/N .

• Fraction of sites in long (“infinite”) cycles fI .

• Scaled winding number fS.

• Fraction fW of sites in cycles which wind.

• Reciprocal correlation length 1/ξ.
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Figure 3.3. Behavior of order parameters as functions of L and T , for the non-
interacting model. Each of the following occurs at a critical temperature Tc, in the
limit L → ∞: onset of N -scaling of the length of the longest cycle (fmax), onset
of long cycles (fI), onset of winding cycles (fS and fW ), and blow-up of correlation
length (vanishing of 1/ξ). For finite L, the transitions are smooth; they sharpen
toward non-analyticity as L → ∞. Interactions increase the critical temperature,
shifting these graphs to the right.


