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Abstract

Models of random spatial permutations arise in the study of Bose-Einstein condensation.
Namely, permutations of sites occur with probabilities depending on lengths of permutation
jumps, as well as on interactions between jumps. Below a critical temperature, one observes
the onset of long permutation cycles in spite of short individual jump lengths. We have devised
several Markov chain Monte Carlo algorithms for sampling from this probability distribution. In
this note, we present one particularly promising technique: a worm algorithm. It admits an ele-
gant correctness theory. However, it suffers from a stopping-time problem: the CPU time needed
to complete a sweep is strongly quadratic in the number of lattice points N.
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1. The probability model

The model of random spatial permutations, or RSP model, arises from consideration of the
Bose gas [1, 2, 3, 4, 5, 6, 7]. See also [7, 8] for the contentious history of studies of the shift in
critical temperature as a function of interaction strength. The state space is ΩΛ,N = ΛN × SN ,
where Λ = [0, L]3 with periodic boundary conditions. Point positions are X = (x1, . . . , xN) for
x1, . . . , xN ∈ Λ. The Hamiltonian is

H(π) =
T
4

N∑
i=1

‖xi − xπ(i)‖
2 +

N∑
`=1

α`r`(π).

(The temperature scale factor T/4, not β/4, is surprising but correct for the Bose-gas derivation
of the Hamiltonian.) We obtain a Gibbs distribution:

Y(Λ,X) =
∑
σ∈SN

e−H(X,σ), P(π) = PΛ,X(π) =
e−H(X,π)

Y(Λ,X)
. (1.1)

Note that higher-energy states are lower-probability states. The α`’s are called cycle weights;
r`(π) counts the number of `-cycles in π. For the author’s dissertation [9], point positions X
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are held fixed on the cubic unit lattice, and the cycle weights are in the form of [10]. That is,
α` ≡ α are constant in `. These weights are taken to be small: their effect is to perturb the critical
temperature slightly, and qualitative behavior of the model is not affected. Thus, the cycle-weight
terms are not particularly important for this note; the reader may safely ignore them.

Figure 1: A spatial permutation on N = 26 points. There are 11 one-cycles, three two-cycles, one four-cycle, and one
five-cycle. We say r1(π) = 11, r2(π) = 3, r4(π) = 1, r5(π) = 1, and r`(π) = 0 for all other `.

Typical permutations are as follows. As T → ∞, any non-zero distance-dependent term
carries a high energy penalty; only the identity permutation appears. As T → 0, distance de-
pendence vanishes and we obtain the uniform distribution. At intermediate T , individual jump
lengths remain short — but below a Tc ≈ 6.86, long cycles form. Quantification of ∆Tc as
function of interaction strength is the main result of [9]. This note focuses solely on a particular
technique for estimating expectations of random variables in the RSP model.

2. Metropolis sampling

The expectation of a random variable S (π) is E[S ] =
∑
π∈SN

P(π)S (π). The number of per-
mutations, N!, grows intractably in N. The expectation is instead estimated by summing over
some number M (105 or 106) typical permutations. The sample mean 〈X〉Mis now a random vari-
able with its own variance. The usual technical issues of Markov chain Monte Carlo (MCMC)
methods are known and handled in the author’s simulations and dissertation: thermalization
time, proofs of detailed balance, autocorrelation, quantification of variance of sample means,
and finite-size-scaling analysis of finite-lattice computational results. (See [11, 12, 13] for back-
ground on such methods as applied to models other than the RSP model.)

The Metropolis step (the analogue of single spin-flips for the Ising model) is to swap permu-
tation arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles, as shown in figure 2. As usual [11, 12], the proposed change π → π′ is
accepted with probability min{1, e−∆H}.

Figure 2: Swaps merge disjoint cycles and split single cycles. The left-hand permutation can be reached from the right-
hand permutation via a swap, and vice versa.
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Figure 3: Conservation of winding number in the swap-only algorithm, and a partial solution provided by the swap-and-
reverse algorithm.

3. Winding numbers: SO, SAR, and band-update algorithms

Part 1 of figure 3 shows a long cycle on the torus which almost meets itself in the x direction.
In part 2, after a swap-only step (as described above), one cycle winds by +1, and the other by
−1. Metropolis steps create winding cycles only in opposite-direction pairs; total Wx(π) (the
number of wraps around the L-torus in the x axis) is still zero. In part 3, if we reverse one cycle
(which is a zero-energy move), Wx(π) is now 2. Combining swap sweeps and cycle-reversal
sweeps constitutes the swap-and-reverse algorithm. It permits winding numbers of even parity
in each of the three axes; it is used for all computational results presented in [9].

One idea to get all winding numbers uses band updates. Namely, we compose π with a
winding L-cycle τ. We obtain π′ = τπ, with winding number shifted by ±1 along a specified
axis. However, the acceptance rate is found to be approximately e−L, i.e. proposed band updates
are effectively never accepted in an MCMC simulation.

4. Worm algorithm

Another approach to the winding-number problem is to adapt path-integral Monte Carlo
(PIMC) worm methods. These were initially developed by Ceperley and Pollock, and have been
used by many others since (e.g. [14, 15, 16]). Such methods break and re-join Brownian bridges.
Here, we want to open and re-close permutation cycles. An open cycle can wander around the
torus, tunneling through the winding-number energy barrier which closed permutations have.

The essential idea (figure 4) is to

Figure 4: Open cycles as permutations on N + 1 points.

use permutations on N + 1 points: the
(N+1)st is the wormhole point, w. Closed
permutations have π(w) = w; open per-
mutations have π(w) , w. We define
an extended random cycle model with
energy function H′, Gibbs distribution
P′, and Metropolis algorithm for SN+1 such that the marginal distribution on SN+1, conditioned
on closed permutations, matches the RCM Gibbs distribution. Then, random variables will be
sampled only at closed permutations. This is justified by a theorem of [9]: letting SN ↪→ SN+1
by π(w) = w, if H(π) = H′(π) for all π ∈ SN , then P′(π | π ∈ SN) = P(π) for all π ∈ SN . The



J. Kerl / Physics Procedia 00 (2010) 1–5 4

extended lattice is Λ′ = Λ ∪ {w}. The extended energy is

H′(π) =
T
4

N∑
i=1

π(xi),w

‖xi − xπ(i)‖
2 +

N∑
`=2

α`r`(π) + γ1SN+1\SN (π).

We define partition function Z′ and Gibbs distribution P′ as usual. As long as the energy function
for the ERCM and the RCM agree on closed permutations, the marginality condition of the
theorem holds. Thus, we are free to define energy terms in H′ for open permutations (the γ
factor is just one possibility), as long as they vanish on closed permutations. Furthermore, this
worm method will work not only for the cycle-weight Hamiltonian given above, but for any
Hamiltonian on random permutations.

5. Metropolis steps/sweeps for the worm algorithm; stopping time

Irreducibility, aperiodicity, and detailed balance have been proved [9] for worm Metropolis
steps, using an H′ with γ term as above. A Metropolis sweep consists of an open, zero or more
head/tail swaps, and a close. Random variables are sampled only at closed permutations.

Figure 5: Metropolis moves for the worm algorithm.

The good news is that examination of random-variable plots for L = 10, comparing SAR
to worm, shows that similar results are produced — other than, of course, the winding-number
histogram itself. The problem is that the the open worm tips wander around randomly within the
L box, and fail to reconnect as L increases. SAR and worm CPU times are both approximately
aN+bN2. For the SAR algorithm, b is tiny; for the worm algorithm, it is not (figure 6). Interesting
L (40-80 or so) are out of reach for the worm algorithm.

6. Other ideas

Other ideas for addressing the winding-number problem include the following. First, band
updates, discussed above, have too-low acceptance rate. Second, one might temporarily pinch
the torus geometry in the SAR algorithm, such that the distance penalty for wrapping around
the torus is decreased. Third, one may reduce and restore the temperature T in the SAR al-
gorithm. This is an annealing method. This approach brings with it a performance problem:
re-thermalization would need to be performed after each annealing step. Fourth, the worm al-
gorithm might be modified to somehow direct the worm. For example, at the time the worm is
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Figure 6: Scalability of SAR and worm algorithms. CPU times for 104 SAR sweeps and 103 worm sweeps are shown as
a function of N = L3 for L = 5 to 12. SAR time is nearly linear in N; worm time is strongly quadratic in N. Interesting
L (40-80) are unattainable.

opened, add a distance weight of ±L in the x, y, or z direction which will be removed by a wrap
around the torus, increasing or decreasing that winding-number component by 1. Our attempts
to do this have not satisfied detailed balance. Last, one may review the PIMC literature again
and seek other inspiration.
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