Daniel:
In trying to derive the expression for the shift in critical temperature for the two-cycle model, I think I am missing some physics.

I start with (5.18):

$$
\rho_{c}^{(\alpha)}=\rho_{c}^{(0)}-\frac{1-e^{-2 \alpha}}{(8 \pi \beta)^{3 / 2}}
$$

Expanding to first order in α :

$$
\rho_{c}^{(\alpha)} \approx \rho_{c}^{(0)}-\frac{2 \alpha}{(8 \pi \beta)^{3 / 2}}
$$

Using (5.7), namely, $\alpha=(8 / \pi \beta)^{1 / 2} a$:

$$
\begin{aligned}
\rho_{c}^{(a)} & \approx \rho_{c}^{(0)}-\frac{2 \cdot 8^{1 / 2} \cdot a}{\pi^{1 / 2} \cdot \beta^{1 / 2} \cdot 8^{3 / 2} \cdot \pi^{3 / 2} \cdot \beta^{3 / 2}} \\
& =\rho_{c}^{(0)}-\frac{a}{4 \pi^{2} \beta^{2}}
\end{aligned}
$$

Using $\beta=1 / T_{c}^{(0)}$:

$$
\rho_{c}^{(a)}=\rho_{c}^{(0)}-\frac{T_{c}^{(0)^{2}} a}{4 \pi^{2}}
$$

Using the near-critical approximation $\rho \sim T^{3 / 2}$ from the old version of your 2007 paper with Betz:

$$
\begin{aligned}
T_{c}^{(a)^{3 / 2}} & =T_{c}^{(0)^{3 / 2}}-\frac{T_{c}^{(0)^{2}} a}{4 \pi^{2}} \\
\left(\frac{T_{c}^{(a)}}{T_{c}^{(0)}}\right) & =1-\frac{T_{c}^{(0)^{1 / 2} a}}{4 \pi^{2}} \\
\frac{T_{c}^{(a)}}{T_{c}^{(0)}} & =\left(1-\frac{T_{c}^{(0)^{1 / 2}} a}{4 \pi^{2}}\right)^{2 / 3}
\end{aligned}
$$

Taylor-expanding the right-hand side in the small parameter a :

$$
\begin{aligned}
\frac{T_{c}^{(a)}}{T_{c}^{(0)}} & =1-\frac{T_{c}^{(0)^{1 / 2} a}}{6 \pi^{2}} \\
\frac{T_{c}^{(a)}}{T_{c}^{(0)}}-1 & =-\frac{T_{c}^{(0)^{1 / 2} a}}{6 \pi^{2}} \\
\frac{T_{c}^{(a)}-T_{c}^{(0)}}{T_{c}^{(0)}} & =-\frac{T_{c}^{(0)^{1 / 2} a}}{6 \pi^{2}}
\end{aligned}
$$

Again using the near-critical approximation $T^{1 / 2} \sim \rho^{1 / 3}$:

$$
\frac{T_{c}^{(a)}-T_{c}^{(0)}}{T_{c}^{(0)}}=-\frac{\rho^{1 / 3} a}{6 \pi^{2}}
$$

The minus sign does not belong there, but I don't see the error in my work.
Questions:

- Why is it true that $\rho \sim T^{3 / 2}$ near T_{c} ? (The original statement in your 2007 paper with Betz was that $\beta \sim \rho^{-2 / 3}$ near $\left.T_{c}(0).\right)$
- What is the scale factor connecting ρ and $T^{3 / 2}$: is it 1 ?
- Even though $\rho \sim T^{3 / 2}$, can one conclude that necessarily $\rho_{c} \sim T_{c}^{3 / 2}$?
- I cannot reproduce the factor of 0.74 in (5.19). If in fact $\rho \sim K T^{3 / 2}$ for some scale factor K other than 1 , I get

$$
\frac{T_{c}^{(a)}-T_{c}^{(0)}}{T_{c}^{(0)}}=-\frac{\rho^{1 / 3} a}{6 K^{2} \pi^{2}}
$$

so I would hope that $1 / 6 K^{2} \pi^{2} \approx 0.74$.
Thank you!

