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Abstract

We examine a phase transition in a model of random spatial permutations which
originates in a study of the interacting Bose gas. Permutations are weighted according
to point positions; the low-temperature onset of the appearance of arbitrarily long
cycles is connected to the phase transition of Bose-Einstein condensates. In our
simplified model, point positions are held fixed on the fully occupied cubic lattice and
interactions are expressed as Ewens-type weights on cycle lengths of permutations.
The critical temperature of the transition to long cycles depends on an interaction-
strength parameter α. For weak interactions, the shift in critical temperature is
expected to be linear in α with constant of linearity c. Using Markov chain Monte
Carlo methods and finite-size scaling, we find c = 0.618±0.086. This finding matches
a similar analytical result of Ueltschi and Betz. We also examine the mean longest
cycle length as a fraction of the number of sites in long cycles, recovering an earlier
result of Shepp and Lloyd for non-spatial permutations. The plan of this paper
is as follows. We begin with a non-technical discussion of the historical context
of the project, along with a mention of alternative approaches. Relevant previous
works are cited, thus annotating the bibliography. The random-cycle approach to the
BEC problem requires a model of spatial permutations. This model it is of its own
probabilistic interest; it is developed mathematically, without reference to the Bose
gas. Our Markov-chain Monte Carlo algorithms for sampling from the random-cycle
distribution — the swap-only, swap-and-reverse, band-update, and worm algorithms
— are presented, compared, and contrasted. Finite-size scaling techniques are used to
obtain information about infinite-volume quantities from finite-volume computational
data.
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Chapter 1

Scientific context

1.1 Theory

In 1924, the physicist Satyendra Nath Bose examined the quantum statistics of pho-

tons. In 1925, collaborating with Bose, Albert Einstein realized that the same could

be done with non-interacting massive particles. He also discovered the condensation

phenomenon: a macroscopic occupation of the (single-particle) ground state of the

external potential [LSSY]. Moreover, Einstein predicted a critical temperature for

the phenomenon. This temperature was so low — at the nanokelvin scale — that

Bose-Einstein condensation attracted little interest in the physics community.

Feynman in 1953, along with Penrose and Onsager in 1956 [Feynman, PO], devel-

oped the theoretical notion of long permutation cycles in the Feynman-Kac represen-

tation of the Bose gas. Feynman claimed that long cycles correspond to Bose-Einstein

condensation.

András Sütő referred to the existence of long permutation cycles as cycle per-

colation. He proved in 1993 that BEC implies cycle percolation in the ideal (non-

interacting) gas [Sütő1], and proved the converse in 2002. Sütő moreover proved in

the 2002 paper that there are infinitely many macroscopic cycles in the condensation

of the non-ideal Bose gas.

For the ideal Bose gas, BEC is defined as the macroscopic occupation of the

single-particle ground state of the external potential. For an interacting Bose gas,

Hamiltonian eigenfunctions do not factor and thus there are no single-particle ground

states. BEC is carefully defined for interacting systems [LSSY] in terms of the largest

eigenvalue of a density-matrix operator. The 1983 work of Buffet and Pulè [BP]

examines the macroscopic occupation of the zero Fourier mode.
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1.2 Experiments

Liquid helium was produced in the laboratory by Kammerlingh Onnes in 1908; Fritz

London in 1938 [London] connected superfluidity of liquid helium with Bose-Einstein

condensation. Atoms of liquid helium, however, are strongly interacting — they

attract only weakly, due to helium being a noble gas, but there are strong repulsive

effects due to the high density of the liquid. Thus, Einstein’s non-interacting theory

could not explain the phenomenon.

Several groups attempted during the 1990s to produce BECs in vapors of spin-

polarized hydrogen, but were not able to achieve low enough temperatures. The

group of Cornell and Wieman [AEMWC], using hybrid cooling methods, successfully

brought rubidium atoms to well below the critical temperature and made numerous

measurements on the resulting condensates. (Cornell, Wieman, and Ketterle received

the 2001 Nobel prize in physics for this work.)

Interest in BECs was sparked by this experimental success: thousands of papers,

both theoretical and experimental, have been published on BECs in the years since.

The work of Cornell and Wieman was of interest for several reasons:

• Condensates were directly imaged. Measurements were taken of temperature,

density, position, velocity, particle number, and the fraction of the condensate

occupying the ground state of the 3D harmonic trapping potential.

• The method was able to vary temperature and density through wide ranges;

the condensate fraction was varied from zero to 100 percent.

• The gaseous rubidium condensate was weakly interacting — permitting a per-

turbative analysis which liquid helium, with its strong interactions, did not al-

low. (Note in particular that recent mathematical studies are weak-interaction

theories; they are valid only to first order in the scattering length.)
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1.3 Critical temperature

Recall that Einstein predicted a critical temperature Tc for the ideal Bose gas. It is

a long-standing question to discover the effects of scattering length a on the critical

temperature. Moreover, one may fix the density ρc(a) and obtain a critical tem-

perature Tc(a) = 1/βc(a) or vice versa; both of these critical parameters depend on

the scattering length a. One expects the critical combination of parameters to be a

manifold in (ρ, β, a) space. (See figure 1.1.)

ρ

a

β

Critical line a = 0, ρ = ζ(3/2)/(4πβ)3/2

Weak-interaction regime

Figure 1.1. Critical manifold in (ρ, β, a) for small a.

Much is known about the a = 0 line of this critical manifold; off a = 0, even the

crude shape has been under debate. The following findings are described by [BBHLV]:

The superfluid transition temperature of liquid helium is lower than that of an ideal

gas of the same density. Thus, assuming that helium superfluidity is a strongly inter-

acting BEC, one would expect interactions to decrease the critical temperature for

the strongly interacting case. Various theoretical work (tabulated below) suggested

either an increase or a decrease in critical temperature; path-integral simulations for

low density (i.e. weak interactions) suggested that the critical temperature increases

with scattering length, for small scattering length. The emerging consensus is that

∆Tc(a) =
Tc(a)− Tc(0)

Tc(0)
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is linear in a for small a, i.e.

∆Tc(a) = ca + O(a2).

The following summary of the theoretical work on this question is found in [SU09].

(See also [AM, KPS, NL04] for a review on the widely varying analytical and simula-

tional results on Tc(a); see [BBHLV] for a thorough listing of the progress up to 2001

and [SU09] for an up-to-date survey.)

• 1964: Huang : ∆Tc(a) ∼ (aρ1/3)3/2, increases

• 1971: Fetter & Walecka: ∆Tc(a) decreases

• 1982: Toyoda: ∆Tc(a) decreases

• 1992: Stoof : ∆Tc(a) = c aρ1/3 + o(aρ1/3), c > 0

• 1996: Bijlsma & Stoof : c = 4.66

• 1997: Grüter, Ceperley, Laloë: c = 0.34

• 1999: Holzmann, Grüter, Laloë: c = 0.7; Holzmann, Krauth: c = 2.3;

• 1999: Baym et. al.: c = 2.9

• 2000: Reppy et. al.: c = 5.1

• 2001: Kashurnikov, Prokof’ev, Svistunov : c = 1.29

• 2001: Arnold, Moore: c = 1.32

• 2004: Kastening : c = 1.27

• 2004: Nho, Landau: c = 1.32
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1.4 Context of dissertation

The work of Ueltschi and Betz [BU07, U06, U07] extends the permutation point of

view originated by Feynman, Penrose, and Onsager, drawing on the work of Sütő,

Buffet, and Pulè [Feynman, PO, Sütő1, Sütő2, BP] to develop a model of random

spatial permutations. (See chapter 2 for precise definition of the model.) In the

permutation representation, this condensate transition manifests itself as the onset

of long permutation cycles. The central point of this approach is that the system

energy has been recast in terms of permutations, which are amenable to analysis and

simulation. This permits a new perspective on an old question: the main goal of

Ueltschi and Betz’s long-term project is to quantify the shift in critical temperature,

as a function of scattering length, for non-ideal Bose gases in the small-scattering-

length regime.

The interaction terms for the permutation representation of the Bose gas are

difficult to compute. Moreover, it is interesting to consider the model of random

spatial permutations (which we sometimes refer to as the random-cycle model) for

its own sake. Thus, Ueltschi, Betz, Gandolfo, Ruiz, and the author take various

approaches with varying degrees of fidelity to the physical Bose-gas model. In section

2.1, we will see a random-cycle model for N particles which is parameterized by N

cycle weights {αℓ} = α1, . . ., αN which encourage or discourage permutation cycles

of lengths ℓ = 1, . . . , N . The remainder of this section involves results that may be

obtained, analytically or simulationally, when various constraints are placed on the

cycle weights.

In the papers [U07, BU07], Betz and Ueltschi examine the Bose-gas permutation

weights with point positions allowed to vary in the continuum; an exact expression

for the critical temperature is stated and proved for a simplified interaction model in

which only two-cycles interact. The cycle-weight parameter α2 is expressed in terms

of the scattering length a; all other cycle weights are set to zero. In [BU08], this
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approach is extended to a model in which all the cycle weights αℓ may vary, but with

the constraint that αℓ goes to zero faster than 1/ log(ℓ). Here, an expression for the

shift in critical temperature is found, as a function of all N cycle weights. It is key to

note that these αℓ’s are not computed directly from the physical scattering length a;

rather, the result obtained is true for any cycle weights {αℓ} satisfying the decaying-

cycle-weight hypothesis. In [BU10], Ueltschi and Betz estimate, to first order, cycle

weights {αℓ} for the Bose gas.

Betz, Ueltschi, and Velenik [BUV09] examine cycle weights {αℓ} with various

hypotheses, including the Ewens [Ewens] case in which cycle weights are constant for

all cycle lengths ℓ. These random permutations are non-spatial, i.e. T = 0 in the

vocabulary of chapter 2. Their work is relevant to section 3.4 of this dissertation.

As is often the case in statistical mechanics, the study of this interacting system

necessitates the use of computational methods — specifically, Markov-chain Monte

Carlo. In [GRU], a simulational approach is taken for points held fixed on the cubic

unit lattice in the non-interacting case (αℓ ≡ 0 in the language of chapter 2).

This dissertation, the only known simulation approach to the interacting model,

applies MCMC methods to the case where N = L3 points are held fixed on the fully

occupied cubic unit lattice, with small additional probability weights depending on

cycle lengths. This extends from[GRU] as well as [BUV09]. We find that even though

lattice positions are used, and even though the decaying-cycle-weight hypothesis is

invalidated, one nonetheless recovers the shift in critical temperature as predicted in

the decaying-cycle-weight model of [BU08].

1.5 Literature review

In addition to the many references made in previous sections of this chapter, we point

out the following.

The papers [GCL97], [KPS], [Ceperley], and [NL04] are among path-integral
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Monte Carlo simulational approaches to Bose-Einstein condensation — perhaps the

closest relatives to the numerical work done in [GRU] and in this dissertation.

The doctoral dissertations of Peter Grüter and Markus Holzmann are paradig-

matic examples of clear dissertation writing [Grüter, Holzmann]; the latter also pro-

vided insight into finite-size scaling.

Mean longest cycle for uniformly distributed (i.e. non-interacting, non-spatial)

permutations (T = 0 and α = 0 in the language of chapter 2) was discussed by [SL],

following a question posed by Golomb on the basis of experimental data [Golomb].

See also sections 2.4 and 2.5. Non-uniformly distributed non-spatial permutations

with constant cycle weights (T = 0 and α 6= 0 in the language of chapter 2) arose in

mathematical biology [Ewens].

Background in quantum mechanics and statistical mechanics may be found in

[Griffiths], [Huang], and [Sakurai].

Worm algorithms for path-integral Monte Carlo, which inspired the random-

spatial-permutation worm algorithm of chapter 7, are used throughout simulational

physics. See in particular [BPS06] and [PST98].

Finite-size scaling techniques are employed for path-integral Monte Carlo simu-

lations in [GCL97], [HK99], [KPS], [NL04], [PC87], [PGP08], and [PR92]. Citation

trails in the above-cited works lead back to [Barber]. Some background information

is found in [LB]. An excellent survey, encompassing and explicating all the above

methods — truly a blessing for the aspiring learner — is [PV].

Markov chain Monte Carlo methods are discussed in [LB]; this dissertation has

been influenced most heavily by [Berg]. Indeed, my appendix B is an elaboration

on Berg’s discussion of integrated autocorrelation time. The probability background

necessary for either Landau and Binder or Berg may be found, with increasing levels

of sophistication, in [Lawler], [GS], and [Øksendal]. The standard reference for sta-

tistical analysis, including confidence intervals, is [CB]. More practical aspects of the

statistical reduction of experimental data are found in [Young].
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The Mersenne Twister [MN] is the pseudo-random-number generator used in the

this dissertation’s computational work. Another good generator is pseudo-DES [NR].

Moreover, any numerical dissertation without a reference to Numerical Recipes is

incomplete; its inclusion here is as good a point as any to end the literature review.

1.6 Originality of dissertation

Last, we delineate the originality of work presented in this dissertation. Chapters 1-3

are a rephrasing and an elaboration on [BU07, BU08, U07]. Chapter 4 is quite stan-

dard; the contribution made here is to present familiar general results in the specific

context of random permutations. The essential SO algorithm of chapter 5, with a

small modification, was presented in [GRU]; likewise for the SO ∆H computations

in chapter 8. The treatment here is the first correctness proof of the SO algorithm.

The SAR algorithm of chapter 5 was suggested by Daniel Ueltschi. The band-update

algorithm (chapter 6) is due to the author. The worm algorithm and its correctness

proof (chapter 7) are due to the author, along with the remaining ∆H computations

of chapter 8. The remaining chapters, 9-12, are also original work. Appendix A

briefly summarizes part of [BU07, U07]. Appendix B is a new take on an old ques-

tion; see also [Berg]. The correlated-uniform Markov process is original, as is the

explicit comparison of batched and non-batched means for exponentially correlated

stationary Markov processes.
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Chapter 2

The model of random spatial permutations

Here we review concepts from [BU07, BU08], fixing notation and intuition to be used

in the rest of the paper.

2.1 The probability model

Our state space is

ΩΛ,N = ΛN × SN

where Λ = [0, L]3 with periodic boundary conditions and SN is the group of permu-

tations of N points1. Point positions are X = (x1, . . . ,xN) for x1, . . . ,xN ∈ Λ. These

are called spatial permutations in that they involve the permutation π as well as the

N point positions x1, . . . ,xN . See figure 2.1.

The probability measure on this state space will be constructed via Gibbs measure,

PGibbs = e−H/Z, on a Hamiltonian H . The background probability measure is discrete

(uniform) in π and continuous (Lebesgue) in X. The Hamiltonian takes one of two

forms. In the first, relevant to the Bose gas, we have

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖2Λ +
∑

1≤i<j≤N

V (xi,xπ(i),xj,xπ(j)) (2.1.1)

where T = 1/β and the V terms are interactions between permutation jumps. The

notation ‖ · ‖Λ indicates the natural distance on the 3-torus:

‖x− y‖Λ = min
n∈Z3
{‖x− y + Ln‖} (2.1.2)

For the V terms in equation (2.1.1), the permutation jump xi 7→ xπ(i) interacts with

the permutation jump xj 7→ xπ(j). The temperature scale factor T/4, not β/4, is

1One may of course consider Λ = [0, L]d for d = 1, 2, but for this paper, d = 3 only.
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Figure 2.1. A spatial permutation on N = 26 points. There are 11 one-cycles,
three two-cycles, one four-cycle, and one five-cycle. We say r1(π) = 11, r2(π) = 3,
r4(π) = 1, r5(π) = 1, and rℓ(π) = 0 for all other ℓ.

atypical in statistical mechanics. For purposes of the current work, this may be

considered an ansatz; in [BU07], this choice of scale factor is shown to be appropriate

for permutation representation of the Bose gas. In particular, as will be explained

in more detail below, only the identity permutation appears at high T , and (with

V ≡ 0) uniformly weighted permutations appear at zero T .

In the second form of the Hamiltonian, considered in this paper, we use interac-

tions which are dependent solely on cycle lengths:

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖2Λ +

N
∑

ℓ=1

αℓrℓ(π), (2.1.3)

where rℓ(π) is the number of ℓ-cycles in π, for ℓ from 1 and N , and the αℓ’s are free pa-

rameters, called cycle weights. One ultimately hopes to choose the αℓ’s appropriately

for the Bose gas; even if not, the model is well-defined and of its own mathematical

interest.

The first contribution to the energy2 is the sum of squares of permutation jump

lengths. Since we will use a Gibbs distribution with PGibbs = e−H/Z, the highest-

probability permutations will be the ones with lowest energy. Thus, permutations

2The papers [BU07] and [U07] generalize from ‖xi−xπ(i)‖Λ to ξ(xi,xπ(i)) where ξ is a spherically

symmetric non-negative-valued function on R
d having integrable e−ξ. This generalization is not of

interest in this dissertation.
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with long jumps will be disfavored; permutations with many short jumps will be less

strongly disfavored. The second contribution to the energy involves cycle weights. We

consider only small cycle weights, which perturb the critical temperature but which

do not qualitatively modify the effects of the distance-related terms. More intuition

for the model will be presented in section 2.3.

Choices of point positions x1, . . . ,xN yield two cases: (1) In the annealed model,

point positions are variable in the continuum and are averaged over. One has a particle

density ρ = N/L3. This model is examined analytically in [BU07, U07, BU08]. (2) In

the quenched model, point positions are held fixed. Specifically, we consider N = L3

points on the fully occupied integer-indexed sites of the L×L×L cubic lattice. This

model is examined simulationally in [GRU] and in this dissertation. We often write

H(π) in place of H(X, π) since we either work on a lattice where the xi’s are held

fixed, or on the continuum where the xi’s are integrated out. Thus, the system energy

H (as well as all other random variables we consider) is a function of the permutation

π.

We consider two partition functions, for a fixed point configuration X and for an

average over point configurations, respectively:

Y (Λ,X) =
∑

σ∈SN

e−H(X,σ) and Z(Λ, N) =
1

N !

∫

ΛN

Y (Λ,X) dX.

Fixing point positions X, we have a discrete distribution on π:

Y (Λ,X) =
∑

σ∈SN

e−H(X,σ), PGibbs(π) = PΛ,X(π) =
e−H(X,π)

Y (Λ,X)
. (2.1.4)

For varying point positions (e.g. for considerations of the Bose gas), we have a joint

distribution which is continuous in X and discrete in π:

PΛ,N(X, π) dX =
e−H(X,π)dX

Z(Λ, N)
.

From this we obtain two marginal distributions. If we integrate over point configura-
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tions X, then we obtain a discrete distribution on SN :

PΛ,N(π) =
1

N !

∫

ΛN

dXPΛ,N(X, π) =
1

N !

∫

ΛN dX e−H(X,π)

1
N !

∫

ΛN dX
∑

σ∈SN
e−H(X,σ)

=

∫

ΛN dX e−H(X,π)

Z(Λ, N) N !
.

If, on the other hand, we sum over permutations, then we obtain a continuous distri-

bution for point configurations:

PΛ,N(X) dX =
∑

π∈SN

PΛ,N(X, π) dX =
Y (Λ,X) dX

Z(Λ, N)
. (2.1.5)

This continuous distribution is certainly of interest: it is the point distribution for the

Bose gas, when the Hamiltonian is appropriately chosen. However, it is very difficult

to compute: this is but one of several results in [LLS]. From here on, we consider the

two discrete distributions on SN , namely, PΛ,X(π) and PΛ,N(π).

For a random variable X(π), we have

EΛ,X[X] =

∑

π∈SN
X(π)e−H(X,π)

Y (Λ,X)
and EΛ,N [X] =

∫

ΛN dX
∑

π∈SN
X(π)e−H(X,π)

Z(Λ, N)N !
.

In either case, we also write the probability as PGibbs(π) and the expectation as

E[X] =
∑

π∈SN

PGibbs(π)X(π). (2.1.6)

2.2 Model variants by choice of cycle weights

The model of random spatial permutations is in fact a family of models. As described

in the previous section, point positions may be annealed or quenched, the latter being

the case for this dissertation. Likewise, various constraints may be placed on the cycle

weights. Recall from equation (2.1.3) that

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖2Λ +
N
∑

ℓ=1

αℓrℓ(π). (2.2.1)

There are N free parameters αℓ, and thus many models of spatial permutations. (See

also figure 2.2.)
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General V

Bose gas V V with αℓ cycle weights

Non-interacting special case

α2 weight only

Decaying αℓ’s

Constant αℓ’s (Ewens)

General point positions

Point positions Lattice
point positionson continuum,

integrated out

equation (2.1.1) equation (2.1.3)

[BU07, U07] (continuum)

[BU08] (continuum)

This dissertation (lattice)

[GRU] (lattice)

Bose gas αℓ’s
[BU10] (continuum)

General-cycle model

Figure 2.2. Model variants by choice of point positions and choice of cycle weights.

If αℓ = 0 for all ℓ, one obtains the non-interacting case. When α2 = α and

αℓ = 0 for ℓ 6= 2, we have the two-cycle model [BU07, U07] in which two-cycles

are discouraged as α is increased. Otherwise, we have the general-cycle model. This

splits into (at least) three submodels: Betz and Ueltschi, in [BU08], consider the

case where αℓ tend toward zero faster than 1/ log(ℓ). (Note that this includes the

two-cycle model as a special case.) Ideally, one would have αℓ’s which match the

Brownian-bridge interactions for the Bose gas (appendix A). Work in this direction

has recently been done by Betz and Ueltschi [BU10], but is beyond the scope of this

dissertation.

For this dissertation, we consider the case where αℓ = α is constant in ℓ. We call
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this the spatial Ewens distribution [Ewens]. In summary, the model considered in this

dissertation uses point positions held fixed on the fully occupied cubic unit lattice,

with small non-negative Ewens cycle weights.

2.3 Qualitative characterization of long cycles

Having seen definitions for the probability model, one next asks what a typical random

spatial permutation looks like. In this section we develop intuition; in section 3.7, we

construct quantitative descriptions of the ideas presented here.

Figure 2.3. Points and permutation jumps, for a typical permutation at high T
(there are only small cycles of short jumps), medium but subcritical T (all jump
lengths are short, with occasional long cycles thereof), and low T (jump lengths are
arbitrary).

As T → ∞, the probability measure becomes supported only on the identity

permutation: the distance-dependent terms in equation (2.1.3) are large whenever

any jump has non-zero length. For large but finite T , the length-dependent terms

penalize permutation jumps from a site to any site other than itself. Thus, for large

T we expect the identity permutation to be the most likely, with occasional 2-cycles,

3-cycles, etc. which involve nearby points. On the other extreme, as T → 0, length-

dependent terms go to zero and the probability measure approaches the uniform

distribution on SN : the distance-dependent terms all go to zero. For intermediate

T , one observes that the length ‖π(x) − x‖Λ of each permutation jump remains
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small, increasing smoothly as T drops. See figure 9.8 on page 122 for more precise

information.

The intermediate-temperature regime is the one of interest. As is found in theo-

retical and simulational work, as detailed through the rest of this dissertation, this

regime has the following properties. There is a phase transition: for T below a criti-

cal temperature Tc, while individual jump lengths remain short (i.e. we work in the

short-jump-length regime), arbitrarily long cycles form. See figure 2.3 for depictions

of typical permutations at high T , subcritical T , and low T . In the non-interacting

case, Tc(0) is approximately 6.87; interactions — in the form of positive α terms —

increase Tc(α). Quantifying that dependence, i.e.

∆Tc(α) =
Tc(α)− Tc(0)

Tc(0)
, (2.3.1)

as a function of α for small positive α, is the central goal of this dissertation.

From figures such as 2.3, one can detect long cycles visually. How do we measure

them numerically? Let ℓmax(π) be the length of the longest cycle in π, with E[ℓmax]

its mean over all permutations. We take N = L3 points on the L × L × L unit

lattice with periodic boundary conditions. We observe that for T above Tc, E[ℓmax]

increases only perhaps as fast as log L. That is to say, E[ℓmax]/N goes to zero as

L→∞. For T below Tc, the length of the longest cycle does increase as L increases

— we find that E[ℓmax] scales with N . (This is one of the results of [Sütő1]; it is

perhaps surprising that the scaling is by N = L3 rather than, say, L2.) That is to

say, E[ℓmax]/N approaches a temperature-dependent constant as L → ∞; there are

arbitrarily long cycles, or infinite cycles, in the infinite-volume limit. See figure 2.4 for

plots of E[ℓmax]/N as a function of T for various system sizes with N = L3. See also

figure 9.10 on page 124. Precise information about E[ℓmax]/N and other quantities is

found in section 3.7.
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Figure 2.4. Order parameter fmax = E[ℓmax]/N for finite systems, with α = 0, 0.001.
Interactions increase the critical temperature.

2.4 Known results

In this dissertation we study chiefly the α-dependent shift in critical temperature

for Ewens cycle weights and cubic-lattice point positions. We will also consider an

α-dependent macroscopic-cycle quotient, to be defined below. Here we survey known

results for related models — namely, other cycle weights as described in section 2.2,

and point positions integrated over the continuum — before stating our conjectures

for our model in section 2.5.

Known results for point locations averaged over the continuum (as discussed in

section 2.1) are obtained largely using Fourier methods [BU08] which are unavailable

for point positions held fixed on the lattice. Betz and Ueltschi have determined

∆Tc(α), to first order in α, for two-cycle interactions [BU07] and decaying cycle

weights [BU08]. The critical (ρ, T, α) manifold relates ρc to Tc. Specifically, they
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obtain the following, with the decaying-cycle-weight constraint on the cycle weights

{αℓ}:

ρc(α1, α2, . . .) =
1

(4πβ)3/2

∑

ℓ≥1

e−αℓℓ−3/2. (2.4.1)

In the non-interacting special case, all cycle weights are zero, and we have

ρc(0) =
1

(4πβ)3/2

∑

ℓ≥1

ℓ−3/2 =
ζ(3/2)

(4πβ)3/2
(2.4.2)

where ζ is the Riemann zeta function. For the two-cycle special case [BU07], α2 is

non-zero, and the other cycle weights are zero. We have

ρc(α) =
1

(4πβ)3/2

(

e−α2−3/2 +
∑

ℓ 6=2

e−αℓℓ−3/2

)

= ρc(0) +
(e−α − 1)

(8πβ)3/2
.

In addition to our main interest on the shift in critical temperature (here, phrased

in terms of critical density), we also examine the fraction of sites in macroscopic cycles.

As will be discussed in more detail in sections 3.4 and 3.5, ℓmax is the length of the

longest cycle of a permutation; fI will quantify the fraction of sites participating

in long cycles. For αℓ ≡ 0 (the non-interacting model), one observes empirically

that the macroscopic-cycle quotient E[ℓmax]/NfI is constant for T below but near

Tc. (That is, the two order parameters fI and E[ℓmax]/N have the same critical

exponent.) For uniform-random (non-spatial) permutations, Shepp and Lloyd 1966

[SL] solved Golomb’s 1964 question [Golomb]: E[ℓmax]/N ≈ 0.6243. Unpublished

work of Betz and Ueltschi has found E[ℓmax]/NfI holds that same value for random

spatial permutations in the non-interacting case αℓ ≡ 0. The intuition is that long

cycles are uniformly distributed within the zero Fourier mode.



32

2.5 Conjectures

Equation (2.4.1) gives ρc as a function of β = 1/T . For the cubic unit lattice, we fix

ρ ≡ 1 and thus obtain βc, or equivalently Tc:

Tc(α1, α2, . . .) =
4π

(
∑

ℓ≥1 e−αℓℓ−3/2
)2/3

. (2.5.1)

For the non-interacting special case, this is

Tc(0) =
4π

ζ(3/2)2/3
≈ 6.625. (2.5.2)

The Ewens-cycle-weight case does not satisfy the decaying-cycle-weight constraint

where the αℓ’s must go to zero in ℓ faster than 1/ log(ℓ); all the αℓ’s are the same.

Nonetheless, using equation (2.5.1), we obtain

Tc(α) =
4π

[e−αζ(3/2)]2/3
≈ 6.625e2α/3.

Taylor-expanding in the small parameter α, the shift in critical temperature is then

∆Tc(α) =
Tc(α)− Tc(0)

Tc(0)
= e2α/3 − 1 ≈ 2α

3
and c ≈ 0.667. (2.5.3)

(Note that this is not in conflict with the constant c in section 1.4, which through

abuse of notation we also called c. There, one examines ∆Tc(a) where a is the

scattering length of the interacting Bose gas; here, one has ∆Tc(α) for free parameter

α.)

As the primary goal of this dissertation, we inquire whether this result, obtained

for decaying cycle weights with point positions varying on the continuum, holds for

Ewens weights with point positions held fixed on the lattice. We suspect that the

fine details of point positions are unimportant for the shift in critical temperature.

For Ewens interactions, ∆Tc(α) is theoretically unknown for points either on the

continuum or on the lattice. The simulational treatment in this dissertation is the

only known attack on this question.
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Secondarily, we conjecture that E[ℓmax]/NfI , as discussed in section 2.4, is α-

dependent but constant in T (for T below but near Tc) for our model of lattice point

positions and Ewens cycle weights.
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Chapter 3

Random variables

Having in hand the definition of the probability model from chapter 2, the next logical

step is to define random variables. In particular, we seek order parameters — random

variables which allow us to identify the phase transition to long cycles. Specific

random variables used in this dissertation are as follows. For each, the relevant

theory sections (in this chapter) and experiment sections (in chapter 9) are pointed

to.

• System energy and energy density: these are as discussed in section 2.1; explicit

computation is discussed in section 9.8.

• The number of ℓ-cycles in the permutation for ℓ = 1, 2, . . . , N : the definitions

are familiar from elementary algebra; computation is discussed in section 9.9.

• Cycle length, spatial cycle length, and correlation length: sections 3.2 and 9.10.

• Mean jump length and maximum jump length: sections 3.3 and 9.11. These are

used to confirm the hypothesis of short jump lengths as mentioned in section

3.6.

• Fraction of sites in cycles of specified lengths, and fraction of sites in long cycles:

section 3.4 and (theory) and 9.12 (experiment).

• Longest cycle length and macroscopic-cycle quotient: sections 3.5 and 9.13.

• Winding numbers, scaled winding number, and fraction of sites in winding

cycles: sections 3.6 and 9.14.
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A word on notation: given a random variable X, let Q = E[X]. For each quantity

Q, one should distinguish between the finite-volume value QL(T ) and the infinite-

volume limit Q∞(T ) = limL→∞ QL(T ). For this chapter, omitted subscripts are

disambiguated by context. The difference becomes significant in chapter 9; at that

point, we will carefully distinguish between QL(T ) and Q∞(T ).

3.1 Differences and distances on the torus

We first define the natural difference-vectors and distances on the 3-torus. Namely,

for z ∈ Λ, we define a zero-centered modulus vector mL(z). For x,y ∈ Λ, this gives

rise to a difference vector dΛ(x,y) and a distance ‖x− y‖Λ. The former are needed

for winding numbers (section 3.6); the latter are needed for the Hamiltonian (section

2.1), spatial cycle length and correlation length (section 3.2), and jump length (section

3.3). Specifically, we have the following:

mL(z) =





mL(z1)
mL(z2)
mL(z3)



 (3.1.1)

nL(z) = n ∈ Z which minimizes |z + nL| (3.1.2)

mL(z) = z + nL(z)L (3.1.3)

dΛ(x,y) = mΛ(x− y) (3.1.4)

‖z‖Λ = ‖mΛ(z)‖. (3.1.5)

For example, suppose L = 20, x = (0, 0, 18), and y = (0, 0, 1). Then dΛ(x,y) =

(0, 0,−3) and ‖x−y‖Λ = 3. This is called a zero-centered modulus since mL(z) takes

values from −L/2 to L/2. There is an antipodal problem when L is even: the distance

is well-defined on the torus, but differences are ambiguous at L/2 in any of the three

slots. For example, if L = 20, x = (0, 0, 18), and y = (0, 0, 8), then ‖x − y‖Λ = 10

but dΛ(x,y) = (0, 0, 10) or (0, 0,−10). However, as mentioned in sections 2.3, 3.6,

6.2, and 9.11, we work in the short-jump-length regime. Specifically, in section 9.11
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we find that for T near Tc, jump length remains below 5, with probability very near

1, regardless of how big L is.

We now show that equation (3.1.5) is compatible with the definition of ‖ · ‖Λ from

equation (2.1.2) on page 23. namely,

‖x− y‖Λ = min
n∈Z3
{‖x− y + Ln‖}.

Proposition 3.1.6. We have

‖x− y‖Λ = ‖dΛ(x,y)‖. (3.1.7)

Proof. For brevity, let z = x − y. Since the square-root function is one-to-one and

increasing on non-negative reals, it suffices to show

‖mΛ(z)‖2 = min
n∈Z3
{‖z + nL‖2}.

Starting with the right-hand side, we have

min
n∈Z3
{‖z + nL‖2} = min

n1∈Z

min
n2∈Z

min
n3∈Z

{

(z1 + n1L)2 + (z2 + n2L)2 + (z3 + n3L)2
}

= min
n1∈Z

{

(z1 + n1L)2
}

+ min
n2∈Z

{

(z2 + n2L)2
}

+ min
n3∈Z

{

(z3 + n3L)2
}

= mL(z1)
2 + mL(z2)

2 + mL(z3)
2

= ‖mΛ(z)‖2.

3.2 Cycle lengths and correlation length ξ

Definition 3.2.1. Fixing π ∈ SN and x ∈ Λ, the cycle length ℓx(π) is the smallest

positive integer a such that πa(x) = x. This is nothing more than the length of the

cycle containing x: if x is in a 3-cycle, then ℓx(π) = 3. We define the spatial cycle

length

sx(π) =

ℓx(π)
∑

j=1

‖πj(x)− πj−1(x)‖Λ.
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This is simply the sum of Euclidean jump distances for all permutation jumps in the

cycle containing x. We may at times instead write, respectively,

ℓi(π) = ℓxi
(π) or si(π) = sxi

(π).

For example, for the point configuration X and the permutation π in figure 3.1,

we have

ℓ1(π) = ℓ2(π) = ℓ3(π) = ℓ4(π) = 4, ℓ5(π) = ℓ6(π) = ℓ7(π) = 3, and ℓ8(π) = 1.

x1

x2

x8

x7

x6

x5

x3

x4

‖x5 − xπ(5)‖

Figure 3.1. A configuration of X and π with N = 8.

Definition 3.2.2. If x and y are in a common cycle of π, we say that x is connected

to y; otherwise we say that x is not connected to y. These are written

x ◦–◦y and x ◦–6 –◦y.

In the former case, we write

ℓx,y(π)

for the smallest positive integer a such that πa(x) = y. This is the number of

permutation jumps from x to y.

Definition 3.2.3. We may average cycle lengths and spatial cycle lengths (definition

3.2.1) over all points x:

ℓ(π) =
1

N

∑

x∈Λ

ℓx(π) s(π) =
1

N

∑

x∈Λ

sx(π).
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Now, E[ℓx] = E[ℓy] for all x,y ∈ Λ, and both are the same as E[ℓ] as shown in the

lemma below. Experimentally, however, as discussed at the beginning of chapter 4, we

cannot compute expectations over all π ∈ SN ; we must content ourselves with sample

means over some sequence of M permutations π1, . . ., πM , obtained in an MCMC

simulation. We may increase the sample size by a factor N (thereby decreasing the

sample variance by a factor of N , by the central limit theorem) if we average over all

points x. For each permutation, we may compute ℓ(π) by averaging ℓx(π) over all N

point positions, and likewise for sx(π) and s.

Lemma 3.2.4. For all x ∈ Λ, E[ℓ] = E[ℓx].

Proof. The left-hand side is

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π).

Since both sums are finite, we have

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π) =
∑

π∈SN

PGibbs(π)
1

N

∑

x∈Λ

ℓx(π)

=
1

N

∑

x∈Λ

∑

π∈SN

PGibbs(π)ℓx(π) = E[ℓx].
(3.2.5)

The equality E[ℓx] = E[ℓx] follows from translation invariance on the 3-torus.

In summary, we have

ℓx(π) = min{a > 0 : πa(x) = x} sx(π) =

ℓx(π)
∑

j=1

‖πj(x)− πj−1(x)‖Λ

E[ℓx] =
∑

π∈SN

PGibbs(π)ℓx(π) E[sx] =
∑

π∈SN

PGibbs(π)sx(π)

ℓ(π) =
1

N

∑

x∈Λ

ℓx(π) s(π) =
1

N

∑

x∈Λ

sx(π)

E[ℓ] =
∑

π∈SN

PGibbs(π)ℓ(π) E[s] =
∑

π∈SN

PGibbs(π)s(π).
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The quantities on the second line are convenient for theoretical use; the quantities on

the fourth line (due to the larger sample size) are preferable for experimental use.

We define a correlation length ξ to be

ξ = E[s]. (3.2.6)

Computational details are in section 9.10.

3.3 Mean and maximum jump length

Definition 3.3.1. Let

jx(π) = ‖π(x)− x‖Λ

be the length of the permutation jump starting at site x; let

j(π) =
1

N

N
∑

i=1

jxi
(π).

The mean jump length at site x is simply

E[jx] =
∑

π∈SN

PGibbs(π)‖π(x)− x‖Λ.

By linearity of expectation, this is the same as the average over all sites:

E[j(π)] = E[jx1(π)].

As was the case for ℓ and s in section 3.2, we approximate the uncomputably large sum

over all N ! permutations by a random sequence of M permutations, and the sample

mean is random. By the central-limit theorem argument in section 3.2, the variance

of the sample mean of j is a factor of N smaller than the variance of the sample mean

of jx, since the sample size is MN instead of M . Additional computational details

are discussed in section 9.11.
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3.4 Fraction of sites in infinite cycles fI

If one wants to quantify the temperature-dependent onset of long cycles (section 2.3),

then one can define a random variable which counts the fraction of sites in long cycles.

In the infinite limit, one looks for infinite cycles. One could define

fI(∞) = 1−
∑

k≥1

PGibbs(ℓ0 = k) (3.4.1)

where ℓ0(π) is as defined in section 3.2. For finite volume, where simulations are done,

the right-hand side of (3.4.1) is always 0: every site is in a cycle of some finite length.

One might then define

fI(N) = 1−
∑

k<ε(N)

PGibbs(ℓ0 = k) (3.4.2)

where ε(N) is such that ε(N) → ∞ as N → ∞ but ε(N)/N → 0. For example,

one may take ε(N) =
√

N . This is chosen so that as N → ∞, one obtains fI(∞).

In [BU07] it is found, among other results, that mesoscopic cycles are unimportant:

for T > Tc, there are only microscopic cycles; for T < Tc, there are only microscopic

and macroscopic cycles. The ε(N) cutoff is designed to separate the former from the

latter.

For practical computation, [GRU] begin by defining

ρ =
N

V
,

where V = L3 is the volume, i.e. ρ is the particle density. For 1 ≤ m ≤ n ≤ N , define

̺m,n(π) =
1

V
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

This random variable, taking values between 0 and ρ, is the density of sites in cycles

of specified length. One may also consider the related random variable

fm,n(π) =
1

N
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}
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which is ̺m,n/ρ. (Of course, on the unit lattice where N = L3 and ρ = 1, the two

random variables fm,n(π) and ̺m,n(π) are identical.) This runs from 0 to 1 and is

the fraction of sites in cycles of specified length. For figure 3.1 on page 37, we have

f2,3(π) = 3/8. Then E[fε(N),N ] matches equation (3.4.2) as follows:

E[fε(N),N (π)] =
1

N
E [#{i = 1, . . . , N : ℓi(π) ≥ ε(N)}]

=
1

N
E

[

N
∑

i=1

1ℓi(π)≥ε(N)(π)}
]

=
1

N
PGibbs(ℓi(π) ≥ ε(N)).

This is the same as PGibbs(ℓ0(π) ≥ ε(N)) by translation invariance. Then

PGibbs(ℓ0(π) ≥ ε(N)) =
∑

k≥ε(N)

PGibbs(ℓ0 = k) = 1−
∑

k<ε(N)

PGibbs(ℓ0 = k) = fI(N).

In practice, a single cutoff of the form ε(N) is not used; one estimates the infinite-

limit behavior in a different way. To see how to do this, we next invoke results of

[Sütő2] and [BUV09] regarding the behavior of E[f1,k] as a function of k/N in the

infinite limit. The former, [Sütő2], applies in the non-interacting case; the latter,

[BUV09], applies in the Ewens case but with non-spatial permutations, which are

equivalent to random spatial permutations with T = 0. For the non-interacting case,

E[f1,k] is a straight line of slope 1 as shown in the upper left of figure 3.2. At T = 0,

it fills the full diagonal; cycle lengths have uniform distribution. At T > Tc, the

diagonal vanishes into the upper-left corner; there are no long cycles. The transition

to criticality occurs at T such that the diagonal becomes visible. See also [Lugo].

In finite volume, E[f1,k] is rounded as shown in the bottom left of figure 3.2. Thus,

one wishes to draw a tangent-line approximation for the infinite-volume behavior, and

take fI to be one minus the vertical intercept. This avoids use of a specific, arbitrary

cutoff ε(N), replacing it instead with a graphical estimator which makes use of all

available data. See also section 9.12 for computational details, including the handling

of sampling variability.

For Ewens interactions, the diagonals are curved as shown in the upper right of
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T = 0
T = 0

T near TcT near Tc

T near TcT near Tc

0
0

0
0

0
0

0
0

1

1

1

1

1

1

1

1

k/Nk/N

k/Nk/N

limN→∞ E[f1,k]limN→∞ E[f1,k]

limN→∞ E[f1,k]limN→∞ E[f1,k]

Figure 3.2. Qualitative behavior of limN→∞ E[f1,k] as a function of k/N in the
non-interacting (upper left) and non-spatial large-α Ewens-interacting (upper right)
cases. Lower left and lower right show the behavior for finite N .

figure 3.2. For the small α values considered in this dissertation, however, this Betz-

Ueltschi-Velenik sag in the curve is less than the sampling variability in the data

itself (see the plots in section 9.12). Thus, the sag is not relevant to our discussion.

It should also be remarked that the author has performed larger-α simulations for

which the sag is indeed observed simulationally.

3.5 Macroscopic-cycle quotient fmax/fI

Definition 3.5.1. For a permutation π in SN , define

ℓmax(π) = max
1≤i≤N

ℓi(π). (3.5.2)
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For a spatial permutation, this is precisely the same as

ℓmax(π) = max
x∈Λ

ℓx(π). (3.5.3)

We write

fmax = E[ℓmax]/N. (3.5.4)

Definition 3.5.5. The macroscopic cycle quotient, written fmax/fI for brevity, is

given by

macroscopic cycle quotient =

{

E[ℓmax]
NfI

, fI 6= 0

0, fI = 0.
(3.5.6)

Intuition was discussed in sections 2.4 and 2.5; computational details are discussed

in section 9.13.

3.6 Winding numbers, fS, and fW

The box Λ = [0, L]3 with periodic boundary conditions is topologically equivalent

to the 3-torus. Permutation cycles wind around the 3-torus some number of times

in the x, y, and/or z directions. The sub-Tc onset of long cycles corresponds to the

appearance of cycles which wrap around the torus in one or more of the three axes.

If a cycle goes around once in the clockwise direction, we want to say it has sign +1;

likewise, we want sign −1 for the counterclockwise direction. The following definition

formalizes this intuition.

Definition 3.6.1. The winding number (really a 3-tuple of numbers) of a permutation

π is

W(π) = (Wx(π), Wy(π), Wz(π)) =
1

L

N
∑

i=1

dΛ(π(xi),xi) (3.6.2)
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where dΛ is the difference vector defined in equation (3.1.4). This simply counts

the integer number of wraps of π’s cycles around the 3-torus in each of the three

directions. We also write

W2(π) = W(π) ·W(π) = Wx(π)2 + Wy(π)2 + Wz(π)2. (3.6.3)

Definition 3.6.4. The scaled winding number is

fS =
E[W2]L2

3βN
=

E[W2]T

3L
.

See [PC87] for the physical derivation. For us, it simply needs to be scaled by L2/N =

1/L in order to be an intensive parameter.

Definition 3.6.5. Let cx(π) consist of all sites in the same cycle as x:

cx(π) = {y ∈ Λ : y = πa(x), a = 0, 1, 2, . . . , N − 1}.

Let wx(π) be the winding vector for x (which is clearly the same for all sites in the

same cycle as x):

wx(π) =
1

L

∑

y∈cx(π)

dΛ(π(y),y),

where the difference vectors are again interpreted as in section 3.1. Note that all

three slots of wx(π) are necessarily integer-valued. We say that π winds through x if

x has a non-zero winding vector:

tx(π) =

{

1, wx(π) 6= (0, 0, 0);

0, wx(π) = (0, 0, 0).

We use these to define the fraction of sites in winding cycles:

fW (π) = E

[

1

N

∑

x∈Λ

tx(π)

]

.

Computational details are discussed in section 9.14.
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3.7 Order parameters: quantifying long cycles

Of the random variables presented in this chapter, the following, referred to as order

parameters, may be used to locate the critical temperature Tc(α) below which long

cycles begin to appear. The first four are non-zero for T < Tc and zero for T > Tc.

Since ξ blows up below Tc, 1/ξ goes to zero below Tc. See also figure 3.3.

• fmax := E[ℓmax]/N .

• Fraction of sites in long (“infinite”) cycles fI .

• Scaled winding number fS.

• Fraction fW of sites in cycles which wind.

• Reciprocal correlation length 1/ξ.
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Figure 3.3. Behavior of order parameters as functions of L and T , for the non-
interacting model. Each of the following occurs at a critical temperature Tc, in the
limit L → ∞: onset of N -scaling of the length of the longest cycle (fmax), onset
of long cycles (fI), onset of winding cycles (fS and fW ), and blow-up of correlation
length (vanishing of 1/ξ). For finite L, the transitions are smooth; they sharpen
toward non-analyticity as L → ∞. Interactions increase the critical temperature,
shifting these graphs to the right.
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Chapter 4

Markov chain Monte Carlo methods

In this chapter we discuss the need for random-sampling methods, and justify their

use rigorously. Given a random variable X(π), such as any of those presented in

chapter 3, the expectation of X is (equation (2.1.6))

E[X] =
∑

π∈SN

PGibbs(π)X(π).

This is a real number, with no uncertainty. The problem is that the number of

permutations, N !, grows intractably in N : even for L = 10 (and we consider L up to

80), N = 1000 and N ! is a number with over 5,000 digits. The true expectation is

effectively incomputable. Expectations are instead estimated by summing over some

number M (in the current work, 105 or 106) of typical permutations. The sample

mean

〈X〉M =
1

M

M
∑

k=1

X(πk) (4.0.1)

depends on the random sequence π1, . . . , πM . It is now a random variable with its

own variance. The two main sources of error in MCMC simulations are initialization

bias and sampling variability. The former involves thermalization (section 9.6) and

multimodality of distributions (sections 5.4 and 7.8); the latter involves autocorrelation

(section 9.15 and appendix B).

To create such a sequence of system states (for us, permutations), the method

used throughout the computational physics community [Berg, LB] is Markov chain

Monte Carlo. Namely, given a permutation πk, one selects a successor permutation

πk+1 in some random way. This is the Monte Carlo part. Moreover, the transition

probabilities from πk to each candidate πk+1 depend only on πk, and not on any

previous choices. This is the Markov chain part.
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In the next sections we show (1) we can construct Markov chains which sam-

ple from the Gibbs distribution PGibbs(π) (equation (2.1.4)); (2) other distributions

(induced by the selection of initial state) converge to the Gibbs distribution; (3) the

sample mean 〈X〉M converges almost surely to the true expectation E[X]; and (4) the

variance of 〈X〉M can be estimated, allowing us to place error bars on our estimates

of E[X]. Most of the material in this chapter is familiar: see [Berg, LB, CB, FG, GS]

to name only a few. Results are restated here for self-containment of presentation.

4.1 Markov chains and Markov matrices

Before continuing to discuss random permutations and the Gibbs measure, we spend

some time discussing more general random sequences, including Markov chains as

a special case. This will turn out to be worthwhile: one of the strengths of this

dissertation, in the author’s estimation, is the careful disambiguation of some mis-

leading notation and terminology (principally, overuse of the single letter P ) which

are encountered from time to time in the literature.

Let Ω be a finite set, and put #Ω = K. (For example, Ω = SN with K = N !.)

The set of all sequences of elements of Ω, indexed by the non-negative integers, is

ΩN. Just as we can have an arbitrary probability measure P on Ω, we can have an

arbitrary probability measure P on ΩN. Marginal distributions on the kth slot are

written Pk. If Sk is an Ω-valued random variable, e.g. a random selection from Ω at

the kth slot, then S0, S1, S2, . . . is a random sequence, or discrete-time random process.

Since P is arbitrary, the Pi are not necessarily the same distributions, and samples

Si and Sj at the ith and jth slots are not necessarily independent.

Repeatedly using the conditional-probability formula P (E | F ) = P (E, F )/P (F )

for events E and F , we can always split up the probability of a finite sequence of
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samples into a sequencing of initial and conditional probabilities:

P(S1 = ω1, S2 = ω2, . . . , Sn = ωn) =P(S1 = ω1)

·P(S2 = ω2 | S1 = ω1)

·P(S3 = ω3 | S1 = ω1, S2 = ω2)

·P(Sn = ωn | S1 = ω1, · · · , Sn−1 = ωn−1).
(4.1.1)

A Markov process (or Markov chain if the state space Ω is finite) is a discrete-time

random process such that for all k > 0,

P(Sk = ωk | S1 = ω1, S2 = ω2, . . . , Sk−1 = ωk−1) =P(Sk = ωk | Sk−1 = ωk−1).

That is, if the probability of moving from one state to another depends only on the

previous sample, and on nothing farther into the past, then the process is Markov.

Now we have

P(S1 = ω1, . . . , Sn = ωn) = P(S1 = ω1)

·P(S2 = ω2 | S1 = ω1) · · · ·P(Sn = ωn | Sn−1 = ωn−1).
(4.1.2)

We have the initial distribution for the first state, then transition probabilities for

subsequent states. Precisely, one says a Markov chain is a discrete-time random

process with this Markov property. With slight abuse of notation, though, we also

refer to the probability distribution P as a Markov chain if it has this property,

since given P we can always construct a discrete-time random process S0, S1, S2, . . ..

Additionally, if for all ω, ω′ ∈ Ω the conditional probabilities P(Sk+1 = ω′ | Sk = ω)

are the same for all k, then we say the Markov chain is homogeneous.

Observe that P(Sk+1 = ωj | Sk = ωi) is a K ×K matrix of numbers between zero

and one, with the property that rows sum to one (since each ωi must transition to

some ωj). Such a matrix is called a stochastic matrix or Markov matrix. We might

as well name that matrix Ak, with the entry in the ith row and jth column given by

(Ak)ij = P(Sk+1 = ωj | Sk = ωi).
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If the chain is homogeneous, we omit the subscript and write A. The key to making

linear algebra out of this setup is the following law of total probability :

P(Sk+1 = ωj) =
∑

ωi

P(Sk = ωi, Sk+1 = ωj)

=
∑

ωi

P(Sk = ωi)P(Sk+1 = ωj | Sk = ωi)

=
∑

ωi

P(Sk = ωi)(Ak)ij.

(4.1.3)

The probability mass functions Pk are row vectors. The PMF Pk+1 of Sk+1 is the

PMF Pk of Sk times the Markov matrix Ak. In vector/matrix notation,

Pk+1 = PkAk.

Throughout this section, we supposed we had been given a probability distribu-

tion P on ΩN which satisfied the Markov property; we obtained Markov transition

matrices. If, on the other hand, we start with an initial distribution P0 and stochas-

tic matrices A0, A1, . . ., then we can re-use equation (4.1.3) to obtain P1 = P0A0

and, inductively, Pk+1 = PkAk. We can then use equation (4.1.2) in reverse to ob-

tain a probability distribution P on ΩN. Note that now the process is Markov by

construction.

In summary, a Markov chain is specified by a sequence-space distribution P with

the Markov property, or an initial distribution P0 and a sequence of transition matri-

ces. Furthermore, we can go back and forth between these two points of view:

P←→ (P0, A0, A1, A2, . . .).

If the chain is homogeneous, we write

P←→ (P0, A).

4.2 Invariant and limiting distributions

The only probability distribution for random permutations considered thus far is the

Gibbs distribution PGibbs of equation (2.1.4) on page 25. However, others exist. If
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one is asked for a permutation π and one always replies with the identity, then the

distribution of that answer is the singleton measure supported on the identity. This is

not the Gibbs measure (unless α = 0 and β = 0). A third distribution is the uniform

distribution, where each permutation has probability 1/N !. (This is the same as the

Gibbs measure only for α = 0 and T = 0.)

Following the construction of the final paragraph of section 4.1, suppose we se-

lect an initial permutation π0 from some probability distribution: for computational

work done in this dissertation, this will be the singleton measure supported at the

identity permutation, although a uniform-random π0 is another possibility. Given

Markov transition matrices Ak to be constructed in sections 5.2 and 7.6, we obtain a

random sequence of permutations π0, π1, π2, . . .. We write P(π0) for the probability

distribution on this sequence space, with P
(π0)
k being the marginal at the kth slot.

Below, we will construct Markov transition matrices Ak which preserve the Gibbs

measure PGibbs, i.e. PGibbs = PGibbsAk. The following terminology applies.

Definition 4.2.1. A probability distribution P is invariant for a Markov transition

matrix A if P = PA, that is, if for all j = 1, . . . , K,

P (S2 = ωj) =

K
∑

i=1

AijP (S1 = ωi).

In vector/matrix notation, this means

P = PA.

In other words, P is invariant for A if A-transitions preserve the distribution P . If

S1 is distributed according to P , then S2 will also be distributed according to P ,

and so on. Such a sequence of states S1, S2, . . ., while not in general independent, is

identically distributed.

Remark 4.2.2. A homogeneous chain is not the same as a stationary sequence. In

the former case, the transition matrix is the same at each time step; in the latter

case, the probability distributions are the same at each time step.
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Example 4.2.3. ⊲ An illustrative example uses die-tipping. Recall that an ordinary

six-sided die has pips on opposite faces summing to seven. There are six states, which

we assume to be uniformly distributed if the die is rolled. Given that the die has n

pips facing up, we may tip the die by picking one of the four sides at uniform random

and putting that side up. E.g. if 1 is up, then after the tip, 2, 3, 4, or 5 will appear

each with probability 1/4; 1 or 6 will appear with probability 0.

The transition matrix, with rows indexing the current state and columns indicating

the successor state, is

A =

















0 1/4 1/4 1/4 1/4 0
1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 0 1/4 1/4
1/4 1/4 0 0 1/4 1/4
1/4 0 1/4 1/4 0 1/4

0 1/4 1/4 1/4 1/4 0

















.

Suppose the die is initially set on table with 1 up, i.e.

P0 =
(

1 0 0 0 0 0
)

.

Then

P1 = P0 A =
(

0 1/4 1/4 1/4 1/4 0
)

If, instead, the die is initially rolled, then P0 is uniform:

P0 =
(

1/6 1/6 1/6 1/6 1/6 1/6
)

.

One computes P1 to be uniform as well:

P1 = P0 A =
(

1/6 1/6 1/6 1/6 1/6 1/6
)

.

The 1-up distribution is not invariant for the die-tipping transition rule, but the

die-roll distribution is. ⊳
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Given a Markov matrix A, one may wish to find an invariant distribution P .

Going the other way, given a distribution P , one may wish to construct a Markov

matrix A such that P is invariant with respect to A. The latter is our main goal here:

the distribution of interest is the Gibbs distribution PGibbs. The following theorem is

key. First, we define the terminology necessary to state it.

Definition 4.2.4. A Markov chain P on a state space Ω is irreducible if for all

ω, ω′ ∈ Ω there exists an n > 0 such that P(Sn = ω′ | S0 = ω) > 0.

Definition 4.2.5. The period of ω ∈ Ω is

p(ω) = gcd{n : P(Sn = ω | S0 = ω) > 0}

We say that ω has period p if it reappears with probability 1 after every p steps. A

state ω is aperiodic if p(ω) = 1. A chain is aperiodic if p(ω) = 1 for every ω.

Remark. An irreducible, aperiodic chain on a finite state space is sometimes called

ergodic.

Definition 4.2.6. A Markov matrix A on a state space Ω (with #Ω = K) and a

distribution P on Ω are reversible, or satisfy detailed balance, if for all 1 ≤ i, j ≤ K,

Aij P (ωi) = Aji P (ωj).

Theorem 4.2.7 (Invariant-distribution theorem). Fix a finite set Ω. Let A be a

Markov transition matrix on Ω, as above, and let P be a probability distribution on

Ω. If the homogeneous Markov chain (P, A) is irreducible, aperiodic, and satisfies

detailed balance, then P is invariant for A. That is, the Markov chain (P, A) is

stationary. Furthermore, if another homogeneous Markov chain (P0, A) is irreducible

and aperiodic, then for all ω ∈ Ω, Pn(ω)→ P (ω) as n→∞.

Remark. Some authors call this the ergodic theorem; yet, others call our theorem

4.2.9 the ergodic theorem. It also may be thought of as a special case of the Perron-

Frobenius theorem, applied to the Markov transition matrix A.
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Proof. See [Lawler], sections 1.2 and 1.3.

We say P (PGibbs in the context of random permutations) is the stationary distri-

bution or invariant distribution for A. We say that it is also a limiting distribution

for any initial distribution P0 satisfying the above hypotheses.

Example 4.2.8. ⊲ Continuing example 4.2.3: If we initially roll the die, we start

with the uniform distribution which is stationary for the die-tipping rule:

P0 =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

P1 = P0 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

...

If we start with the one-face up, we begin with the singleton initial distribution which

is not stationary for the die-tipping rule. Yet, subsequent tips have a distribution

which tends toward the limiting, uniform distribution:

P0 =
(

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
)

P1 = P0 A =
(

0.0000 0.2500 0.2500 0.2500 0.2500 0.0000
)

P2 = P1 A =
(

0.2500 0.1250 0.1250 0.1250 0.1250 0.2500
)

P3 = P2 A =
(

0.1250 0.1875 0.1875 0.1875 0.1875 0.1250
)

P4 = P3 A =
(

0.1875 0.1562 0.1562 0.1562 0.1562 0.1875
)

P5 = P4 A =
(

0.1562 0.1719 0.1719 0.1719 0.1719 0.1562
)

...

P14 = P13 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

P15 = P14 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

...

⊳
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Importantly, for simulations using the model of random spatial permutations, we

need not know a priori what a typical permutation looks like. We may start always

with the identity permutation, i.e. P0 is the singleton distribution supported on the

identity permutation. We may then run the Markov chain, producing a sequence

of permutations. As the number of iterations goes to infinity, the distribution of

permutations approaches PGibbs: for all π ∈ SN , P
(π0)
k (π)→ PGibbs(π) as k →∞.

The specific number k of iterations needed for convergence of P
(π0)
k to PGibbs is

another matter entirely. The theory exposited by [Lawler], as noted above, guaran-

tees that a Markov matrix A with PGibbs as its invariant distribution has no other

invariant distribution: A has a single eigenvalue 1 with eigenvector PGibbs. The rate of

convergence of P
(π0)
k to PGibbs depends on the second-largest eigenvalue for A, which

one in general does not know how to compute. In practice, this mixing time (or

burn-in time or thermalization time) is estimated using techniques such as those in

section 9.6.

The theory above also does not tell us how to construct a Markov matrix A having

a desired distribution PGibbs as its invariant distribution — it simply tells us what

we can do once we have constructed such a matrix. A specific construction is due to

Nicholas Metropolis [Berg, LB, CB]. The essence is that if the invariant probability

distribution PGibbs is defined as a Gibbs measure via an energy function H on Ω, then

proposed successor states πk+1 of πk are accepted with probability min{1, e−∆H}
where ∆H is the energy difference for the state change. In this dissertation, I directly

prove that such methods result in detailed balance. Thus, the reader is referred to

propositions 5.3.6 and 7.7.5 for details.

We next show that the sample mean 〈X〉M (equation (4.0.1) on page 47) converges

to the true mean E[X] (equation (2.1.6) on page 26).

Theorem 4.2.9 (Ergodic sampling theorem). Let X be a random variable on the

finite probability space (Ω, 2Ω, P ) where 2Ω is the power set of Ω. If the stationary,
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homogeneous Markov chain (P, A) satisfies the hypotheses of theorem 4.2.7, then

1

M

M
∑

k=1

X(Sk)→ E[X] as M →∞.

Remark. Some authors call this this ergodic theorem; yet, others call our theorem

4.2.7 the ergodic theorem.

Proof. This follows from theorem 4.2.7 using the central-limit theorem for identically

distributed but non-independent Si’s.

4.3 Sample means and their variances

There is one caveat to replacing the true mean E[X] with the MCMC sample mean

〈X〉M : the naive computation of the standard deviation of the sample mean, which

is correct for independent identically distributed states, is a significantly incorrect

underestimate for the standard deviation of the sample mean in the case of identically

distributed but correlated states. This issue is so important that appendix B is

devoted to it. The key result of that appendix is that the standard deviation (error

bar) of the sample mean 〈X〉M is off by a factor of the square root of the integrated

autocorrelation time,
√

τ̂int(X), which is computed as described in section B.10.

4.4 Simple example: 1D Ising

For an example which is more complex than die-tipping but less complex than random

spatial permutations, consider the 1D N -point Ising model. Namely, the configuration

space is Ω = {±1}N , i.e. N particles which may be in either an up (filled) or a down

(hollow) state:
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A state is described by ω = (ω1, . . . , ωn). The configuration space Ω has 2N possible

configurations. The system is endowed with an energy function. For the 1D Ising

model, one has

H(ω) =

n
∑

i=1

n
∑

j=1

Cijωiωj +

n
∑

i=1

hiωi.

where the Cij ’s are interaction terms (non-interacting, nearest neighbor, mean-field,

etc.) and the hi’s are magnetization terms. Given a temperature-related parameter

β, one sets the (Gibbs) probability of each configuration to be proportional to e−βH .

One picks an initial configuration. There are three obvious choices: (1) Start

with all spins down, i.e. ω = (−1, . . . ,−1). (2) Start with all spins up, i.e. ω =

(+1, . . . , +1). (3) Start with ω selected from a uniform probability distribution on

Ω. Then, one selects a site i and decides whether to flip ωi to −ωi.

P (change) = min{1, e−∆H}

This decision is made using the Metropolis prescription, namely:

• One computes the change in energy ∆H = H(ω′) − H(ω) which would be

obtained if ω were sent to ω
′ by flipping ωi.

• One may compute ∆H by separately computing H(ω′) and H(ω) and subtract-

ing the two. However, since the only change is at the site i, one may do some

ad-hoc algebra to derive an expression for ∆H which is less computationally

expensive.

• One accepts the change with probability min{1, e−∆H}.

This is called a Metropolis step.

Looping through all n sites from i = 1 to i = n, performing a Metropolis step at

each site i, is called a Metropolis sweep. If one realizes a random variable X(ω) at
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each of M sweeps, averaging X over the M sweeps, one obtains an approximation

〈X〉M for the expectation E[X].

As discussed at the end of section 4.2, one should first run some number B of

Metropolis sweeps of the system until it is thermalized, i.e. until the Gibbs distri-

bution has been approached. One should discard the B realizations of the random

variable X obtained during thermalization, before running the M sweeps in which

data are accumulated. The B sweeps are called the thermalization phase; the M

sweeps are called the accumulation phase.

4.5 Recipe for MCMC algorithms

The naive outline of an MCMC run is simple:

• Use a Markov chain, discussed at the end of this section, to generate a sequence

π1, . . . , πM of permutations.

• For each permutation πk, for each random variable X of interest, remember the

value Xk = X(πk).

• Compute the sample mean X = 1
M

∑M
k=1 Xk. Also compute the sample standard

deviation, and any other desired statistics.

• Display the statistics.

Since the initial permutation is the identity, the initial distribution is the singleton

supported at the identity, which is not the Gibbs distribution PGibbs. Furthermore, as

a very low-energy state, the identity is highly non-typical with respect to the Gibbs

distribution (equation (2.1.4)) for the model of spatial permutations. As discussed

at the end of section 4.2, one runs the chain until it is thermalized, i.e. until the

Gibbs distribution has been approached. (The number of steps τ required for this is

random, but it turns out to fall within a narrow range.) Renumbering πτ to π0, one
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then accumulates statistics over the M permutations π1, . . . , πM . See section 9.6 for

the thermalization-detection algorithm used in this dissertation.

Thus the computational recipe is as follows:

• Start with the initial permutation being the identity permutation.

• Run the Markov chain, generating a sequence of permutations until thermal-

ization has been detected. At that point, rename the current permutation π0.

• Continue generating a sequence π1, . . . , πM of permutations. The mechanics of

transitioning from πk to πk+1 comprises a series of steps , which collectively form

the kth sweep. Various types of sweep — swap-only, swap-and-reverse, swaps

with band updates, and worm — are presented in chapters 5, 6, and 7.

• For each permutation πk, for each random variable X of interest, remember the

value Xk = X(πk).

• After all M permutations have been generated, compute the sample mean

X = 1
M

∑M
k=1 Xk. Also compute the sample standard deviation and its error

bar (using estimated integrated autocorrelation time), and any other desired

statistics, such as histograms.

• Display the statistics.

Given the framework established by previous sections of this chapter, the recipe to

prove correctness of this algorithm reduces to the following: define a Markov chain,

then prove irreducibility, aperiodicity, and detailed balance. We devote the next

chapters to present three Markov chains: the swap-only algorithm, the swap-and-

reverse algorithms, and the worm algorithm.
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Chapter 5

The swap-only and swap-and-reverse algorithms

This chapter (along with chapter 7) presents Markov chains for MCMC sampling

of the model of random spatial permutations (chapter 2) within the MCMC-recipe

framework of chapter 4. The algorithms are proved correct, then compared and

contrasted. Computational results using the swap-and-reverse algorithm are given in

chapter 11.

5.1 The swap-only algorithm

The swap-only algorithm for transitioning from π to π′, within the context of the

recipe in section 4.5, is as follows. One sweeps through sites x of the lattice in either

sequential or uniform-random order. In either case1, one obtains a lattice site x. One

then does a Metropolis step at site x:

• Choose a site π(y) from among the six nearest neighbors of π(x).

• Propose to change π to the permutation π′ which has π′(z) = π(z) for all

z 6= x,y but π′(x) = π(y) and π′(y) = π(x). (See figure 5.1.)

• With probability min{1, e−∆H} where ∆H = H(π′)−H(π), accept the change.

(If the change is rejected, set π′ = π.)

Definition 5.1.1. A swap is trivial if x = y.

1For computational results presented in chapter 11, site selection was sequential. Experiments
show that sequential site selection and random site selection produce indistinguishable results, for
our model and for the near-critical temperature range we consider.
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swap w.p.
∼ 1 ∧ e−∆H

xx

π(x)π(x)

yy

π(y)π(y)

Figure 5.1. Metropolis moves for the swap-only algorithm.

5.2 Explicit construction of the Markov matrices

For section 5.3 we will need an explicit construction of the Markov matrices corre-

sponding to the swap-only algorithm as described in section 5.1.

The Markov perspective on the algorithm is that, given a probability distribution

P
(π0)
k (π), the distribution for the subsequent permutation is

P
(π0)
k+1 (π′) =

∑

π∈SN

P
(π0)
k (π)Ak(π, π′)

or, in matrix/vector notation, P
(π0)
k+1 = P

(π0)
k Ak. In this section we precisely describe

the matrices Ak; in section 5.3 we show that P
(π0)
k approaches the Gibbs distribution

PGibbs (equation (2.1.4)) as k →∞.

The matrices Ak are N ! × N !, with rows indexed by π1, . . . , πN ! and columns

indexed by π′
1, . . . , π

′
N !. Most of the entries of Ak are zero: Metropolis steps change

only two permutation sites whereas most π, π′ differ at more than two sites.

Definition 5.2.1. For π, π′ ∈ SN , define

d(π, π′) = #{i = 1, 2, . . . , N : π(i) 6= π′(i)}.

Remark. Note that d(π, π′) 6= 1 since if two permutations agree on N −1 sites, they

must agree on the remaining site.

Lemma 5.2.2. The function d(π, π′) is a metric on SN .

Proof. Symmetry is obvious, as is non-negativity. For positive definiteness, note

that d(π, π′) = 0 iff π = π′. For the triangle inequality, let π, π′, π′′ ∈ SN . Partition
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the set {1, 2, . . . , N} into the four disjoint sets

A = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) = π′′(i)},

B = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) 6= π′′(i)},

C = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) = π′′(i)},

D = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) 6= π′′(i)}.

Then π = π′′ on all of A; π 6= π′′ on all of B and C; and π, π′′ may or may not agree

on various elements of D:

A B C D
π = π′ π = π′ π 6= π′ π 6= π′

π′ = π′′ π′ 6= π′′ π′ = π′′ π′ 6= π′′

π = π′′ π 6= π′′ π 6= π′′ Varies

That is,

d(π, π′) = #C + #D,

d(π′, π′′) = #B + #D,

#B + #C ≤ d(π, π′′) ≤ #B + #C + #D.

Then

d(π, π′′) ≤ #B + #C + #D ≤ #B + #C + 2#D = d(π, π′) + d(π′, π′′).

Definition 5.2.3. Lattice sites x and y are nearest-neighbor if ‖x− y‖Λ = 1.

Definition 5.2.4. For π ∈ SN and x ∈ Λ, define

Rx(π) = {π′ ∈ SN : d(π, π′) = 2 and ‖π(x)− π(y)‖Λ = 1}

where the x and y are taken to be the two points at which π and π′ differ. Then Rx(π)

is the set of permutations π′ reachable from π on a swap involving site x. This is



63

used for sequential site selection. Likewise, for use with random site selection, define

R(π) = {π′ ∈ SN : d(π, π′) = 2 and ‖π(x)− π(y)‖Λ = 1}

where the x and y are taken to be the two points at which π, π′ differ. Then R(π) is

the set of permutations π′ reachable from π on a swap. We also write

π′ ◦–◦π

if π′ ∈ Rx(π) or π′ = π (for sequential site selection), or π′ ∈ R(π) or π′ = π (for

random site selection).

The Metropolis steps are then described as follows. First consider sequential site

selection. For each π ∈ SN ,

Ax(π, π′) =



















1
6

(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ Rx(π),

1−
∑

π′′∈R(π)

1

6

(

1 ∧ e−H(π′′)+H(π)
)

, π = π′;

0, otherwise.

(5.2.5)

To justify the choice of prefactor 1/6, note that we choose one of six π(y) at uniform

random from the six nearest-neighbor lattice sites of π(x). If the change is accepted,

then we obtain π by swapping at x and y; otherwise, we take π′ = π.

Next we construct the Markov matrix for random site selection. For each π ∈ SN ,

A(π, π′) =



















1
3N

(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ R(π),

1−
∑

π′′∈R(π)

1

3N

(

1 ∧ e−H(π′′)+H(π)
)

, π = π′;

0, otherwise.

(5.2.6)

To justify the choice of prefactor 1/3N , note that there are N choices of lattice points

x. For each x, there are 6 choices of π(y) which are nearest neighbors to π(x). This

double-counts the 3N distinct choices of π′ reachable from π in a single Metropolis

step, since choosing x and then y results in the same Metropolis step as choosing y

and then x.
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The use of the Markov matrices in practice is as follows. Number the lattice

sites x1, . . . ,xN . When using sequential site selection, the kth Metropolis sweep (as

described in section 4.5) begins with a permutation π distributed according to P
(π0)
k .

A Metropolis step is done at site x1, using transition matrix Ax1, followed by a

Metropolis step at site x2, using transition matrix Ax2 , and so on up to site xN . The

sweep is then complete, and the distribution of π′ is

P
(π0)
k+1 (π′) = P

(π0)
k (π) Ak, Ak = AxN

· · ·Ax1 .

The chain is non-homogeneous, if we consider all the intermediate permutations after

each Metropolis step. Yet, at the level of Metropolis sweeps, the chain is homogeneous

since at each sweep we apply the composite transition matrix AxN
· · ·Ax1 to obtain

π′ from π.

When we use random site selection, the kth Metropolis sweep begins with a per-

mutation π distributed according to P
(π0)
k . We do N Metropolis steps, each using the

transition matrix A, each selecting a site x at uniform random from among x1, . . . ,xN .

The sweep is then complete, and the distribution of π′ is

P
(π0)
k+1 (π′) = P

(π0)
k (π) Ak, Ak = AN .

The chain is homogeneous, whether viewed at the level of Metropolis steps or Metropo-

lis sweeps.

5.3 Correctness of the swap-only algorithm

It is clear that the swap-only algorithm produces a sequence of permutations, but

with what distribution? From the Markov-chain theory in section 4.2, we know that

if the chain is irreducible, aperiodic, and satisfies detailed balance, then the chain

has the Gibbs distribution (equation (2.1.4)) as its unique invariant distribution. All

the results in this section will apply for sequential or random site selection; in this

section, we write A to refer to either A or Ax.
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Proposition 5.3.1 (Irreducibility). For all π, π′, there is an n such that An(π, π′) >

0. That is, any permutation is reachable from any other.

Proof. Transpositions generate SN [DF]. Thus, for all π ∈ SN , there exist transpo-

sitions σ1, . . ., σm such that π =
∏m

j=1 σj . Thus, it suffices to show that given any

permutation π and any two points x and z, so π : x 7→ π(x) and π : z 7→ π(z), we can

construct a sequence of swaps sending π to π′ so that π′ : x 7→ π(z), π′ : z 7→ π(x),

and π′(y) = π(y) for all y 6= x, z. (If π(x) and π(z) are nearest-neighbor lattice sites,

of course, then a single swap does the job.)

Define Ga,b : SN → SN to be the swap operator for nearest-neighbor lattice sites

π(a) and π(b), i.e. π′ = Ga,bπ. Given x and z, there is a (non-unique) sequence of

lattice sites y0,y1,y2, . . . ,yn such that y0 = x, yn = z, and ‖π(yi+1) − π(yi)‖Λ = 1

for i = 0, 1, . . . , n − 1. (See figure 5.2.) We will construct a sequence of swaps

along this nearest-neighbor path whose end result is to swap the permutation arrows

starting at x and z, leaving all other arrows unchanged. We first need a lemma about

compositions of swaps.
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π(y3)

π(y3)

π(y3)

π(y3)

π(y3)
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y0

y0
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Figure 5.2. A sequence of (nearest-neighbor) swaps which results in a non-nearest-
neighbor swap.

Notation 5.3.2. Given x1, . . . ,xN and a permutation π, we may write π as an image
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map with the xi’s along the top row and their images along the bottom row:
(

x1 . . . xN

π(x1) . . . π(xN )

)

Lemma 5.3.3. The composition Ga,c ◦Ga,b behaves as follows:

π =

(

. . . a b c . . .

. . . π(a) π(b) π(c) . . .

)

7→ π′ =

(

. . . a b c . . .

. . . π(c) π(a) π(b) . . .

)

Proof. The first map, Ga,b, does
(

. . . a b c . . .

. . . π(a) π(b) π(c) . . .

)

7→
(

. . . a b c . . .

. . . π(b) π(a) π(c) . . .

)

;

Ga,c sends this to
(

. . . a b c . . .

. . . π(c) π(a) π(b) . . .

)

.

Corollary 5.3.4. The composition Gy0,yn
◦ Gy0,yn−1 ◦ . . . ◦ Gy0,y2 ◦ Gy0,y1, sending

π 7→ π′, performs the right cyclic shift on images of y0, . . . ,yn given by
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→
(

y0 y1 . . . yn−1 yn

π(yn) π(y0) . . . π(yn−2) π(yn−1)

)

.

Likewise, Gyn,y1 ◦Gyn,y2 ◦ . . . ◦ Gyn,yn−2 ◦ Gyn,yn−1 leaves the image of y0 unchanged

and performs the left cyclic shift on images of y1, . . . ,yn given by
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→
(

y0 y1 . . . yn−1 yn

π(y0) π(y2) . . . π(yn) π(y1)

)

.

Proof. These follow from the lemma by induction on n.

Composing these two maps, we find that

(Gyn,y1 ◦Gyn,y2 ◦ . . . ◦Gyn,yn−2 ◦Gyn,yn−1) ◦ (Gy0,yn
◦Gy0,yn−1 ◦ . . . ◦Gy0,y2 ◦Gy0,y1)

swaps the images of x = y0 and z = yn while leaving all other images unchanged,

that is,
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→
(

y0 y1 . . . yn−1 yn

π(yn) π(y1) . . . π(yn−1) π(y0)

)

.

This ends the proof of propostion 5.3.1.
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Remark. Below we will discuss winding cycles, and the empirical fact that the swap-

only algorithm reaches them only rarely. The chain is irreducible but the non-zero

transition probabilities can still be very small.

Proposition 5.3.5 (Aperiodicity). The swap-only algorithm’s Markov chain is ape-

riodic.

Proof. This follows from irreducibility, which says in particular that for every π,

there is an integer m such that Am(π, π) > 0. Then An(π, π) > 0 for all n > m,

implying p(π) = 1.

Proposition 5.3.6 (Detailed balance). For all π, π′ ∈ SN ,

PGibbs(π)A(π, π′) = PGibbs(π
′)A(π′, π). (5.3.7)

Remark. For the swap-only algorithm, this is a trivial result. We work through the

details in order to foreshadow the non-trivial construction of proposition 7.7.5 for the

worm algorithm.

Proof. The detailed-balance statement in terms of the Gibbs distribution (equa-

tion (2.1.4)) and the swap-only Metropolis transition matrices (equations (5.2.5) and

(5.2.6)) is

e−H(π)

Z

(

1 ∧ e−H(π′)eH(π)
)

?
=

e−H(π′)

Z

(

1 ∧ e−H(π)eH(π′)
)

.

The Z’s cancel. The lemma below shows that A(π, π′) 6= 0 iff A(π′, π) 6= 0. If

A(π, π′) = 0, then detailed balance holds. If A(π, π′) 6= 0, then there are two cases.

If H(π′) ≤ H(π), then

e−H(π) (1) = e−H(π′)
(

e−H(π)eH(π′)
)

.

If H(π′) > H(π),

e−H(π)
(

e−H(π′)eH(π)
)

= e−H(π′) (1) .

In all cases, detailed balance holds.



68

Lemma 5.3.8. For all π, π′ ∈ SN ,

A(π, π′) 6= 0 ⇐⇒ A(π′, π) 6= 0.

Proof. As a direct consequence of definition 5.2.4 of R(π), π′ ∈ R(π) if and only if

π ∈ R(π′). The same holds for Ax and Rx(π).

This lemma completes the proof that the swap-only algorithm satisfies detailed

balance and thus has the Gibbs distribution as its invariant distribution.

The following proposition is not a correctness result, but rather a sanity check. It

shows that cycles may grow or shrink upon swaps.

Figure 5.3. Swaps merge disjoint cycles and split single cycles. The left-hand
permutation can be reached from the right-hand permutation via a swap, and vice
versa.

Proposition 5.3.9. If x and y are in disjoint cycles before a non-trivial swap at x

and y, then they are in the same cycle afterward and vice versa (see figure 5.3).

Proof. First suppose that x and y are in disjoint cycles. Let the respective cycle

lengths be ℓ(x) = a and ℓ(y) = b. Recall that 1 ≤ a, b ≤ N . Those cycles are

x 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x

and

y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

Since these are disjoint cycles, all elements listed are distinct lattice sites. After the

swap, we have

y 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x
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and

x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

This is a single cycle of length a+ b, starting with y, including x, and returning to y.

Second, suppose that x and y are in the same cycle. Let a = ℓx,y(π) and b =

ℓx,y(π) (see definition 3.2.2). (These numbers are both positive since the swap is

non-trivial, i.e. x 6= y.) Then we have

x 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

This is a single cycle of length a + b; all lattice sites listed are distinct. After the

swap, we have

y 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y and x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

These are disjoint cycles of length a and b, respectively; the first contains x and the

second contains y.

Remark 5.3.10. If x ◦–◦y, i.e. the swap splits their common cycle, the old cycle

lengths ℓx(π) and ℓy(π) are equal, and the new cycle lengths after the swap are

ℓx(π
′) = ℓy,x(π) and ℓy(π′) = ℓx,y(π).

Otherwise, i.e. the swap merges the disjoint cycles, we have

ℓx(π
′) = ℓy(π′) = ℓx(π) + ℓy(π).

5.4 Winding numbers and the swap-and-reverse algorithm

The propositions of section 5.3 showed that the swap-only algorithm is correct, asymp-

totically in the number of Metropolis sweeps — in particular, any permutation is

reachable from any other with non-zero probability. However, in practice some of

these transition probabilities can be quite small. In particular, we observe empiri-

cally that the swap-only algorithm always generates permutations with zero winding

number. This is readily proved.
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Proposition 5.4.1. In the short-jump-length regime (as discussed in sections 2.3,

3.1, and 3.6), the swap step of the swap-only algorithm preserves winding number.

Remark. This means that a single jump of length on the order of L/2 — which

happens with non-zero but very small probability — is required for the SO algorithm

to change a winding number.

Proof. The permutations before and after the swap have winding numbers

W(π) =





Wx(π)
Wy(π)
Wz(π)



 =

N
∑

i=1

dΛ(π(xi),xi), W(π′) =





Wx(π
′)

Wy(π
′)

Wz(π
′)



 =

N
∑

i=1

dΛ(π′(xi),xi)

where the difference vector dΛ is as defined in equation (3.1.4). Since we work in the

regime of short jumps, and since π′(xi) is a nearest neighbor of π(xi), the Euclidean

charts overlap and the xi’s cancel when we subtract W(π) from W(π′). Also, π

agrees with π′ except at the two swap points x and y; we have π′(x) = π(y) and vice

versa. Thus the change in winding number is computed entirely in the same chart

and we have

W′ −W =
1

L

N
∑

i=1

dΛ(π′(xi), π(xi)) =
1

L
[dΛ(π′(x), π(x)) + dΛ(π′(y), π(y))]

=
1

L
[π′(x)− π(x) + π′(y)− π(y)] =

1

L
[π(y)− π(x) + π(x)− π(y)] = 0.

An example is shown in figure 5.4 in dimension d = 2 with N = 8 points on a

lattice of width L = 4. The sites affected by the permutation swap are x = x3 and

y = x7. The change in winding numbers is

W(π′)−W(π) =
1

4
[dΛ(π′(x3),x3) + dΛ(π′(x7),x7)− dΛ(π(x3),x3)− dΛ(π(x7),x7)]

=
1

4

[(

1
0

)

+

(

−1
0

)]

− 1

4

[(

0
−1

)

+

(

0
1

)]

=

(

0
0

)

=
1

4
[dΛ(π′(x), π(x))] +

1

4
[dΛ(π′(y), π(x))]

=
1

4

[(

1
1

)

+

(

−1
−1

)]

.
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x1x1 x2x2 x3x3 x4x4

x5x5 x6x6 x7x7 x8x8

Common Euclidean chart

Figure 5.4. Example permutations π (left) and π′ (right) illustrating winding-
number conservation.

Figure 5.5. Conservation of winding number in the swap-only algorithm, and a
partial solution provided by the swap-and-reverse algorithm.

A partial solution is explained intuitively by figure 5.5. Part 1 of the figure shows

a permutation π with a long cycle on the torus which almost meets itself in the x

direction. In part 2, after a Metropolis step sending π to π′, one cycle winds by

+1 and the other by −1. Metropolis steps create winding cycles only in opposite-

direction pairs; the total Wx(π) is still zero. Part 3 of the figure shows that if we

reverse one cycle (which is a zero-energy move), Wx(π) is now 2. In general, winding

numbers of even parity can be generated. We are sampling from several, but not all,

modes in a multimodal probability distribution on permutations which is indexed by

the winding numbers Wx, Wy, and Wz.
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The swap-and-reverse algorithm adds a second type of sweep to the swap-only al-

gorithm. Namely: (1) In a swap-only sweep, for each lattice site one does a Metropolis

step as above. (2) In a cycle-reversing sweep, for each cycle in the permutation, one

reverses the direction of the cycle with probability 1/2. This permits winding num-

bers of even parity in each of the three axes. The correctness proof is unaffected, since

cycle reversal is a zero-energy change. The time required to reach permutations with

non-zero winding numbers, which the asymptotic correctness proof does not address,

is reduced. The additional penalty in terms of CPU time consumed by cycle reversal

is found to be negligible.

Other solutions exist to generate winding numbers of arbitrary parity: the band-

update method of chapter 6 and the worm algorithm of chapter 7. As will be shown,

they suffer from too-low acceptance rate and too-long stopping time, respectively.

Therefore, the swap-and-reverse algorithm is our current best algorithm; it is used

to generate all the results discussed in chapter 11. The order parameters fS and

fW depend on winding phenomena, but the other three, 1/ξ, fI , and fmax, do not;

furthermore, results obtained in chapter 11 using each of the five order parameters

are, for the most part, compatible. Yet, as we will see in chapter 11, fS and fW do

not permit successful finite-size scaling.
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Chapter 6

Band updates

Winding cycles are a global phenomenon, while the SO swaps of section 5.1 are local.

The Swendsen-Wang algorithm for the planar Ising model addresses a global/local

problem not unlike our winding-number problem, which was presented in detail in

section 5.4. Motivated by Swendsen-Wang for the Ising model, we attempt to define

a Metropolis step for our random-cycle model which changes one of the winding-

number components Wx, Wy, or Wz by ±1. This attempt at non-local updates has

an unreasonably low acceptance rate, namely, on the order of e−L where L is the box

length. Nonetheless, this concept may provide fodder for better, future ideas.

6.1 The algorithm

As discussed in section 5.3, a Metropolis transition from π to π′ may be thought of as

composition with another permutation τ , i.e. π′ = τπ. We replace the swap operator

τ = Ga,b of section 5.3, which was a two-cycle, with a permutation τ which has a wind-

ing L-cycle. Without loss of generality, it suffices to discuss a permutation τ which

sends every lattice point to itself except for one line of points with y and z coordinates

equal to zero (figure 6.1). This τ will have winding number (Wx, Wy, Wz) = (+1, 0, 0).

If we can do that, then by reflection and rotation symmetries we can construct similar

τ ’s with Wx, Wy, or Wz equal to ±1.

Figure 6.1 displays the idea. The permutation τ is an L-cycle; we put π′ = τπ.

It seems clear from the picture that the winding number is modified in the desired

manner, and moreover it seems plausible to conjecture that winding numbers are

additive with respect to permutation composition, i.e. that W(π′) = W(τ) + W(π).

Proving either of these statements rigorously would be worthwhile if band updates
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were worth pursuing. However, as shown in the next section, they are not.

π:

τ :

π′:

Figure 6.1. Example of band update as composition with an L-cycle: π′ = τπ. The
winding number Wx increases by +1.

6.2 Acceptance rate

We examine the acceptance rate of the band-update algorithm using a semi-empirical

method. Recall from section 3.3 that we define the random variable jx(π) to be

‖π(x) − x‖Λ. By examination of histograms acquired over MCMC simulations, we

see that this parameter is noncritical; its values change smoothly with T near Tc.

For T = 6 and 7, respectively, we find1 distributions for jx, as shown in table 6.1.

Thus for T = 6, 7, respectively, mean jump lengths are 0.608 and 0.245, while mean

squared jump lengths are 0.746 and 0.276. Roughly, the latter is of order 0.5. Recall

in particular that it is the squared jump length which provides the main contribution

to the system energy (equation (2.1.3)).

The left-hand side of figure 6.2 shows (in two dimensions only) various possibilities

for a permutation arrow from a point x. The right-hand side of the figure shows what

1We use the statistics convention wherein P̂Gibbs is an experimental estimator for the exact (but
unknown) value PGibbs.
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j P̂Gibbs(J = j), T = 6 j P̂Gibbs(J = j), T = 7

0 0.4801 0.0000000 0.7745
1 0.3361 1.0000000 0.1822√
2 0.1545 1.4142136 0.0378√
3 0.0216 1.7320508 0.0042

4 0.0036 2.0000000 0.0012√
5 0.0032 2.2360680 0.0001√
6 0.0009

Table 6.1. Empirical jump-length distribution for T = 6, 7.

Figure 6.2. Change in jump lengths for a point affected by a band update.

happens to the jump lengths at x on a right shift. (All L points in the L-cycle will be

affected similarly.) An up arrow of length 1 becomes a diagonal up-left arrow of length
√

2, a right arrow of length 1 becomes a right arrow of length 2, and so on. Given

an attempted band update π → π′, the typical value of the energy change ∆H at a

single point (remembering that cycle-weight corrections are low-order perturbations,

since α is small) is

T

4

(

E[jx(π′)2]− E[jx(π)2]
)

.

From the table just above, we can compute the expected values of jx(π)2 and jx(π
′)2.

We find the energy difference per point to be on the order of +0.8 ·T/4 ≈ +1.2. Since

L points are involved in a band update, this means E[∆H ] ≈ 1.2L ≈ L. Transitions

are accepted with probability min{1, e−∆H} (section 4.5) which is approximately e−L.

We need to consider L from approximately 30 and upward to get past the most severe

finite-size effects; e−30 ≈ 10−14 is effectively zero, and thus proposed band updates are
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effectively never accepted. This calculation matches with simulation tests performed

in software.

6.3 Band updates with compensation

At the 2010 Workshop of David Landau’s Center for Simulational Physics at the Uni-

versity of Georgia, Friederike Schmid of the University of Mainz suggested a solution

to the acceptance-rate problem with the band-update algorithm. This idea comes

too late to include in the large-scale computational runs done for this dissertation;

however, it should work, and might be used in subsequent computational work on

this problem.

Specifically, the problem with the band update is that the change in energy is of

order L. To counteract this, in the same Metropolis step in which one proposes a band

update as described above, one should also find another cycle of π, not intersecting

the band, with cycle length approximately L. The proposed change will do the band

shift, while also replacing this second cycle with one-cycles at each of its points — the

latter reducing the energy by L or so. The total energy change will be approximately

zero, and thus the acceptance rate should be usably high.
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Chapter 7

The worm algorithm

This chapter, like chapter 5, presents a Markov chain for MCMC sampling of the

model of random spatial permutations (chapter 2) within the framework of chapter

4. The worm algorithm solves the problem of winding-number-parity conservation

within the SAR algorithm (section 5.4). However, a stopping time which is poorly

bounded in the lattice size prevents the worm algorithm from being our algorithm of

choice.

7.1 The idea of the worm algorithm

Worm algorithms have been used heavily in path-integral Monte Carlo (PIMC) simu-

lations: see [BPS06, PST98, GCL97, KPS, NL04, PC87]. The context is that interpar-

ticle interactions are modeled using Brownian bridges in the Feynman-Kac approach.

A naive, pre-PIMC sampling approach involves generating separate Brownian bridges

from point A to point B. The PIMC idea is to generate a single Brownian bridge,

then modify a bit at a time using MCMC methods.

For the random-cycle model with true Bose interactions, the Brownian bridges

implicit in the V terms of equation (2.1.1) have been integrated out in equation

(2.1.3). In fact, this is the key selling point of the random-cycle model in the larger

context of the Bose gas (larger meaning beyond the scope of this dissertation). Most

of the complexity of PIMC simulations, which are an efficient approach to Brownian

bridges, goes away. If one were to adapt a PIMC worm algorithm to the RCM, one

would need to spend significant time learning about PIMC. Yet it is likely that most

of the complexity will also go away. Instead, it is simpler to ask: If one were to have

a worm algorithm for the random-cycle model, what properties would it have? We
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require the following:

• We have a lattice with a fixed number N of points. There is no desire to work

in the grand-canonical ensemble.

• We want the ability to open and close permutation cycles. (An open cycle is a

“worm”.)

• Given that, tips of open cycles may wander around the 3-torus before closing,

permitting arbitrary winding numbers.

Thus, we want to sometimes open a cycle, then modify it with SO-like steps, then close

it again. Following PIMC worm algorithms, all our Metropolis steps will involve the

worm. This does touch all lattice points: a worm is opened at a site, then modified,

then closed. Then, a worm is opened somewhere else, and so on.

Closed cycle on Open cycle on Open cycle viewed as a
permutation on N + 1 = 4 points.N = 3 points.N = 3 points.

Figure 7.1. Open cycles as permutations on N + 1 points.

Question: Can we leverage our knowledge of permutations? To see how, consider

a closed cycle and an open cycle on N = 3 points (see also figure 7.1):

(

1 2 3
2 3 1

)

,

(

1 2 3
2 3 1

)

In the open cycle, 1 7→ 2, 2 7→ 3, 3 7→ nothing, and nothing → 1. Call that nothing

something — the wormhole point. It is an (N + 1)st point, w:

(

1 2 3 w
2 3 w 1

)
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Henceforth, the wormhole point will be written as w or N + 1. In diagrams, it will

be an open dot while the other N points will be written with filled dots (as in figure

7.1). Now we have permutations on SN+1. Given π ∈ SN , inject π into SN+1 via

π(w) = w.

Definition 7.1.1. For π ∈ SN+1, we say π is a closed permutation if π(w) = w. We

say π is an open permutation if π(w) 6= w. Likewise, a cycle of π is said to be open

or closed, respectively, if it does or does not contain w.

Remark. The PIMC jargon is that closed permutations are in the Z sector (for

partition function), while open permutations are in the G sector (for Matsubara

Green’s function).

The goal is to invent an energy function, Gibbs distribution, and Metropolis algo-

rithm for these extended permutations in SN+1 such that the marginal distribution

on SN+1, conditioned on closed permutations, matches the RCM Gibbs distribution

(equation (2.1.4)). Then, random variables will be sampled only at closed permuta-

tions.

7.2 Extended random-cycle model

Recall that we inject π ∈ SN into SN+1 via π(w) = w. The (N + 1)st point w is

non-spatial : it has no distance associated with it.

Definition 7.2.1. The extended lattice is

Λ′ := Λ ∪ {w}

Definition 7.2.2. For π ∈ SN+1, define

H ′(π) =
T

4

N
∑

i=1

π(xi)6=w

‖xi − xπ(i)‖2Λ +

N
∑

ℓ=1

αℓrℓ(π) + γ 1SN+1\SN
(π). (7.2.3)
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That is, we add γ to the energy if the permutation is open. Note that this extended

energy agrees with the RCM energy (equation (2.1.3)) on closed permutations. (The

γ term is only one particular choice; one might develop a better choice.) This is

used to prove the marginality condition below. The extended Gibbs distribution and

extended partition function are defined in the obvious way, as follows.

Definition 7.2.4. Let

P ′
Gibbs(π) =

e−H′(π)

Z ′
(7.2.5)

where the partition function is

Z ′ =
∑

π∈SN+1

e−H′(π). (7.2.6)

7.3 Proof of marginality

As long as the energy function for the ERCM and the RCM agree on closed per-

mutations, the following desired marginality condition holds. This means that the

interaction in section 2.1 — or any other to-be-invented interaction model — may

use the worm algorithm as long as it agrees on closed permutations.

Proposition 7.3.1 (Marginality condition). Let SN →֒ SN+1 by taking π(w) = w.

Let H, H ′ be energy functions on SN and SN+1, respectively, such that for all π ∈ SN ,

H(π) = H ′(π). (7.3.2)

Let PGibbs, P
′
Gibbs, Z, Z ′ be as above. Then for π ∈ SN ,

P ′
Gibbs(π | π ∈ SN ) = PGibbs(π). (7.3.3)

Proof. Let π ∈ SN . The left-hand side of equation (7.3.3) is, by definition of condi-

tional expectation,

P ′
Gibbs(π | π ∈ SN ) =

P ′
Gibbs(π) 1SN

(π)

P ′
Gibbs(SN)

.
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The numerator is the Gibbs probability for closed permutations, or zero for open

ones:

P ′
Gibbs(π) 1SN

(π) =
1

Z ′
e−H′(π) 1SN

(π) =
1

Z ′
e−H(π) 1SN

(π)

since H and H ′ agree on closed permutations. The denominator is the total proba-

bility of closed permutations:

P ′
Gibbs(SN) =

1

Z ′

∑

π∈SN

e−H′(π) =
1

Z ′

∑

π∈SN

e−H(π).

Since π ∈ SN , the ratio is

1
Z′

e−H(π) 1SN
(π)

1
Z′

∑

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)
∑

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)

Z
= PGibbs(π).

7.4 The worm algorithm

Now that we have the correct Gibbs distribution for the ERCM, the next step is to

devise a Metropolis algorithm to sample from it. Below, we will prove correctness.

The worm algorithm, within the context of the recipe in section 4.5, is as follows:

• A sweep begins with a closed permutation π.

• The permutation is now closed, so π(w) = w. Select a lattice site x at uniform

random. With probability proportional to 1 ∧ e−∆H , open the permutation by

swapping the arrows of x and w. This is called an open move. (See figure 7.2.)

• Now that the permutation is open, do a head swap, tail swap, or close.

• Head swap: Pick a lattice site x nearest-neighbor to the lattice site π−1(w).

With probability proportional to 1 ∧ e−∆H , swap arrows as in figure 7.2. The

head swap is trivial if x = π−1(w), which happens only if the head swap is

rejected. The head swap would be a close if x = w, but we choose x to be a

lattice site. Thus, the permutation remains open on a head swap.
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Open at x w.p.

Close w.p.

Head swap at x w.p.

Tail swap at x w.p.

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

π−1(w)π−1(w)

π−1(w)π−1(w)

x

x

x

x

xx

π(x)

π(x)

π(x)

π(x)

π(x)π(x)

w w

ww

ww

ww

π(w) π(w)

π(w)π(w)

Figure 7.2. Metropolis moves for the worm algorithm.

• Tail swap: Pick a lattice site π(x) nearest-neighbor to the lattice site π(w).

With probability proportional to 1 ∧ e−∆H , swap arrows as in figure 7.2. The

tail swap is trivial if π(x) = π(w), which happens only if the tail swap is rejected.

The tail swap would be a close if π(x) = w, but we choose π(x) to be a lattice

site. Thus, the permutation remains open on a tail swap.

• Close: with probability proportional to 1 ∧ e−∆H , swap arrows as in figure 7.2.

The permutation is now closed.

• Once the permutation is closed — after an open, some number of head/tail

swaps, and a close, or after a rejected open — a worm sweep has been completed.

At every sweep, one may obtain a value of any desired random variables for

inclusion in computation of their sample means.

Definition 7.4.1. A head swap at x is trivial if x = π−1(w); a tail swap at x is
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trivial if π(x) = π(w).

7.5 Fibration of SN+1 over SN

The definitions and lemmas in this section facilitate explicit construction of the

Markov matrix, and are necessary for proving correctness of the worm algorithm.

As suggested by figure 7.3, we may separate all of SN+1 into the closed permutations

SN and the open permutations SN+1 \ SN . Furthermore, for each of the N ! closed

permutations π, we may open π at any of the N sites x1, . . . , xN . Collecting each of

the N open permutations obtained from each closed permutation creates a fibration of

SN+1. The key points about the structure of this fibration, formalized by the lemmas

below, are as follows.

• Each open permutation is one opener move away from a base closed permuta-

tion. The N open permutations above a base closed permutation π are the fiber

over π.

• This induces a disjoint partition of the open permutations SN+1 \ SN .

• Opens and closes, as defined in section 7.4, stay within fibers; non-trivial head

swaps and tail swaps cross fibers.

• For each open permutation, the six non-trivial head swaps and six tail swaps

result in twelve distinct permutations.

• Head swaps and tail swaps are transitive on fibers.

We first define maps corresponding to worm Metropolis moves.

Definition 7.5.1. The four worm Metropolis moves of figure 7.2 may be viewed in

terms of maps. Throughout, z ∈ Λ ∪ {w}.
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Figure 7.3. Fibration of S4 over S3. Closed permutations (i.e. S3) are along the
bottom row; open permutations (i.e. S4 \S3) are above the bottom row. The column,
or fiber, above each closed permutation π contains the open permutations obtained
from π by an opener move. Arrows modified by opener moves are shown in black.

Let O : SN × Λ→ SN+1 \ SN send O(π,x) = π′ such that

π′(x) = w,

π′(w) = π(x),

π′(z) = π(z), z 6= x, w.

Let C : SN+1 \ SN → SN send C(π) = π′ such that

π′(π−1(w)) = π(w),

π′(w) = w,

π′(z) = π(z), z 6= π−1(w), w.
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Let S : SN+1 \ SN × Λ→ SN+1 \ SN send S(π,x) = π′ such that

π′(x) = w,

π′(π−1(w)) = π(x),

π′(z) = π(z), z 6= x, π−1(w).

Let T : SN+1 \ SN × Λ→ SN+1 \ SN send T (π,x) = π′ such that

π′(x) = π(w),

π′(w) = π(x),

π′(z) = π(z), z 6= x, w.

Throughout the proofs of the fibration-structure lemmas, we will use the following

fact.

Lemma 7.5.2. If x 6= y, then π(x) 6= π(y) and π−1(x) 6= π−1(y).

Proof. If x 6= y and π(x) = π(y), then π is not 1-1 which is a contradiction since π

is a permutation. This applies to π−1 as well, since π−1 is also a permutation.

Now we may prove the fibration-structure lemmas.

Lemma 7.5.3. Each open permutation π is one opener move away from a base

closed permutation π′. That is, for all π ∈ SN+1 \ SN , there exists π′ ∈ SN such that

C(π) = π′.

Proof. Let π ∈ SN+1. Since π is open, π(w) 6= w and π−1(w) 6= w. Let a = π−1(w)

and b = π(w). Both are lattice points. Applying C, we have C(π) = π′ where

π′(a) = b, π′(w) = w, and π′(z) = π(z) for all remaining lattice points z 6= a,b.

Since π′(w) = w, π′ is closed.

Definition 7.5.4. For π ∈ SN , C−1(π) ⊂ SN+1 \ SN is the fiber of open permuta-

tions over π.
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Lemma 7.5.5. Opens and closes stay within fibers, and each fiber has N elements.

Proof. Closes stay within fibers by definition of fiber. Next, fix π ∈ SN and let

x1,x2 ∈ Λ. (These are two different ways to open the same closed permutation.) Let

π′
1 = O(π,x1), π′

2 = O(π,x2).

Then π′
1 and π′

2 have

x1 7→ w 7→ π(x1), x2 7→ w 7→ π(x2),

respectively, agreeing with π at all other lattice points z. Now, C(π′
1) and C(π′

2) have

x1 7→ π(x1), w 7→ w, x2 7→ π(x2), w 7→ w

respectively, agreeing with π at all other lattice points z. But this means C(π′
1) agrees

with C(π′
2) agree at all points of Λ′, so C(π′

1) = C(π′
2). Thus, π′

1 and π′
2 are in the

same fiber.

For the last claim, fix π ∈ SN and enumerate the N lattice points of Λ as

x1, . . . ,xN . We claim that the N permutations

π′
1 = O(π,x1), . . . , π

′
N = O(π,xN),

which are all now known to be in the same fiber, are all distinct. To see this, fix i 6= j

from out of {1, 2, . . . , N}. Then π′
i and π′

j have

xi 7→ w 7→ π(xi), xj 7→ w 7→ π(xj).

Since xi 6= xj , by lemma 7.5.2 π(xi) 6= π(xj). Since

π′
i(w) = π(xi) 6= π(xj) = π′

j(w),

π′
i and π′

j send w to different points. Therefore, the permutations π′
i and π′

j are

distinct.
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Lemma 7.5.6. The above fibration induces a disjoint partition of the open permuta-

tions SN+1 \ SN . That is, for π′
1, π

′
2 ∈ SN ,

π′
1 6= π′

2 =⇒ C−1(π′
1) ∩ C−1(π′

2) = ∅ and
⋃

π∈SN

C−1(π) = SN+1 \ SN .

Proof. For the first claim, suppose the intersection is non-empty. Let π ∈ SN+1 \ SN

be such that π ∈ C−1(π′
1) and π ∈ C−1(π′

2). This means C(π) = π′
1 and C(π) = π′

2

with π′
1 6= π′

2, which is a contradiction since the map C is uniquely defined for all

π ∈ SN+1 \ SN .

For the second claim: there are N ! closed permutations. We know from the first

claim that the N ! fibers, one above each closed permutation, are all disjoint. From

lemma 7.5.5, we know that each fiber has N elements. We have accounted for all

N ·N ! = (N + 1)!−N ! open permutations, so we must have all of SN+1 \ SN .

Lemma 7.5.7. Non-trivial head swaps and tail swaps (definition 7.4.1) cross fibers.

Proof. First consider head swaps. Let π, π′ ∈ SN+1 \ SN differ by a non-trivial head

swap, namely, there is x 6= π−1(w) such that π′ = S(π,x). Then π and π′ have

π : x 7→ π(x) 7→ π2(x),
π′ : π−1(w) 7→ π(x) 7→ π2(x),

π−1(w) 7→ w 7→ π(w),
x 7→ w 7→ π(w),

respectively. Now apply C to each: C(π) and C(π′) have

C(π) : x 7→ π(x) 7→ π2(x),
C(π′) : π−1(w) 7→ π(x) 7→ π2(x),

π−1(w) 7→ π(w),
x 7→ π(w),

w 7→ w,
w 7→ w,

respectively. Since x 6= π−1(w), C(π) 6= C(π′).

Next, consider tail swaps. Let π, π′ ∈ SN+1 \ SN differ by a non-trivial tail swap,

namely, there is π(x) 6= π(w) such that π′ = T (π,x). Then π and π′ have

π : π−1(x) 7→ x 7→ π(x),
π′ : π−1(x) 7→ x 7→ π(w),

π−1(w) 7→ w 7→ π(w),
π−1(w) 7→ w 7→ π(x),

respectively. Now apply C to each: C(π) and C(π′) have

C(π) : π−1(x) 7→ x 7→ π(x),
C(π′) : π−1(w) 7→ x 7→ π(w),

π−1(w) 7→ π(w),
π−1(w) 7→ π(x),

w 7→ w,
w 7→ w,

respectively. Since π(x) 6= π(w), C(π) 6= C(π′).
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Lemma 7.5.8. For each open permutation, the six non-trivial head swaps and six

non-trivial tail swaps result in twelve distinct permutations.

Proof. Fix π ∈ SN+1 \ SN . Let x1, . . . ,x6 be the six nearest-neighbor lattice sites to

the lattice site π−1(w); let y1, . . . ,y6 be the six lattice sites such that π(y1), . . . , π(y6)

are nearest-neighbor lattices site to the lattice site π(w). (See figure 7.2.)

First, we show that the six permutations S(π,x1), . . . , S(π,x6) are distinct. Let

i 6= j for i, j = 1, . . . , 6; let πi = S(π,xi) and πj = S(π,xj). Then π has

π : xi 7→ π(xi), xj 7→ π(xj), π−1(w) 7→ w;

πi, and πj have
πi : xi 7→ w,
πj : xj 7→ w,

π−1(w) 7→ π(xi),
π−1(w) 7→ π(xj),

respectively. Since xi 6= xj, πi 6= πj .

Second, we show that the six permutations T (π,y1), . . . , T (π,y6) are distinct. Let

i 6= j for i, j = 1, . . . , 6; let πi = T (π,yi) and πj = T (π,yj). Then π has

π : yi 7→ π(yi), yj 7→ π(yj), w 7→ π(w);

πi, and πj have
πi : yi 7→ π(w),
πj : yj 7→ π(w),

w 7→ π(yi),
w 7→ π(yj),

respectively. Since yi 6= yj , by lemma 7.5.2 π(yi) 6= π(yj). Since πi, πj send w to to

different sites, πi 6= πj .

Third, we show that the head-swaps of π are distinct from the tail-swaps of π.

Fix π ∈ SN+1 \ SN and let i, j ∈ {1, . . . , 6}. Then π has

π : xi 7→ π(xi), yj 7→ π(yj), π−1(w) 7→ w 7→ π(w);

S(π,xi) and T (π,yj) have

S(π,xi) : π−1(w) 7→ π(xi),
T (π,yj) : yj 7→ π(w),

xi 7→ w 7→ π(w);
π−1(w) 7→ w 7→ yj ;
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respectively. Under these two permutations, w has images π(w) and yj , respectively,

and preimages xi and π−1(w). By definition 7.4.1, the non-trivial head swap S(π,xi)

has xi 6= π−1(w) and the non-trivial tail swap T (π,yj) has π(w) 6= yj. Thus, S(π,xi)

and T (π,yj) are distinct permutations.

7.6 Explicit construction of the Markov matrix

Transition probabilities were described in section 7.4 as being proportional to 1∧e−∆H .

We put the constants of proportionality to be the following:

• a for head swaps and tail swaps;

• b for closer moves;

• c for opener moves.

For SO/SAR, we chose the normalizing factor easily. Here, with a more complicated

algorithm, we will choose the normalizing factors to satisfy detailed balance. In

particular, in this section we will obtain c = b = 1/N and a = (1− b)/12.

The Markov matrix at each Metropolis step is now (N + 1)!× (N + 1)!:

• A closed permutation transitions only to itself, or to any of the N open permu-

tations in the fiber above it. Thus, there are N + 1 non-zero entries in π’s row

of A′.

• An open permutation transitions to any of the 12 open permutations available

by head-swapping or tail-swapping, or to itself, or to the closed permutation at

the base of its fiber. Thus, there are 14 non-zero entries in π’s row of A′.

Definition 7.6.1. For open π, let

{x1, . . . ,x6} = {x ∈ Λ : ‖x, π−1(w)‖Λ = 1}
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and

{y1, . . . ,y6} = {y ∈ Λ : ‖π(y), π(w)‖Λ = 1}.

Then define

RS(π) = {S(π,x1), . . . , S(π,x6)},

RT (π) = {T (π,y1), . . . , T (π,y6)}.

These are the twelve open permutations reachable from π via head swaps and tail

swaps, respectively (lemma 7.5.8). For closed π, define

RO(π) = {O(π,x1), . . . , O(π,xN)}.

These are the N open permutations reachable from π via opener moves.

With these definitions, the entries of the transition matrix are as follows. In

analogy with H , PGibbs, Z, etc. for the random-cycle model and H ′, P ′
Gibbs, Z ′, etc.

for the extended random-cycle model, we call this worm-algorithm transition matrix

A′ to distinguish it from the matrices A and Ax (equations (5.2.5) and (5.2.6)) for

the swap-only algorithm.

If π is closed:

A′(π, π′) =























c
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RO(π);

1−
∑

π′∈RO(π)

c
(

1 ∧ e−H(π′)+H(π)
)

, π′ = π;

0, otherwise.

If π is open:

A′(π, π′) =







































a
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RS(π);

a
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RT (π);

b
(

1 ∧ e−H(π′)+H(π)
)

, π′ = C(π);

1− t(π), π′ = π;

0, otherwise
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where

t(π) =





∑

π′′∈RS(π)∪RT (π)

a
(

1 ∧ e−H(π′′)+H(π)
)



− b
(

1 ∧ e−H(C(π))+H(π)
)

For row normalization for closed π, note that c(1 ∧ e−∆H) is between 0 and c so
∑

rest is between 0 and cN . Take

c = 1/N. (7.6.2)

Row normalization for open π then gives

12a + b ≤ 1. (7.6.3)

In practice, we set 12a + b = 1. That is, we do the following on open permutations:

with probability 1/N , propose a close; else, propose a head or tail swap with equal

probability 1
2
(1− 1

N
).

The Markov chain for worm Metropolis steps is homogeneous: we use the same

transition matrix A′ at each step. The correctness proofs of the following section

will then imply (by the machinery of chapter 4) that we sample from the extended

Gibbs distribution for SN+1. Then by proposition 7.3.1 we will sample from the Gibbs

distribution for SN whenever the permutation closes.

7.7 Correctness

As discussed in sections 4.5 and 5.3, we need to prove irreducibility, aperiodicity, and

detailed balance for the worm Markov chain.

Proposition 7.7.1 (Irreducibility). The worm algorithm’s Markov chain is irre-

ducible.

Proof. This follows immediately from propositions 5.3.1 and 7.7.2: namely, the

worm’s chain is irreducibility if the SO’s chain is, and moreover the SO’s chain is

irreducible.
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Proposition 7.7.2. The worm algorithm’s Markov chain is irreducible if the SO

algorithm’s Markov chain is irreducible.

Proof. The key point is that the composition of an open, head swap, and close are

precisely an SO swap. Let x and y be lattice points such that π(x) and π(y) are

nearest neighbors. Starting with π, then applying an open at x, a head swap at y,

and a close, we have

π : x 7→ π(x),
π′ = O(π,x) : x 7→ w,
π′′ = S(π′,y) : x 7→ π(y),
π′′′ = C(π′′) : x 7→ π(y),

y 7→ π(y),
y 7→ π(y),
y 7→ w,
y 7→ π(x),

w 7→ w;
w 7→ π(x);
w 7→ π(x);
w 7→ w.

This shows that, if the SO algorithm is irreducible on SN , the worm algorithm

is irreducible on SN . But then the worm algorithm is also irreducible on SN+1: fix

an initial and final permutation; close the initial permutation, if it is open, to obtain

a closed permutation; use the preceding argument to reach the closed permutation

which lies under the fiber of the desired final open permutation; do an open move

(see lemma 7.5.5) if the final permutation is open.

Remark 7.7.3. The worm algorithm has an additional degree of freedom. If x and

y are nearest-neighbor lattice sites, then the composition of an open at x, a tail swap

at y, and a close results in a similar swap of the jump targets of x and y:

π : x 7→ π(x),
π′ = O(π,x) : x 7→ w,
π′′ = T (π′,y) : x 7→ w,
π′′′ = C(π′′) : x 7→ π(y),

y 7→ π(y),
y 7→ π(y),
y 7→ π(x)
y 7→ π(x),

w 7→ w;
w 7→ π(x);
w 7→ π(y);
w 7→ w.

Proposition 7.7.4 (Aperiodicity). The worm algorithm’s Markov chain is aperiodic.

Proof. The proof is the same as in the SO case, proposition 5.3.5.

Proposition 7.7.5 (Detailed balance). The Markov chain of the worm algorithm

satisfies detailed balance with b = c.
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Proof. We need

P ′
Gibbs(π)A′(π, π′) = P ′

Gibbs(π
′)A′(π′, π).

For closed π to closed π′: If π = π′ then we have detailed balance trivially. If

π 6= π′ then A′(π, π′) = A′(π′, π) = 0 since there are no transitions between distinct

closed permutations.

For closed π to open π′: If π′ is not in the fiber above π, then A′(π, π′) = A′(π′, π) =

0 since opens and closes respect fibers (lemma 7.5.5). Now suppose π′ is in the fiber

above π. As in the SO algorithm (proposition 5.3.6), do cases on ∆H positive or

negative. If H ′(π′) ≤ H ′(π), then

e−H′(π)c = e−H′(π′)be−H′(π)eH′(π′).

Choose

b = c (7.7.6)

to satisfy detailed balance. The case H ′(π′) > H ′(π) results in the same b = c

condition.

For open π to closed π′: If π is not in the fiber above π′, then A′(π, π′) = A′(π′, π) =

0 (lemma 7.5.5). If π is in the fiber above π′, then we recover the b = c condition.

It now remains to consider open π transitioning to open π′. We assume this to be

the case for the rest of the proof.

If A′(π, π′) = 0 then we claim A′(π′, π) = 0, as in lemma 5.3.8. We have π′ 6= π,

π′ /∈ RS(π), and π′ /∈ RT (π). We need to show π 6= π′ (which is obvious), π /∈ RS(π′),

and π /∈ RT (π′). We prove the contrapositive:

π ∈ {π′} ∪RS(π′) ∪ RT (π′) =⇒ π′ ∈ {π} ∪RS(π) ∪ RT (π).

If π = π′ then detailed balance is trivially satisfied. Suppose π ∈ RS(π′). Then for

some xi, i = 1, . . . , 6, π′ and π have

π′ : xi 7→ π′(xi),
π : xi 7→ w,

π−1(w) 7→ w 7→ w,
π−1(w) 7→ w 7→ π′(xi).
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The lattice sites xi and w are nearest neighbors and π′, π agree at all other sites, so

there is a head swap sending π to π′. The case π ∈ RT (π′) is completely analogous.

This completes the proof of the claim that A′(π, π′) = 0 =⇒ A′(π′, π) = 0.

If A′(π, π′) 6= 0 then we claim A′(π′, π) 6= 0, again as in lemma 5.3.8. The logic is

the same as in the contrapositive argument which was just completed.

The last step is to show detailed balance for open π, π′ where A′(π, π′) 6= 0. Again

we do cases on whether the energy decreases or increases. If H ′(π′) ≤ H ′(π), then

equation (7.7.6) is

ae−H′(π) (1) = ae−H′(π′)
(

e−H′(π)eH′(π′)
)

.

If H ′(π′) > H ′(π), then we have

ae−H′(π)
(

e−H′(π′)eH′(π)
)

= ae−H′(π′) (1) .

In either case, detailed balance holds.

Remark. Note that for closed π, there are N choices of open π′; for open π, there is

one choice of closed π′. In the software implementation, the 1/N for opens comes in

through uniform-random choice of x ∈ Λ. The result is that, for closed π, one may

only attempt an open. For open π, one attempts a close 1/N of the time, and head

or tail swaps each half the rest of the time, respectively.

As a sanity check, we point out that cycles may grow or shrink upon worm moves.

Proposition 7.7.7. Non-trivial worm head swaps and tail swaps either split one cycle

into two, or join two cycles into one.

Proof. This is the same as for the SO case (proposition 7.7.7), which is strictly an

algebraic result involving permutations: the non-spatiality of the w point plays no

role.
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7.8 Stopping time and modification ideas

The essence of the winding-number problem, as discussed in section 5.4, is that the

configuration space has multiple energy minima (which are equivalent to probability

maxima), indexed by winding numbers Wx, Wy, and Wz. One might also say that the

probability distribution for random spatial permutations is multimodal . The swap-

only algorithm creates only permutations with winding numbers equal to 0. The

swap-and-reverse algorithm creates permutations with even winding numbers: the

cycle-reversal move has zero energy change and allows subsequent permutations to

hop across a low double-winding-number barrier.

The worm algorithm was designed to permit cycles with winding numbers of both

parities to be created: a cycle is opened, its tips wander around (perhaps around the

torus), and then it recloses — all of these steps happening with low-energy changes

afforded by worm tunneling through the energy barrier. The only problem is that

the open worm tips wander around randomly within the L box, and fail to reconnect

as L increases. This is the stopping-time problem. Specifically, histograms show that

the distribution of the wormspan ‖π(w)− π−1(w)‖Λ peaks around L/2.

Recall from section 4.2 that the correctness proofs of sections 5.3 and 7.7 only

address the limit M → ∞; they do not address rate of convergence. The worm

algorithm is correct, but we are not willing to wait long enough for it to produce

its correct results. Figure 7.4 shows the problem. CPU time is plotted for 104 SAR

sweeps, at T = 6.0, as a function of N = L3 for L = 5 to 12. For the SAR algorithm,

CPU time is nearly linear in N . (In fact, it has an N2 dependency, but with a

low constant of proportionality, as discussed in section 9.5.) For the worm algorithm,

CPU time is not linear in N ; we cannot complete a computation for L large enough to

be interesting, namely, 40 to 80. Specifically, a log-log plot and regression on the data

of figure 7.4 show that the worm algorithm is strongly quadratic in N . Fortunately,

examination of random-variable plots for L = 10, comparing SAR to worm, show that
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similar results are produced — other than, of course, the winding-number histogram

itself.
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Figure 7.4. Scalability of SAR and worm algorithms. CPU times for 104 SAR
sweeps and 103 worm sweeps are shown as a function of N = L3 for L = 5 to 12.
SAR time is nearly linear in N ; worm time is strongly quadratic in N . Interesting L
(40-80) are unattainable.

Other ideas for addressing the winding-number problem include the following:

• In analogy with cluster updates for the Ising model, form a band around the

torus and do an L-cycle transformation. Couple the SAR algorithm with occa-

sional band updates. However, band updates have a too-low acceptance rate,

as was shown in chapter 6.

• Temporarily pinch the torus geometry somehow in the SAR algorithm, such

that the distance penalty for wrapping around the torus is decreased.

• Temporarily reduce and restore the temperature T in the SAR algorithm — this

is an annealing method. This approach brings with it a performance problem:

re-thermalization (section 9.6) would need to be performed after each annealing

step.

• Modify the worm algorithm to direct the worm somehow. At the time the worm

is opened, add a distance weight of ±L in the x, y, or z direction which will
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be removed by a wrap around the torus, increasing or decreasing that winding-

number component by 1. Our attempts to do this have not satisfied detailed

balance.

• Review the PIMC literature again and seek other inspiration.

The worm algorithm, even though it is effectively unusable as currently designed,

is the only way we currently have of sampling from the full winding-number config-

uration space, i.e. odd as well as even winding numbers. Thus, it will be worth the

future effort to solve the stopping-time problem.
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Chapter 8

∆H computations

When computing ∆H for the swap-only, swap-and-reverse, or worm algorithms, it is

inefficient to find H(π′) and H(π) separately, then compute their difference: swap

and worm moves are local, and most of the energy terms are unchanged from π to π′.

Instead (this is true for Metropolis simulations in general), one discovers a formula

for the energy change in a proposed Metropolis move. Even though these minimal

energy-change formulas are a software-optimization detail, they need to be considered

carefully lest errors intrude.

We write the energy of equation (7.2.3) as

H = D + V + W (8.0.1)

where H is total energy, D is the distance-related single-jump terms, V is the jump-

pair-interaction terms, and W is the worm-dependent terms. (Note that V is identi-

cally zero if there are no interactions, and W is identically zero for the SO, SAR, and

band-update algorithms.)

8.1 Swap and worm with no interactions

Recall that the wormhole point is non-spatial and thus does not participate in distance

computations. As is clear from figures 5.1 and 7.2 (on pages 61 and 82, respectively),
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the change in distance-related terms is

∆D = ‖x− π(y)‖2Λ + ‖y − π(x)‖2Λ − ‖x− π(x)‖2Λ − ‖y− π(y)‖2Λ (swap-only)

∆D = −‖x− π(x)‖2Λ (worm open)

∆D = ‖π−1(w)− π(w)‖2Λ (worm close)

∆D = ‖π−1(w)− π(x)‖2Λ − ‖x− π(x)‖2Λ (worm head swap)

∆D = ‖x− π(w)‖2Λ − ‖x− π(x)‖2Λ (worm tail swap).

8.2 Swap and worm with two-cycle interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle

lengths. Thus, the same ∆r2 formulas apply to both algorithms. The ∆D is the same

as in section 8.1; he we describe only the ∆V .

Recall the definition of a swap from section 5.1. The simplicity of figure 8.1 masks

a bit of detail: namely, the four points may not all be distinct. Thus, there are several

cases. (See figure 8.2.)

xx

π(x)π(x)

π(y)π(y)

yy

Figure 8.1. A swap.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial move; π′ = π.

∆r2 = 0.

• Case 1: x = π(x).

– Case 1a: y = π(y). ∆r2 = +1.

– Case 1b: y 6= π(y) but y = π2(y). ∆r2 = −1.
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Cases 1a and 2a

Cases 3a and 4a

Case 1b

Case 2b

Case 3b

Case 4b

Cases 5a and 6a

Case 7a

Case 8a

Case 5b

Case 6b

Case 7b

Case 8b

Figure 8.2. Cases for ∆r2.

– Case 1c: y 6= π(y), π2(y). ∆r2 = 0.

• Case 2: y = π(y).

– Case 2a: x = π(x). Same as case 1a. ∆r2 = +1.

– Case 2b: x 6= π(x) but x = π2(x). ∆r2 = −1.

– Case 2c: x 6= π(x), π2(x). ∆r2 = 0.

• Case 3: x = π(y).

– Case 3a: π(x) = y. ∆r2 = −1.

– Case 3b: π2(x) = y. ∆r2 = +1.

– Case 3c: y 6= π(x), π2(x). ∆r2 = 0.

• Case 4: π(x) = y.

– Case 4a: π(y) = x. Same as case 3a. ∆r2 = −1.

– Case 4b: π2(y) = x. ∆r2 = +1.
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– Case 4c: x 6= π(y), π2(y). ∆r2 = 0.

• Case 5: π2(x) = x.

– Case 5a: π2(y) = y. ∆r2 = −2.

– Case 5b: π2(y) 6= y. ∆r2 = −1.

• Case 6: π2(y) = y.

– Case 6a: π2(x) = x. Same as 5a. ∆r2 = −2.

– Case 6b: π2(x) 6= x. ∆r2 = −1.

• Case 7: π2(x) = y.

– Case 7a: π2(y) = x. ∆r2 = +2.

– Case 7b: π2(y) 6= x. ∆r2 = +1.

• Case 8: π2(y) = x.

– Case 8a: π2(x) = y. ∆r2 = +2.

– Case 8b: π2(x) 6= y. ∆r2 = +1.

• All other cases: ∆r2 = 0.

8.3 Swap and worm with rℓ interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle

lengths. Thus, the same ∆r2 formulas apply to both algorithms.

Recall proposition 5.3.9 and remark 5.3.10: if x and y are in separate cycles

before the swap, they are in the same cycle afterward, and vice versa. In the former

case, the new common cycle length is the sum of the old separate cycle lengths; in

the latter case, the new cycle lengths are taken from the number of permutation



102

jumps from one site to the other. (Throughout this section, please consult figure 8.3

for illumination.) Given that general pair of facts, we split out subcases which are

convenient as a software-optimization detail:

Case 1a Case 1b

Case 2a Case 2b

Case 3 Case 4

Figure 8.3. Cases for ∆rℓ. Sites and arrows not participating in changes are shown
in grey.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial move; π′ = π. ∆rℓ = 0

for all ℓ = 1, . . . , N .

• Case 1: x and y are in different cycles, but one of them is in a one-cycle.

– Case 1a: x = π(x): ∆r1 = −1, ∆rℓy(π) = −1, ∆rℓy(π)+1 = +1.

– Case 1b: y = π(y): ∆r1 = −1, ∆rℓx(π) = −1, ∆rℓx(π)+1 = +1.

• Case 2: x and y are in the same cycle, but one is the jump target of the other.

– Case 2a: y = π(x). ∆rℓx(π) = −1, ∆rℓx(π)−1 = +1, ∆r1 = +1.

– Case 2a: x = π(y). ∆rℓy(π) = −1, ∆rℓy(π)−1 = +1, ∆r1 = +1.

• Case 3: x and y are in the same cycle, and neither is the jump target of

the other. Let a = ℓx,y(π) and b = ℓy,x(π). Then ∆ra+b = −1, ∆ra = +1,

∆rb = +1.
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• Case 4: x and y are in separate cycles. ∆rℓx(π) = −1, ∆rℓy(π) = −1, ∆rℓx(π)+ℓy(π) =

+1.

8.4 Swap with V interactions

Recall from proposition 7.3.1 that as long as the extended energy function H ′ agrees

with the energy function H on closed cycles, P ′
Gibbs has the correct marginal distribu-

tion on closed cycles. Thus, when writing energy terms for open cycles, we can choose

how to define the energy. For r2 and rℓ (the previous two sections), it is simplest to

say that the non-spatial point w can participate in permutation cycles. For other

interactions that depend on the spatiality of points, it is simplest to say that w does

not participate. Thus, here we split out swap and worm cases.

The change in energy is simply the contributions from the old arrows x 7→ π(x)

and y 7→ π(y) to all other arrows, along with their mutual interaction, subtracted

from the contributions from the new arrows x 7→ π(y) and y 7→ π(x) to all other

arrows, along with their mutual interaction:

∆V =
∑

v 6=x,y

V (x, π(y),v, π(v)) +
∑

v 6=x,y

V (y, π(x),v, π(v)) + V (x, π(y),y, π(x))

−
∑

v 6=x,y

V (x, π(x),v, π(v))−
∑

v 6=x,y

V (y, π(y),v, π(v))− V (x, π(x),y, π(y)).

8.5 Worm with V interactions

The non-spatial point has no interactions, so we simply track the creation and de-

struction of spatial-to-spatial arrows for the four types of worm move. (See figure

8.4.)

Open:

−
∑

v 6=x,w

V (x, π(x),v, π(v)).
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Close:

∑

v 6=π−1(w),w

V (π−1(w), π(w),v, π(v)).

Head swap:

∑

v 6=x,π−1(w)

V (π−1(w), π(x),v, π(v))−
∑

v 6=x,π−1(w)

V (x, π(x),v, π(v)).

Tail swap:

∑

v 6=x,w,π−1(w)

V (x, π(w),v, π(v))−
∑

v 6=x,w,π−1(w)

V (x, π(x),v, π(v)).

Open at x

Close

Head swap at x

Tail swap at x

π−1(w)π−1(w)

π−1(w)π−1(w)

x

x

x

x

xx

π(x)

π(x)

π(x)

π(x)

π(x)π(x)

w w

ww

ww

ww

π(w) π(w)

π(w)π(w)

Figure 8.4. Cases for worm ∆V . Non-spatial arrows (i.e. those starting or ending
at w) are shown in grey.
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Chapter 9

Algorithms for single MCMC runs

Chapters 5, 7, and 8 describe the swap-only, swap-and-reverse, band-update, and

worm algorithms. The content there focuses on algorithm steps and algorithm cor-

rectness, without reference to a specific programming language or a specific software

implementation. This chapter, by contrast, focuses on particular software-design

choices which were made by the author.

The software program (mcrcm) which does a single MCMC run is written in the

C language. Execution of multiple MCMC runs, including parallel processing, is

done using a scripting language such as Bash or Python; this is described in the

next chapter. Throughout this chapter and the next, names of data structures and

subroutines from the program code are written in typewriter font.

The methods here are applicable for any of the algorithms of chapters 5 and 7

— swap-only, swap-and-reverse, and worm — or any other to-be-invented algorithm

which satisfies the hypotheses listed in section 4.5 on recipes for MCMC algorithms.

9.1 Data structures

There is one main data structure, of C type points t, containing points and a cycle

list (see figure 9.1):

• dims contains the lattice dimensions L, L, L. (For 1-dimensional or 2-dimensional

use, not described in this thesis, these would be L, 1, 1 or L, L, 1, respectively.)

• N is the product of the three dimensions. It is used so frequently in the program

code that it is worth computing this product once at the start of the program

and keeping it here.
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Lattice points

Wormhole point
Cycle-list head

Cycle-list tail

pnextpprev

Cycle-information structures

ℓ = 3

psite

pcycinfo

Figure 9.1. Lattice sites and the wormhole point are shown in grey; three lattice
sites participating in a 3-cycle are shown in black. Every point (including the grey
ones for which these arrows are not shown) contains the location (pcycinfo) of a
cycle-information structure which caches the length of the cycle (cyclen); each cycle-
information structure contains the location (psite) of one point in the cycle. Cycle-
information structures are stored in a doubly linked list (pprev and pnext).

• lattice: L× L× L array of points (data type point t).

• wormhole: an (N + 1)st point (data type point t) called the wormhole point

(chapter 7). (For the swap-only and swap-and-reverse algorithms, all permuta-

tions send the wormhole point to itself.)

• pcycinfo list head and pcycinfo list tail are the locations of the first and

last cycle-information structure in the doubly linked list of cycle-information

structures.

Each point (point t data type) x contains:

• selfi, selfj, selfk: lattice coordinates of each point x, with xi, xj , xk from

0 to L − 1. For the wormhole point, these coordinates are set to an undefined

value.
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• pfwd: location of permutation image π(x).

• bfwd: location of permutation preimage π−1(x). This is used for the reason

described in section 5.1. Namely, in a swap, one

– selects a site x,

– follows the forward permutation pointer to find π(x),

– uses the lattice structure to find a site π(y) which is a nearest neighbor of

π(x), and finally

– follows the backward permutation pointer to find y = π−1(π(y)).

• fwd d and fwd dsq: distance ‖π(x) − x‖Λ and squared distance ‖π(x) − x‖2Λ.

These are cached for performance reasons. It is found empirically that approx-

imately 10-20% of proposed Metropolis changes are accepted. Thus, without

caching of these distances, most of the time the forward-distance values would

be computed redundantly.

• pcycinfo: location of cycle-information structure (see below).

• mark: this is a single integer stored at each lattice site. When the cycle-

information list is set up (section 9.3) or sanity-checked (section 9.16), it is

necessary to sweep through all lattice sites, following permutation cycles, re-

membering which sites have already been visited. One could allocate a list of

marks (one for each lattice site) at the beginning of these routines, and free

that list at the end. Instead, the marks are stored in the lattice structure so

that this scratch space is available when needed.

Cycle information is stored in a doubly linked list of cycle-information structures

(data type cycinfo t). Each contains:

• psite: Location of one site in the cycle.
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• cyclen: Length of the cycle.

• pprev and pnext: Location of the previous and next cycle-information structure

in the doubly linked list.

9.2 Overview

A true outline of the program (routine main in file mcrcm.c) embodies the outline

given in section 4.5. Namely:

• Determine the input parameters L, T , interaction type (non-interacting, r2,

rℓ) and parameter α, algorithm type (swap-only, swap-and-reverse, worm), and

number of sweeps. (These are passed into the program via the command line.)

• Print all control parameters (see section 9.18).

• Initialize (see section 9.3).

• Thermalization phase:

Loop until thermalized:

Do one swap-only, swap-and-reverse, or worm sweep (section 9.4).

See if thermalization is complete (section 9.6).

Optionally sanity-check H and cached cycle information (section 9.16).

Optionally display random-variable instances (section 9.18).

• Accumulation phase:

For sweep number from 0 to number of sweeps−1:

Do one swap-only, swap-and-reverse, or worm sweep (section 9.4).

Optionally write π to disk (section 9.17).

Optionally sanity-check H and cached cycle information (section 9.16).
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Optionally print realizations of user-specified random variables (section 9.18).

Remember random-variable instances, for statistical use.

Compute statistics of random variables (theorem 4.2.9 and section 4.3).

Display statistics of random variables (section 9.18).

9.3 Initialization

Software initialization consists of four main steps:

• Allocate memory for the lattice points: subroutine get cubic lattice points.

Set the initial permutation to one of the following:

– The identity permutation. (This is the default, set up by the subroutine

get cubic lattice points.)

– A uniform-random permutation on SN , with the wormhole point sent to

itself: subroutine set unif rand pmt.

• Allocate time-series arrays for each random variable: allocate rvs.

• Initialize the cycle-information list: subroutine set up cycinfo list.

• Find the initial system energy H , separated into D and V terms: subroutine

get H of pi. This is a straightforward implementation of equation (2.1.3).

9.4 Metropolis sweeps

The swap-only algorithm uses a swap-only sweep; the swap-and-reverse algorithm uses

a swap-only sweep followed by a cycle-reverse sweep. A swap-only sweep (subroutine

SO sweep) is as follows:

• Loop through lattice sites x = (x, y, z) lexically, i.e. x from 0 to L− 1, y from

0 to L− 1, z from 0 to L− 1.
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• For the site x, follow the forward permutation pointer to find π(x).

• Use the lattice structure to select π(y) which is one of the six (i.e. 2d) nearest-

neighbor sites to π(x).

• Follow the backward permutation pointer to find the point y.

• In subroutine try SO swap, propose and perhaps accept a modification of the

permutation. This is a Metropolis step, described in section 9.5.

(A slight modification of this algorithm would choose x at uniform-random location

on the lattice, N times, rather than looping sequentially through all N lattice sites.)

After a swap-only sweep has been performed, the swap-and-reverse algorithm then

does a reverse sweep (subroutine reverse sweep):

• For each cycle in the permutation (i.e. one follows the doubly-linked list of cycle-

information structures), with probability 1/2 reverse all the arrows in that cycle.

This is done for the reason described in section 5.4, namely, it permits non-zero

(but only even) winding numbers.

• At each point, the forward and backward permutation pointers must be up-

dated, and the cached forward distance and forward squared distance must

be copied from one point to another. The cycle-information structure is not

affected. Also, the system energy is not affected.

A worm sweep (subroutine worm sweep) is done as in section 7.4:

• One attempts to open the permutation at a uniform-random lattice site x.

• If the open is not accepted, the sweep is complete.

• Otherwise, some number of head swaps and/or tail swaps are proposed and

perhaps accepted. Eventually, a close is proposed and accepted. The sweep is

then complete.
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Notice that the swap-only and reverse sweeps are of deterministic length: the

former processes all N lattice sites; the latter processes all cycles. (Of course, it takes

more CPU time for an accepted proposal then a rejected proposal. Nonetheless, a

fixed number of proposals is always made.) For the worm sweep, though, the stopping

time is random, depending on the time for the worm head and tail to approach one

another on the lattice. (See section 7.8 for more details.)

9.5 Metropolis steps

See chapter 8, and in particular section 8.3 (∆rℓ), for background information on ∆H

and ∆rℓ. A Metropolis proposal, for a swap as described in section 5.1, is as follows:

• To find ∆D as described in section 8.1: compute ‖x−π(y)‖2Λ and ‖y−π(x)‖2Λ.

These will be D terms for the proposed new permutation π′, if it is accepted.

The corresponding D terms for the current permutation π, namely, ‖x−π(x)‖2Λ
and ‖y− π(y)‖2Λ, are already cached at the points x and y. Then

∆D =
T

4

(

‖x− π(y)‖Λ|2 + ‖y − π(x)‖Λ|2 − ‖x− π(x)‖Λ|2 − ‖y − π(y)‖Λ|2
)

.

• The subroutine get Delta V SO performs the ∆V computations described in

chapter 8. It also computes x ◦–◦y (namely, whether the points x and y are

in the same cycle or not), along with ℓx,y(π) and ℓy,x(π). (If x and y are in

the same cycle, then the cycle lengths are equal; if they are in different cycles,

ℓx,y(π) and ℓy,x(π) are undefined.)

• The total change in system energy for the proposed change is ∆H = ∆D+∆V .

The Metropolis proposal is accepted with probability min{1, exp(−∆H)}. That

is, if a pseudorandom number (section 9.19) uniformly distributed between 0 and 1

is less than exp(−∆H), then π is replaced by π′.

A Metropolis update consists of the following:
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• The new system energy H ′ is set to H + ∆H .

• The forward and backward permutation pointers pfwd and pbwd at points x

and y are updated so that π′(x) = π(y) and π′(x) = π(y).

• The cached forward squared distances ‖x − π′(x)‖Λ|2 and ‖y − π′(y)‖Λ|2 are

stored in the fwd dsq slots of the point t data structures for points x and y.

Respective square roots are stored in the fwd d slots.

• Cycle-information structures are updated by the subroutine update cycinfo,

which is discussed next.

Without cycle-length caching: Recall from section 8.3 that computing ∆rℓ

requires the following steps:

• See if x and y are in the same cycle.

• If so, find ℓx,y(π) and ℓx,y(π); if not, find ℓx(π) and ℓy(π).

To find these values, one may start at site x, moving forward one permutation

jump at a time. If one reaches y before returning to x, then x and y are in the same

cycle, and ℓx,y(π) has already been found. Continuing to count hops back to x yields

ℓy,x(π). If, on the other hand, one returns to x without having encountered y, then

x and y are in different cycles, and ℓx(π) has already been computed. Counting hops

from y back to itself yields ℓy(π).

Notice that each of these cycle-following steps requires O(ℓ) machine operations

where ℓ is the mean cycle length. For subcritical temperatures T where cycles become

long (of length at most N), these cycle-following steps become unacceptably time-

consuming. Caching of cycle lengths has been found to reduce simulation time, for

L = 40 lattices, by a factor of 15. The improvement is even more pronounced as L is

increased.



113

With cycle-length caching: Keeping a list of cycles means that the following

Metropolis-proposal steps take O(1) machine operations:

• To see if x and y are in the same cycle, check the two points’ pcycinfo slots

and see whether they are equal or not.

• The cycle lengths ℓx(π) and ℓy(π) are immediately found by consulting the

cyclen slots of the pcycinfo data structures.

Now, if x and y are in the same cycle, one must additionally find either ℓx,y(π) or

ℓy,x(π). (Note that ℓx,y(π) + ℓy,x(π) = ℓx(π) = ℓy(π) so it suffices to find either one

or the other.) This is, a priori, is of complexity O(ℓ). However, it has been found

empirically that in the MCMC simulations described by this thesis, one of the two

of ℓx,y(π) or ℓy,x(π) is almost always small. That is, a split of a large cycle usually

pinches off a small cycle; rarely is a large cycle split evenly. It is likewise found

empirically that on merges of disjoint cycles, usually one of the two cycles is small.

Thus, if x and y are in the same cycle, it suffices to start at x, searching forward

and backward one jump at a time. If one encounters y on forward jumps, ℓx,y(π) has

been found; if one encounters x on backward jumps, ℓy,x(π) has been found. Thus

the complexity is of order

O(min{ℓx, ℓy}).

A result of this is that all other computations done in our MCMC simulations are

O(N). This bit, however, is necessarily O(N2). Yet, it is O(N2) with a low constant

of proportionality, since one of ℓx and ℓy is almost always small. Plots of CPU time

as a function of N are shown in section 9.21.

It has just been demonstrated that keeping cached cycle lengths makes ∆rℓ com-

putations for a Metropolis proposal quicker. Of course, one pays for this by needing

to maintain cached cycle lengths after Metropolis updates. The following steps are

performed in the subroutine update cycinfo.
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Before split After split, before
cycle-info update

ℓ = 5ℓ = 5

After cycle-info update

ℓ = 3

xxx

yyy

ℓ = 2

Figure 9.2. Update of permutation and cycle information on a split swap. Grey
arrows represent pointers between sites and their cycle-information structures; black
arrows represent forward permutation pointers.

Before merge After cycle-info update

ℓ = 5

After merge, before
cycle-info update

x xx

y yy

ℓ = 3ℓ = 3 ℓ = 2ℓ = 2

Figure 9.3. Update of permutation and cycle information on a merge swap. Grey
arrows represent pointers between sites and their cycle-information structures; black
arrows represent forward permutation pointers.
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If the swap has split a cycle into two (figure 9.2):

• To minimize the number of computations, as described above for Metropolis

proposals, find the shorter new cycle. Suppose x’s new cycle is longer than y’s.

(If not, swap local variables in the subroutine to make this so.)

• All points in y’s new cycle must now point to a new cycle-information structure.

The cycle has been split, so follow from the new π′(y) (which was π(x) before

the merge) around to and including y. As above, the number of sites that must

be visited is min{ℓx(π′), ℓy(π′)}.

• The cycle-information structures for both split cycles need to have their cycle

lengths updated: ℓx(π
′) = ℓy,x(π) and ℓy(π′) = ℓx,y(π).

• The cycle-information structures for the two cycles need to have their site point-

ers point to x and y, respectively.

• The new cycle-information structure for the y cycle must be added to the doubly

linked list of cycle-information structures.

If the swap has merged two cycles into one (figure 9.3):

• To minimize the number of computations, find the shorter old cycle. Suppose

x’s old cycle is longer than y’s. (If not, swap local variables in the subroutine

to make this so.)

• The cycle-information structure for the merged cycle needs to have its cycle

length updated: ℓx(π
′) = ℓx(π) + ℓy(π).

• All points in y’s old cycle must have their cycle-information structures now

point to x’s cycle-information structure. The two cycles have been merged,

though, so follow from the new π′(x) (which was π(y) before the merge) around
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to and including y. As above, the number of sites that must be visited is

min{ℓx(π), ℓy(π)}.

• The cycle-information structure for the old y cycle must be removed from the

cycle-information list and freed.

9.6 Thermalization detection

As noted in section 9.2, the initial permutation selected in an MCMC sequence is

atypical: the identity permutation has zero energy, lower than the mean energy for

the stationary distribution, whereas a uniform-random permutation almost always has

energy higher than the mean due to its long jump lengths. (See equation (2.1.3)and

figure 9.4.)

As always in MCMC simulations [Berg, LB], one must run through some num-

ber of Metropolis steps until the system has thermalized, i.e. when the stationary

distribution has been reached. In the MCMC discipline, practitioners use various

techniques. The thermalization-detection algorithm chosen for the work described by

this dissertation counts turning points of smoothed system energy. This algorithm

may be justified using conditional expectation of ∆H , as well as visually.

Recall from chapters 2 and 5.2 that permutations have energies H(π) and H(π′),

probabilities PGibbs(π) = e−H(π)/Z and PGibbs(π
′) = e−H(π′)/Z, and Metropolis tran-

sition probabilities

A(π, π′) = C(1 ∧ e−(H(π′)−H(π))).

The premise is that a permutation π is taken from the stationary distribution if the

subsequent permutation π′ is equally likely to have higher or lower energy. Stated

probabilistically, we say that the expected value of H(π′), conditioned on transitioning

from π, should be zero. Recall that for a random variable X and an event A, with
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Figure 9.4. Plot of system energy versus Metropolis sweep number. The transition
from grey to black indicates thermalization was detected, via 40 turning points of
energy smoothed over a sliding window of 200 sweeps.

outcomes x, we have

E[f(X) | X ∈ A] =

∑

x∈A

P (x)f(x)

∑

x∈A

P (x)
=

∑

x∈A

P (x)f(x)

P (A)
.

Here, this translates to

E[H(π′) | π] =

∑

π′ ◦–◦ π

PGibbs(π
′)H(π′)

∑

π′ ◦–◦ π

PGibbs(π
′)

=

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)H(π′)

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)

=

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)(H(π) + ∆H)

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)

=

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)H(π) +
∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)∆H

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)
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= H(π) +

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)∆H

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)
.

(Recall from definition 5.2.4 that the sum over π′ ◦–◦π includes all permutations π′, in-

cluding π itself, reachable from an accepted or rejected swap.) For pre-thermalization

π, this expectation should be highly positive (when the initial π1 is the identity), or

highly negative (when the initial π1 is uniform-random). For post-thermalization

π, this expectation should be approximately zero. Alternatively, for various post-

thermalization π, this expectation should be equally likely positive or negative. As

discussed in section 5.2, given π, there are 3N + 1 choices of π′ (including π itself)

which could be reached on a swap. Yet, in the MCMC sequence, only one π′ is chosen.

Thus, this conditional expectation is CPU-intensive to compute, and moreover does

not take advantage of the MCMC sequence itself.

We estimate the above conditional expectation by first defining

HS(t) =
1

S

S−1
∑

i=0

H(πt−i),

where S is the smoothing window size and t denotes a Metropolis sweep counter with

t ≥ S. That is, the system energy at Metropolis sweep t is averaged over the last

S sweeps. The system is deemed to be thermalized when HS(t) has changed sign

sufficiently many times, i.e. when HS(t) has had more than a threshold number of

turning points.

As is typically the case in such matters, rigorously determining the spectral gap

in the Markov transition matrix is computationally intractable. One relies instead

on heuristics which are justified by the practitioner’s experience and all available evi-

dence. Visually examining the plot in figure 9.4, one may decide that thermalization

has occurred by, say, Metropolis sweep 300. Examining a plot for different L, T , and

interaction strength, one might choose a different Metropolis sweep count. I have

examined such plots over a broad range of parameter values; I have chosen S = 200
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and threshold number of turning points equal to 40, ensuring that the automated

thermalization detection (when grey turns to black in figure 9.4) agrees with my vi-

sual judgment. Thermalization takes one percent or less of total CPU time, as shown

in the caption of figure 9.5.
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Figure 9.5. Thermalization time as a function of L and T , for α = 0. Plots for
other α are similar. Data accumulation takes 105 or 106 sweeps; thermalization is
here seen to take on the order of 103 sweeps, i.e. a fraction of a percent of CPU time.

9.7 Computation of random variables

All the random variables described in chapter 3 are computed in mcrcm. Details of

each are described in the sections following this one. The software architecture of

mcrcm is such that it is easy to add a newly invented random variable to the code.

9.8 Computation of system energy

The system energy H , with non-interacting terms D and interacting terms V (as

defined in chapter 2), is tracked; one easily scales to obtain the energy per site (or

energy density) h = H/N , d = D/N , and v = V/N .
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As described in section 9.3, system energy H is computed for the initial permu-

tation. As described in section 9.4, ∆H (split out into ∆D and ∆V ) is computed for

a proposed new permutation; if the proposal is accepted, H is replaced by H + ∆H .

As described in section 9.16, optional automated checks verify that the accumulated

∆H computations (chapter 8) correctly track the true system energy.

A plot of H as a function of Metropolis sweep, within a single invocation of mcrcm,

is shown in figure 9.4 on page 117. Dependence of H on L, T , and α is shown in figure

9.6. Note that the system energy, as centrally important as it is, does not function

as an order parameter (section 3.7): it exhibits no sharp transition near the critical

temperature.
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Figure 9.6. Behavior of system energy H as function of L and T , for α = 0, 0.002.

9.9 Computation of rℓ(π)

Given the cycle-information list as described in sections 9.1 and 9.5, it is trivial to

compute the cycle-length occupation numbers rℓ(π) for ℓ = 1 to N . Namely: Set

r1, . . . , rN = 0. For each cycle in the cycle list, increment rℓ by 1 where ℓ is the length

of the current cycle. Dependence of the sample mean of r2 as a function of L, T , and

α is shown in figure 9.7.
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Figure 9.7. Behavior of r2 as function of L and T , for α = 0, 0.002.

9.10 Computation of cycle lengths and correlation length

Given the lattice data structure as described in section 9.1, one easily computes the

the spatial cycle lengths sx(π) defined in section 3.2. For each site x in the lattice

Λ, one examines the cached fwd d attribute, which is precisely sx(π). As described

in section 3.2, the correlation length ξ is the spatial cycle length averaged over all N

lattice points. Plots and analysis of the order parameter 1/ξ may be found in chapter

11.

9.11 Computation of mean and maximum jump length

Mean jump length is as defined in section 3.3. The maximum jump length is the

largest jump length encountered at any of the N lattice sites, for any of the M

permutations in the MCMC sequence. This confirms the hypothesis of short jump

lengths as mentioned in section 3.6. See figure 9.8. As discussed in section 3.2, the

jump length is averaged not only over all permutations π generated in the MCMC

sequence, but moreover is averaged over all N lattice points for each π.
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Figure 9.8. Mean and maximum jump length as function of L and T , for α = 0,
0.002.

9.12 Computation of fI

As discussed in section 3.4, fI is computed using the vertical intercept of a tangent-

line approximation to E[f1,k] as a function of k/N .

Computation of E[f1,k] as a function of k is straightforward: we maintain an array

indexed from 1 to N of counters, all initially set to zero. For each permutation π,

we count the number of sites participating in cycles of length k. This is directly

obtained from the cycle-information structure (see section 9.1). Scaling this array

by 1/N yields a finite-sample approximation to E[fk,k]. Cumulatively summing the

array gives an estimator of E[f1,k]. See figure 9.9.

Given that, the tangent line is found, in the presence of statistical variability,

as follows: subtract off the diagonal line (k/N, k/N) which runs from the lower left

corner to the upper right corner. The peak of the difference (the dashed line in figure
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9.9) shows the outermost point of the original E[f1,k] estimator. Then the tangent line

is taken to have slope 1 running through this point. As the number M of permutations

increases, this outermost point adheres closely to the visible diagonal; its location is

defined by its peers. Thus, we are not computing fI based on a single, noisy data

point, but rather using much of the available E[f1,k] data.
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0.80

0.85

0.90

0.95

1.00

fI  estimation

<f1,k>M

<f1,k>M�k/N
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Figure 9.9. Estimation of fI . The dotted line shows raw 〈f1,k〉M data obtained
by cumulatively summing an array of sample averages of fk,k(π). The dashed line
is the dotted line minus the diagonal (k/N, k/N). The abscissa of the peak of this
difference is the abscissa of the outermost point of the dotted line. The tangent line
is drawn through there, with slope 1. Then fI is one minus the vertical intercept
of that tangent line: in this case, fI = 1 − 0.825 = 0.175. The simulation used an
MCMC run of 104 permutations on L = 20 at T = 6.5.

9.13 Computation of ℓmax, fmax, and macroscopic-cycle quo-

tient

The quantities ℓmax, fmax, fI , and macroscopic-cycle quotient fmax/fI were defined in

sections 3.4 and 3.5. It is easy to compute ℓmax: find the longest cycle in the cycle-
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information list (section 9.1). Computation of fI is found as described in section

9.12.

Figure 9.10 makes clear the difference between subcritical and supercritical be-

havior which was alluded to in section 2.3. Below Tc, r1, r2, etc. are smaller than

above Tc, since there is occasionally a long cycle: ℓmax is markedly higher below Tc.

Plots and analysis of the order parameter fmax may be found in chapter 11. The

macroscopic-cycle quotient is analyzed in section 11.8.

0 200 400 600 800 1000
Metropolis sweep

0

200

400

600

800

1000
Cycle-length occ. numbers, L=20, T=6.0

r1
r2
r3
r4
r5
r6
r7

0 200 400 600 800 1000
Metropolis sweep

0

200

400

600

800

1000
Cycle-length occ. numbers, L=20, T=7.0

r1
r2
r3
r4
r5
r6
r7

0 200 400 600 800 1000
Metropolis sweep

50

100

150

200

250

300

350

400

�
max, L=20, T=6.0 �

max

0 200 400 600 800 1000
Metropolis sweep

0

50

100

150

200

250

300

350

400

�
max, L=20, T=7.0 �

max

Figure 9.10. Per-realization values of rℓ and ℓmax with L = 20, T = 6.0, 7.0.
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9.14 Computation of winding numbers, fS, and fW

The winding-number triple W = (Wx, Wy, Wz) is as defined in section 3.6. Straight-

forward application of equations (3.6.2) and (3.6.3), for W and W2, respectively, are

sufficient as long as the difference vectors dΛ(x,y) are obtained. For these (see also

section 3.1) one first computes the difference x − y. Then, for each of the three co-

ordinate slots, one adds or subtracts multiples of L until the result is between −L/2

and L/2. In figure 9.11 one observes the even parity of winding-number components,

as discussed in section 5.4. As well, the temperature dependence in the histograms

shows the subcritical transition to winding cycles. Plots and analyses of the order

parameters fS and fW may be found in chapter 11.
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Figure 9.11. Histograms of Wx for α = 0 and T = 6.70, 6.80, 6.85.

9.15 Computation of integrated autocorrelation times

Integrated autocorrelation times are estimated precisely as described in sections B.7

through B.10 of appendix B. Error bars in order-parameter plots in this dissertation

are the τint-corrected sample standard deviations of the sample means.

Some estimated integrated autocorrelation times are shown in figure3 9.12. The

key point is that uncertainty increases in the critical region. For this reason, simula-

tions in the critical region were run with 106 Metropolis sweeps for L = 30, 40, 50, and

with 105 sweeps otherwise. Similarly, figure 9.13 shows estimates of the correlation

factors η , in the context of appendix B. Namely, η = 0 yields an IID sequence; η for
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MCMC simulations done in this dissertation are typically 0.99 and above, indicating

highly autocorrelated MCMC sequences.
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Figure 9.12. Estimated integrated autocorrelation times of H and ℓmax as functions
of L and T , for α = 0 and 0.002.
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Figure 9.13. Estimated autocorrelation factor of H and ℓmax as functions of L and
T , for α = 0 and 0.002.
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9.16 Consistency checks

The following checks are run for every MCMC simulation described in this disserta-

tion:

• Interaction type is one of none, two-cycle interactions, rℓ (Ewens) interactions.

This protects against uninitialized variables.

• Worm move is one of open, close, head swap, or tail swap. Again, this protects

against uninitialized variables.

• L ≥ 1; d = 1, 2, 3.

• The cycle-information list is never empty when a cycle-information structure is

removed (e.g. on a merge).

The following checks are omitted from production runs due to their CPU-time

expense, but were run during code development and testing:

• check H: As described in sections 9.3 and 9.5, the system energy is initially

computed by get H of pi, then updated by ∆H as computed in Metropolis

proposals/updates. If H-checking is enabled (in the header file checks.h),

then after every Metropolis sweep, the system energy is computed by brute

force, and is verified to be within roundoff error of the system energy which has

been tracked by ∆H computations.

• sanity check cycinfo list: This is also enabled in the header file checks.h.

It consists of three checks, which are run after every Metropolis sweep: (1) The

cycle list partitions the lattice sites. All sites are marked unvisited; all cycles in

the cycle-information list are followed, with visits to each site counted; each site

is checked to have been visited no more and no less than once. (2) The cached

cycle lengths are correct: These are verified by following permutation pointers
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around each cycle. (3) For each cycle, all points in the cycle are verified to point

to the same cycle-information structure.

The following visual checks were done for selected single runs:

• H plots, such as figure 9.4 of section 9.6 should show system energy increasing

from 0 up to equilibrium for initial identity; decreasing down to equilibrium for

initial uniform-random.

Visual checks for single runs:

• Output from mcrcm, as shown in section 9.18, looks sane; numbers appear to

be in their normal ranges.

• 〈f1,k〉M plots, as shown in section 9.12, are as usual.

• fW , fmax, and fI are between 0 and 1.

• Sample mean of
∑N

ℓ=1 ℓrℓ is equal to N . (This is k*counts sum in the MCMC

output, as described in section 9.18.)

• Sample mean of energy density h is of order 1.

• Mean jump length is of order 1; maximum jump length is approximately 3-4.

• Winding-number histogram peaks at Wx = 0, with population out to perhaps

±6 depending on system temperature.

• Metropolis acceptance rate is 10 to 20 percent.

Visual checks for runs over parameter values (chapter 10):

• A 30-page file containing all plots of the form shown in this chapter — not

just a representative selection — is used to compare random-variable output to

results from before a software change.
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Automated software checking:

• All source code is compiled with gcc -Wall -Werror. This enables all warnings

(e.g. unused variables, reading variables before they are initialized, missing

arguments to printf, and so on), and treats warnings as fatal compilation

errors.

• The open-source valgrind tool finds, at run time, many (but certainly not

all) common programming errors. These include reading or writing off the end

of arrays, continuing to use dynamically allocated memory after it is freed,

dynamically allocated memory which is not freed, and reading of uninitialized

variables.

• The open-source gprof tool tabulates in which subroutines CPU time is being

spent. This helps to identify inefficient programming. See also the gprof output

in section 9.20.

9.17 Saved realizations

The computer program described up to this point is called mcrcm, since it does Markov

chain Monte Carlo simulations for the random-cycle model. As described in section

9.2, it uses MCMC methods to generate a sequence of permutations, accumulating

sums of various random variables along the way, in order to display statistics of those

random variables at the end.

A key software-optimization insight was offered by Volker Betz. Namely, the

MCMC steps are time-consuming, so one might optionally wish to have mcrcm write

the sequence of realized permutations to a disk file. Then, another program can

simply read those permutations — quicker than they were generated using MCMC

methods — and compute random variables. This is particularly advantageous in
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a shoulder-to-shoulder collaboration environment: when one invents a new random

variable to compute, one need not re-realize another sequence of permutations.

The trade-off is that a single realization file can be quite large. Specifically, M

permutations are stored. For each permtuation, 3 bytes are stored for each of N

lattice sites xi: these are the x, y, and z coordinates of π(xi). The realization file

contains a header and a footer of negligible size (a few bytes each). Thus, it totals

3ML3 in size — for example, 240 MB for L = 20 and M = 104, and one would likely

want several such files for different values of L, T , and/or α. One might, of course,

develop more clever storage representations which reduce the necessary file size.

This second program is called rvrcm, since it computes random variables for the

random-cycle model. By default, mcrcm does not store realization files: they oc-

cupy several megabytes for each run, totalling several gigabytes for a run through

a set of parameters (chapter 10). If desired, however, one invokes mcrcm with an

extra command-line argument rzn=myfile.rzn. Later, one invokes simply rvrcm

rzn=myfile.rzn. The .rzn file contains a header with all control parameters which

were initially supplied to mcrcm. The rvrcm program prints the same information as

described in section 9.18.

For example:

mcrcm L=20 T=6.4 rell alpha0=0.2 rzn=experiment.rzn

rvrcm rzn=experiment.rzn

A .rzn file consists of three parts: The header contains all control parameters, e.g.

L, T , interaction type, etc. The footer contains elapsed time spent in mcrcm as well

as Metropolis statistics, i.e. acceptance rate for Metropolis proposals. In between is

a sequence of permutation realizations.
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9.18 MCMC output

Outputs from mcrcm fall into two categories: (1) sample statistics of random variables,

which are always printed; (2) per-realization values of specified random variables,

which are optionally printed.

Each invocation of mcrcm prints information such as the following. For interactive

use, one views these data on-screen, or may send them to a printer. When running

through a set of parameters, typically this output is redirected to a self-descriptive

filename, e.g. L 80 T 6.7 alpha 0.000.txt, as described in chapter 10.

# RNG = Mersenne twister

# L = 80 d = 3 N = 512000

# Boundary conditions: periodic.

# T = 6.7000000 beta = 0.1492537 alpha0 = 0.0000000

# gamma = 0.0500000

# Interactions: constant r_ell.

# Initial permutation: identity.

# Site selection for Metropolis sweeps: sequential.

# Thermalization is detected by 40 turning points of system energy

# smoothed over a 200-point window.

# Terminate after 100000 accumulations:

# * 1 SAR sweep per accumulation.

# * 0 worm sweeps per accumulation.

#

# Initial HDV = 0.0000000 0.0000000 0.0000000

# Sweep 0 HDV = 54809.3500000 54809.3500000 0.0000000

# Thermalization complete: sweep 1778 H = 359840.2499997

# Ntherm = 1778

# Accumulation complete: acc 100000 H = 373669.0499998
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#

# rho_infty max dev = 0.9140418 at k = 21976

# fI = 0.0859582

#

# k= 1 <counts> 339457.4268600

# k= 2 <counts> 27347.3173400

# k= 3 <counts> 5740.3265700

# k= 4 <counts> 2631.4549600

# k= 5 <counts> 1342.3165500

# k= 6 <counts> 804.4376700

# k= 7 <counts> 512.2292200

# k= 8 <counts> 351.5231700

# k= 9 <counts> 252.2729800

# k= 10 <counts> 188.1364500

# k*counts sum = 512000.0000000

#

# fM = 0.0537150

# fM/fI = 0.6248961

#

# mean_H = 371597.3002873

# stddev_H = 1701.6752760

# tauint_H = 481.1931762

# eta_H = 0.9958523

# cssm_H = 118.0419619

#

# mean_D = 371597.3002873

# mean_V = 0.0000000

# mean_h = 0.7257760
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# mean_d = 0.7257760

# mean_v = 0.0000000

#

# mean_r2 = 27347.3173400

# stddev_r2 = 172.6096035

# tauint_r2 = 163.4730368

# eta_r2 = 0.9878400

# cssm_r2 = 6.9789168

#

# mean_lmax = 27502.0656900

# stddev_lmax = 8577.6258591

# tauint_lmax = 6.0556505

# eta_lmax = 0.7165392

# cssm_lmax = 66.7494207

#

# mean_jumplenbar = 0.3754422

# stddev_jumplenbar = 0.0015945

# maxjumplen = 3.7416574

#

# mean_ellbar = 1893.6137332

# stddev_ellbar = 821.5275072

# tauint_ellbar = 12.1998395

# eta_ellbar = 0.8484830

# cssm_ellbar = 9.0740082

#

# mean_recipmeanspatlen = 0.0005406

# stddev_recipmeanspatlen = 0.0002356

# tauint_recipmeanspatlen = 38.0712869
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# eta_recipmeanspatlen = 0.9488115

# cssm_recipmeanspatlen = 0.0000046

#

# mean_wno = 20.3278800

# stddev_wno = 16.5433065

#

# mean_fS = 0.5674866

# stddev_fS = 0.4618340

# tauint_fS = 3.5586073

# eta_fS = 0.5612695

# cssm_fS = 0.0027550

# recip_fS = 1.7621560

#

# mean_fW = 0.0810994

# stddev_fW = 0.0082444

# tauint_fW = 155.0150517

# eta_fW = 0.9871807

# cssm_fW = 0.0003246

# recip_fW = 12.3305479

#

# Wx < -10: 1 / 100000 = 0.00001000

# Wx = -10: 14 / 100000 = 0.00014000

# Wx = -9: 0 / 100000 = 0.00000000

# Wx = -8: 233 / 100000 = 0.00233000

# Wx = -7: 0 / 100000 = 0.00000000

# Wx = -6: 2195 / 100000 = 0.02195000

# Wx = -5: 0 / 100000 = 0.00000000

# Wx = -4: 9496 / 100000 = 0.09496000



135

# Wx = -3: 0 / 100000 = 0.00000000

# Wx = -2: 22900 / 100000 = 0.22900000

# Wx = -1: 0 / 100000 = 0.00000000

# Wx = 0: 30423 / 100000 = 0.30423000

# Wx = 1: 0 / 100000 = 0.00000000

# Wx = 2: 22919 / 100000 = 0.22919000

# Wx = 3: 0 / 100000 = 0.00000000

# Wx = 4: 9341 / 100000 = 0.09341000

# Wx = 5: 0 / 100000 = 0.00000000

# Wx = 6: 2196 / 100000 = 0.02196000

# Wx = 7: 0 / 100000 = 0.00000000

# Wx = 8: 261 / 100000 = 0.00261000

# Wx = 9: 0 / 100000 = 0.00000000

# Wx = 10: 19 / 100000 = 0.00019000

# Wx > 10: 2 / 100000 = 0.00002000

# Wx_min = -12

# Wx_max = 12

#

# OPENS:

# None.

# CLOSES:

# None.

# HS:

# None.

# TS:

# None.

# GK:

# Metropolis keeps: 44596819174 / 51200000000 ( 87.103%)
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# Metropolis changes: 6603180826 / 51200000000 ( 12.897%)

# Elapsed thermalization seconds: 302.841613

# Elapsed accumulation seconds: 136966.313018

# Elapsed total seconds: 137269.154631

In addition to the above sample statistics, per-realization values of specified ran-

dom variables may also be printed. A full list of options may be found by invoking

mcrcm --help. For example, mcrcm hv=1 (i.e. H verbosity is set to 1, rather than

its default value of 0) results in the following output:

# RNG = Mersenne twister

# L = 10 d = 3 N = 1000

... (header information is similar to the previous example)

# Initial HDV = 0.00000 0.00000 0.00000

# Sweep 0 HDV = 132.60000 132.60000 0.00000

0 132.60000 132.60000 0.00000 132.60000 0.00000 # 0 H D V

1 190.40000 190.40000 0.00000 161.50000 0.00000 # 0 H D V

... (many per-realization values omitted for brevity)

597 629.00000 629.00000 0.00000 603.73065 0.00000 # 0 H D V

598 632.40000 632.40000 0.00000 603.73065 0.00000 # 0 H D V

599 642.60000 642.60000 0.00000 603.73065 0.00000 # 0 H D V

# Thermalization complete: sweep 600 H = 642.6000000

600 598.40000 598.40000 0.00000 598.40000 598.40000 # 1 H

601 591.60000 591.60000 0.00000 591.60000 591.60000 # 1 H

602 581.40000 581.40000 0.00000 581.40000 581.40000 # 1 H

... (many per-realization values omitted for brevity)

1597 581.40000 581.40000 0.00000 581.40000 581.40000 # 1 H

1598 578.00000 578.00000 0.00000 578.00000 578.00000 # 1 H

1599 595.00000 595.00000 0.00000 595.00000 595.00000 # 1 H
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# Accumulation complete: acc 1000 H = 372745.0766667

#

# rho_infty max dev = 0.9471790 at k = 27

# fI = 0.0528210

... (statistical output as in the previous example)

# Elapsed thermalization seconds: 0.241671

# Elapsed accumulation seconds: 0.477683

# Elapsed total seconds: 0.719354

Notice that all the sample statistics are printed as before, on lines which start

with a pound sign. In addition, since H verbosity was requested, non-pound-sign

lines show Metropolis sweep number, H , D, V , smoothed H (see section 9.6), and

thermalization flag times smoothed H . With pound-sign lines stripped out or ignored,

a graphing utility can then be used to produce a plot such as that shown in figure 9.4

on page 117.

9.19 Pseudorandom numbers

The default pseudorandom-number generator (“RNG”) is the Mersenne Twister [MN].

One may instead select, at compile time via rcmrand.h, rand48 (of lower quality than

Mersenne twister), Linux /dev/urandom (slower than Mersenne twister), or psdes

from Numerical Recipes [NR].

9.20 Tools

• Linux environment, although: in principle everything other than use of /dev/urandom

should be portable to other operating systems.

• Optimizing compiler with full warnings enabled: gcc -O3 -Wall -Werror.

• Build tool: make and automatic makefile generation.
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• Performance analyzer: gprof. This shows where a program is spending most

of its time.

• Error detector: valgrind. Finds many (but not all) common errors, e.g. malloc

without free, or double free.

• Code navigation: ctags. Allows a smart text editor (e.g. vim, emacs) to jump

directly to a subroutine body.

• Graphing utility, used for all plots in this dissertation: pgr, which is the author’s

Python script wrapped around pylab.plot().

Sample gprof output:

% cumul.self self total

time secs. secs. calls us/call us/call name

32.52 1.20 1.20 1500 0.80 1.41 SO_sweep

25.47 2.14 0.94 21597444 0.00 0.00 get_mtrand_double

9.49 2.49 0.35 1500 0.23 0.51 U_sweep

7.32 2.76 0.27 1000 0.27 0.27 get_pmt_winding_numbers

5.15 2.95 0.19 1000 0.19 0.19 get_mean_cycle_length

4.61 3.12 0.17 12000000 0.00 0.00 get_Delta_V_SO

2.71 3.22 0.10 12000000 0.00 0.00 get_mtrand_int32

2.71 3.32 0.10 1000 0.10 0.10 get_mean_jump_length

2.44 3.41 0.09 12000000 0.00 0.00 find_dxy_dyx_xoy

2.17 3.49 0.08 1000 0.08 0.14 get_rho_L_pi

1.63 3.55 0.06 1000 0.06 0.06 pmt_get_cycle_counts_and_lmax

...

...

0.00 3.69 0.00 1 0.00 0.00 report_metro_stats

0.00 3.69 0.00 1 0.00 0.00 set_default_mcmc_params
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0.00 3.69 0.00 1 0.00 0.12 set_up_cycinfo_list

0.00 3.69 0.00 1 0.00 0.00 therm_ctl_free

0.00 3.69 0.00 1 0.00 0.00 therm_ctl_init

What is being seen here:

• The name column shows the names of all subroutines invoked during the execu-

tion of the program.

• The % time column shows the percent of total CPU time spent in a given

subroutine. The output is sorted by decreasing order of CPU time.

• The self-seconds column shows the total wall time spent in the given subrou-

tine; the cumulative-seconds column shows total wall time spent in the given

subroutine and all those listed above it.

• The calls column counts the number of invocations of the subroutine. This

helps the programmer distinguish between a routine which is time-consuming

on each call, and a routine which is quick but perhaps overused.

• The self us/call and total us/call columns displays the mean and total

number of microseconds spent in invocations to the subroutine.

9.21 Performance

Memory requirements with N = L3 points and M = 105 sweeps, taken from the

VSZ field of a Linux ps aux listing, are shown in table 9.1. A few hundred bytes are

needed for each lattice point; this scales linearly with N . As well, for each random

variable, the full time series over all M permutations in the MCMC sequence is saved.

This scales linearly with M .

Figure 9.14 shows CPU times as a function of L, T , and α. For T near Tc and

L = 30, 40, 50, in order to reduce variance in the critical-slowdown regime, 106 sweeps
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were performed. The sawtooth effect is due to the fact that simulations for a few initial

values of T , e.g. T = 6.74, 6.76, were performed in a different computing environment

than later simulations for more values of T including T = 6.75, 6.834, etc.

L 10 20 30 40 50 80 100 200
Megabytes 25 26 29 34 44 103 177 1243

Table 9.1. Memory requirements for mcrcm with M = 105 and varying L.
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Figure 9.14. CPU time in seconds as function of L and T , for α = 0, 0.002.
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Figure 9.15. Scalability of the SAR algorithm. CPU times for 105 sweeps are shown
as a function of N = L3 for L = 30, 40, 50, 60, 70, and 80. SAR time is nearly linear
in N .

As was discussed in section 9.5, most computations in our simulations are O(N),

with an O(N2) component that has a small constant of proportionality. See figure
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9.15 which substantiates this claim. See also section 7.8 for a comparison of the SAR

algorithm with the worm algorithm.
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Chapter 10

Batching of MCMC runs

As described in chapter 9, the C program mcrcm is given a set of parameters as

follows: L, T , interaction type and interaction parameter α, algorithm type (i.e. SO,

SAR, band-update, or worm) and number of sweeps. Then a sequence of random

permutations is generated, and sample means of random variables are computed over

that sequence. The result is, for example, that the system energy H had sample mean

4939.7 with sample standard deviation 155.6.

One wishes, however, to find patterns in such data. In particular, as described in

chapter 11: for various interactions α, for larger and larger L permitting extrapolation

to the thermodynamic limit, one wishes to estimate the critical temperature Tc at

which various order parameters (section 3.7) have a point of non-analyticity in the

infinite-volume limit.

The C language was chosen for mcrcm, due to its efficiency for large-scale com-

putations. (Data sets discussed in this dissertation have taken approximately 5.5

CPU-years; the choice of C has proved worthwhile, as an early Python implementa-

tion ran a factor of 40 times slower.) For the relatively lightweight task of scheduling

parallel-processing tasks over multiple parameter values, extracting and collating sam-

ple statistics of random variables, and viewing the results — tasks for which the CPU

time is measured in minutes, at most — it suffices to use easier-to-code scripting

languages such as Bash or Python. Examples are shown in subsequent sections. The

author has developed a flexible Python module, taskutil.py, for automating most

of the tasks described in this chapter. However, such content is non-mathematical,

of dubious value to an already lengthy mathematics dissertation. Equivalent, but

briefer and simpler, scripting snippets in Bash will be shown instead.
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10.1 Collecting data over multiple parameter values

Given a choice of parameter nacc (number of sweeps), and choices of parameters L,

T , and α as described in chapter 2, a simple example of running mcrcm programs to

compute sample statistics of random variables is as follows:

nacc=100000

datadir=sar_nacc_${nacc}

Ls="40 60 80"

Ts="6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20"

alphas="0.000 0.001 0.002"

mkdir -p $datadir

for L in $Ls; do

for T in $Ts; do

for alpha in $alphas; do

file=$datadir/L_${L}_T_${T}_rell_alpha_${alpha}.txt

mcrcm L=$L T=$T rell alpha0=$alpha nacc=$nacc > $file

done

done

done

For example, one of the loop iterations will execute the command

mcrcm L=40 T=6.70 rell alpha0=0.001 nacc=100000

and direct the output (as described in section 9.18) to the file

sar_nacc_100000/L_40_T_6.70_rell_alpha_0.001.txt,

the contents of which were shown in section 9.18. In total, 81 such files will be

produced. Next one may wish to, say, select out only the values of mean fS — the

sample mean of fS (sections 3.6 and 9.14) — from all 81 files.
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The author’s taskutil.py module implements this basic idea, with various elabo-

rations. For example, one might divide the 81 tasks into 3 tasks for 27 processors each,

with processors running in parallel. One might also wish to implement restart logic in

case of unexpected downtime (e.g. due to a thunderstorm), wherein the script sees if

a given file has already been completed rather than launching an already-completed

task.

10.2 Extracting data over multiple parameter values

Given a list of data files as described in the previous section, one may wish to extract

out a specified sample statistic for a specified random variable. A simple sample

script which does this is

RV_name="mean_fS"

nacc=100000

datadir=sar_nacc_${nacc}

Ls="40 60 80"

Ts="6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20"

alphas="0.000 0.001 0.002"

for alpha in $alphas; do

echo "alpha = $alpha"

for L in $Ls; do

for T in $Ts; do

file=$datadir/L_${L}_T_${T}_rell_alpha_${alpha}.txt

RV=‘grep $RV_name $file | awk ’{print $NF}’‘

echo $L $T $RV

done

done

echo ""
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done

alpha = 0.000

40 6.40 1.0506240

40 6.50 0.8573933

...

alpha = 0.1

40 6.40 1.3394773

40 6.50 1.2505133

...

Such output may be analyzed or plotted as desired. Examples were shown throughout

chapter 9.

10.3 Parallel processing

As discussed in section 10.1, when one is examining a set of (L, T, α) parameter

values, one invokes an mcrcm executable for each particular triple of (L, T, α). If

sufficiently many processors are available, there is no reason one cannot run, say,

(L = 40, T = 6.5, α = 0.1) at the same time as (L = 40, T = 6.5, α = 0.2). In

high-performance computing jargon, such parallelism is called trivially parallel or

embarrassingly parallel. The author uses three such paradigms:

• On a single-processor laptop, mcrcm programs are launched in sequence, as in

section 10.1.

• On the University of Arizona Department of Mathematics chivo cluster, which

is four hosts with two CPUs each, one might (to be civil to other users) pick

three hosts, running one parameter set on each, further prefixing with Unix

nice -10.
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• On the University of Arizona High Performance Computing Center’s ICE clus-

ter, which is a single host with over 1000 CPUs shared by dozens of on-campus

researchers, one might request, say, 32 CPUs and divide the parameter set

among those CPUs.

What has not been implemented is parallelization of mcrcm itself. As of this

writing, there is no need to do so.
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Chapter 11

Results

11.1 Finite-size scaling methodology

Finite-size scaling takes the form of a hypothesis, or rather a set of hypotheses, which

is tested against the data. See [PV] for an excellent survey of techniques; see section

11.2 for a derivation of the formulas.

We have an infinite-volume random variable S(T ), e.g. any of the order parameters

defined in section 3.7. The finite-volume quantity is SL(T ). Define t = (T − Tc)/Tc.

Examine, say, 0.99 < t < 1.01. The first hypothesis is that the correlation length

ξ(T ) follows a power law

ξ(T ) ∼ |t|−ν, T → Tc

For the infinite-volume quantity, we also expect a power-law behavior

S(T ) ∼ tρ, (−t)ρ, or |t|ρ, i.e. ξ−ρ/ν.

(The domain of validity is t < 0 or t > 0 depending on whether the order parameter

S is left-sided or right-sided, respectively.) One moreover hypothesizes that for T

near Tc, SL(T ) and S(T ) are related by a universal function QS which depends on T

only through the ratio L/ξ:

SL(T ) = L−ρ/νQS(L1/νt) ∼ L−ρ/νQS((L/ξ)1/ν). (11.1.1)

The flow of data and respective uncertainties are as follows:

• Markov chain Monte Carlo simulations, with error bars determined using the

method of integrated autocorrelation time (see [Berg] and our appendix B),

yield SL(T, α) data points. There are five order parameters S, six values of L
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(30, 40, 50, 60, 70, 80), nine values of α, and a few dozen values of T for each

α.

• For each S, L, and α, we use SL(T, α) values for all available values of T and

α to estimate 1 ρ̂S(L). (Critical exponents are assumed to be independent of α

for small α, or with weak enough dependence on α that that dependence is lost

in the noise.) Error bars may be propagated from the MCMC simulations, or

computed from regression uncertainties.

• Extrapolating ρ̂S(L) in L → ∞ results in the five estimated critical exponents

ρ̂S. Uncertainties are computed from the regression analysis.

• Once the critical exponents have been estimated, we obtain T̂c,S(α) for each

of the five order parameters S and for each α. Uncertainties are computed by

visual inspection of the crossing plots discussed in section 11.5.

• Once the critical exponents and Tc have been estimated, one should be able to

obtain plots of the universal function QS which is, up to sampling variability,

independent of L, T , and α. This verifies that the finite-size-scaling hypothesis

was the correct approach to use.

• The shift in reduced critical temperature is as in equation (2.3.1). Error bars

are computed from regression uncertainties.

11.2 Derivation of finite-size scaling

A clear explanation is found in on-line notes of Claudia Brüns of the Argelander

Institute for Astronomy of the University of Bonn. (We are unwilling to provide

a bibliographic reference to an internet address, which may change in the future.

Nonetheless, we feel compelled to acknowledge the author to whom this expalanation

1We use the statistics convention wherein ρ̂ is an experimental estimator for the exact (but
unknown) value ρ.
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is due.) Those notes are are reproduced essentially verbatim in this section, except

for change of notation.

For T away from Tc, ξ ≪ L and so SL(T ) is not affected by lattice size. The finite-

volume quantity SL(T ) corresponds to the infinite-volume quantity S∞(T ), and we

know S∞(T ) ∝ ξ−ρ/ν as discussed in the previous section. For T near Tc, on the other

hand, the correlation length ξ approaches the system size L so SL(T ) ∝ ξ−ρ/ν ≈ L−ρ/ν .

As well, SL(T ) differs significantly from S∞(T ) via the constant of proportionality.

Combining these two regimes into a single expression gives

SL(T ) = ξ−ρ/νRS(L/ξ) (11.2.1)

where

RS(L/ξ) ∝
{

constant, ξ ≪ L

(L/ξ)−ρ/ν , ξ → L.
(11.2.2)

The infinite-volume correlation length ξ = ξ∞(T ) is unknown, so we define a scaling

function QS to get rid of it:

QS(L/ξ) = (L/ξ)ρRS((L/ξ)ν), (11.2.3)

i.e.

RS(L/ξ) = (L/ξ)−ρ/νQS((L/ξ)1/ν). (11.2.4)

The scaling function QS is finite for ξ → L:

QS(L/ξ) = (L/ξ)ρRS((L/ξ)ν) (11.2.5)

QS(L/ξ) ∝ (L/ξ)ρ · ((L/ξ)ν)−ρ/ν = 1. (11.2.6)

Placing equation (11.2.4) into equation (11.2.1) yields

SL(T ) = ξ−ρ/ν(L/ξ)−ρ/ν ·QS((L/ξ)1/ν) (11.2.7)

= L−ρ/νQS(L1/νξ−1/ν) (11.2.8)

= L−ρ/νQS(L1/νt). (11.2.9)
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Figure 11.1. Order parameters fmax and 1/ξ for L = 40, 60, 80 and α = 0 and
0.001. The remaining order parameters fS, fW , and fI behave similarly to fmax but
with not all with the same critical exponents.

11.3 Determination of L-dependent critical exponents

For each of order parameter S, interaction parameter α, and box length L, we examine

all S(L, T, α) data for which S > ε, with ε taken from the plots to ensure that we

examine the portions of the curves corresponding to non-zero order parameter in the

infinite limit (see figure 11.1). For 1/ξ, this means T > Tc; for the other four order

parameters, this means T < Tc. From plots such as those in figure 11.1, we choose ε

to be 0.1 for 1/ξ, 0.01 for fmax, 0.01 for fI , 0.05 for fS, and 0.01 for fW . For each S, α,

and L, we then apply linear regression to S(L, T )1/ρS for varying ρS. We find ρ̂S(L)

which optimizes the correlation coefficient [Young] of the linear regression. Results

are shown in figure 11.2. Given ρ̂S(L) along with its corresponding linear-regression

parameters m̂ and b̂, we may plot a power-law fit to the simulational data. One such

comparison plot is shown in figure 11.3.

11.4 Extrapolation of critical exponents for the infinite-volume

limit

Next, for each S, given estimates ρ̂S(L) for increasing values of L, we plot ρ̂S(L)

versus 1/L. The vertical intercept of this plot estimates the infinite-volume exponent
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Figure 11.2. On the left: determination of critical exponent ρ̂S(L, α) for order
parameter fS, as the value which minimizes linear-regression error for SL(T, α)1/ρ.
Visually, one sees ρ̂S(L = 80, α = 0.0) ≈ 0.59. On the right: estimated critical
exponents for L = 30, 40, 50, 60, 70, 80.

α Mean Std.err. Count

0.000 0.6242981 0.0000897 78
0.0001 0.6243312 0.0001079 78
0.0002 0.6245691 0.0000921 72
0.0005 0.6245402 0.0001062 66
0.0008 0.6244347 0.0000856 72
0.001 0.6244779 0.0001020 60
0.002 0.6246345 0.0001154 42
0.003 0.6245906 0.0001559 48
0.004 0.6245966 0.0001964 42

Table 11.1. fmax/fI as a function of α. An upward trend is visible, but it is not
pronounced.
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Figure 11.3. Power-law fit vs. raw simulational data for order parameter fS, α = 0.
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ν̂ 0.5559 ± 0.0037
ρ̂S 0.6201 ± 0.0065
ρ̂W 0.7750 ± 0.0073
ρ̂I 0.7451 ± 0.0052
ρ̂M 0.7486 ± 0.0059

Table 11.2. Extrapolated estimates of the infinite-volume critical exponents, found
from the vertical intercept of figure 11.2.

ρ̂S(α). (See figure 11.2.) Results are shown in table 11.2.

11.5 Determination of critical temperature

Given the above estimators of the critical exponents, the crossing method [PV] es-

timates Tc(α). Namely, we plot Lρ̂/ν̂SL(T ) as a function of T . At T = Tc we have

t = 0 and Lρ/νSL(T ) = QS(0), regardless of L (equation (11.1.1)). Thus, these curves

will cross (approximately, due to sampling variability) at T = Tc. If they do not,

the finite-size-scaling hypothesis is not verified. (Note in particular that for order

parameter 1/ξ whose critical exponent is ν, we apply the crossing method to LSL(T )

as a function of T : thus, the Tc(α) estimate using 1/ξ is independent of ν̂.) See for

example figure 11.4. Results are in table 11.3 and figure 11.6

Using order parameters fS and fW , which depend on winding phenomena, one

does not see clear crossing behavior. We suggest that either this is related to the

even-winding-number issue discussed in section 5.4, or fS and fW are not good order

parameters for this model. We suspect the former; in every manner except this

crossing issue, fS and fW behave as expected. (In the absence of clear crossing

behavior for fS and fW , for the sake of discussion we nonetheless provide best visual

estimates for T̂c(α) for fS and fW . These will not be used for further analysis toward

our final result.)



153

6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05
T

0
5

10
15
20
25
30
35

L
ˆ

>/ˆ?f I(L,T) fI , raw data, @=0

L=30
L=40
L=50
L=60
L=70
L=80

6.80 6.82 6.84 6.86 6.88 6.90
T

0
2
4
6
8

10
12
14

L
ˆ

A/ˆBf I(L,T) fI , raw data, C=0

L=30
L=40
L=50
L=60
L=70
L=80

Figure 11.4. The crossing method to estimate Tc(α) for order parameter fI , with
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point of the plots. The upper-right-hand plot is a close-up of the upper-left-hand
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Figure 11.5. Collapse plot for order parameter 1/ξ.

11.6 Verification of finite-size-scaling hypothesis

Now that we have estimated ρS, ν, and Tc(α) for each of the five order parameters S,

we may plot LρS/νSL(T, α) as a function of L1/νt. This is a plot of the scaling function

QS. If the hypothesis is correct, the curves for all L should coincide, or collapse, to

within sampling error — which they do (e.g. figure 11.5).

11.7 Determination of the shift in critical temperature

As discussed in section 2.5, we are seeking a linear relationship between ∆Tc(α) and

α, with constant c. This can be visualized in figure 11.7, which is obtained from the

Tc,S(α) data of figure 11.6 using equation (2.3.1). We start with all the (α, ∆Tc(α))
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data points from section 11.5. We omit values obtained using fS and fW , due to the

aforemention lack of crossing behavior. We also omit values obtained using α = 0.004,

since the critical-temperature plots of figure 11.6 suggests that this starts to exceed

the domain of linear approximation. We perform a linear regression with error bars

[Young] on the (α, ∆Tc(α)) data points. We use a slope-only fit, rather than a slope-

intercept fit, since ∆Tc(α) has zero intercept by its very definition. We find

c = 0.618± 0.086 (2 σ error bar).

Within experimental uncertainty, this result, for points on the lattice with Ewens

cycle-weights, matches the c value of equation (2.5.3) for point positions varying on

the continuum with decaying-cycle-weight interactions.

11.8 Constancy of the macroscopic-cycle quotient

As discussed in section 2.5, we hypothesize that the macroscopic-cycle quotient fmax/fI

in the infinite-volume limit is dependent on α but is constant in T where it is defined,

i.e. for T < Tc since fI = 0 for T > Tc. This may be visualized by comparing figures

such as 2.4: one sees that fmax and fI appear to have the same critical exponent.

Alternatively, one may plot the ratio fmax/fI (figure 11.8). In the infinite-volume
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Figure 11.7. Shift in critical temperature, and linear fit, as function of α. Recall
from equation (2.3.1) that ∆Tc(α) = Tc(α)−Tc(0)

Tc(0)
. Order parameters fS and fW were

omitted from the fit, due to lack of crossing behavior; α = 0.004 was omitted due to
onset of curvature of Tc(α). The heavy solid line shows a linear fit with empirically
determined constant of proportionality; the lighter solid line is the comparison value
of Betz and Ueltschi (slope 2/3) for decaying cycle weights and continuum point
positions.
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α Using 1/ξ Using fS Using fW Using fI Using fmax

0.000 6.8689 6.8730 6.8727 6.8760 6.8767
0.0001 6.8728 6.8756 6.8790 6.8810 6.8784
0.0002 6.8748 6.8763 6.8785 6.8773 6.8786
0.0005 6.8734 6.8776 6.8778 6.8790 6.8777
0.0008 6.8754 6.8763 6.8789 6.8803 6.8814
0.001 6.8748 6.8775 6.8784 6.8789 6.8790
0.002 6.8772 6.8840 6.8865 6.8826 6.8850
0.003 6.8824 6.8884 6.8880 6.8886 6.8884
0.004 6.8860 6.8890 6.8882 6.8910 6.8892

Table 11.3. Critical temperature as a function of α. All values have error bars of
approximately 0.003.

limit, fI is zero for T > Tc and so we are interested only in the values of the quotient

for T < Tc. In that region, the quotient does indeed appear to be constant in T .

We test this constancy hypothesis as follows. The respective critical exponents

are ρM and ρI . The estimators are ρ̂M and ρ̂I , computed by averaging over several

different values of L and α as described in section 11.4. Treating these estimators as

normally distributed (as justified by the raw data), we obtain the standard deviations

of the ρ̂M,I(L, α) samples, along with the standard deviations of the means ρ̂M,I :

ρ̂M = 0.7482 ρ̂I = 0.7445

sM = 0.0428 sI = 0.0374

nM = 50 nI = 50

sM/
√

nM = 0.006059 sI/
√

nI = 0.005295.

The difference ρ̂M − ρ̂I is also normally distributed about the true mean ρM − ρI ,

but ρ̂M and ρ̂I are not independent since they are sample means of random variables

computed from the same Markov chain Monte Carlo sequence of permutations. Thus

we use

Var(ρ̂M − ρ̂I) = Var(ρ̂M ) + Var(ρ̂I)− 2Cov(ρ̂M , ρ̂I).
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Figure 11.8. Macroscopic-cycle quotient fmax/fI for α = 0, 0.002.
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Computing the sample covariance of the ρ̂M(L, α) and ρ̂I(L, α) data series, we obtain

the covariance and resulting standard error sd of the difference

Cov(ρ̂M , ρ̂I) = 0.0004 sd/
√

n = 0.0070.

Normalizing, we find

ρ̂M − ρ̂I = 0.0037
ρ̂M − ρ̂I

sd/
√

n
=

0.0037

0.0070
= 0.5293.

We hypothesize ρM − ρI = 0; the estimated value ρ̂M − ρ̂I lies comfortably within

a standard deviation of this. We note, moreover, that the value of fmax/fI , while

constant in T , trends upward with α (see table 11.1 and figure 11.9). This merits

further investigation.
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11.9 Conclusions

(1) For annealed point positions, equation (2.5.2) gives Tc(0) ≈ 6.625. Our result

Tc(0) = 6.873± 0.006 (2 σ error bar) unambiguously shows that the lattice structure

modifies the critical temperature, even in the non-interacting (α = 0) case.

(2) As detailed in section 11.7, we find that the reduced shift in critical tempera-

ture as a function of interaction parameter α is

∆Tc(α) ≈ Tc(α)− Tc(0)

Tc(0)
= cα

with

c = 0.618± 0.086 (2 σ error bar).

This is compatible (section 2.5) with the related result of [BU08]. Even though the

lattice structure changes the critical temperature (conclusion 1), the shift in critical

temperature is unaffected.

(3) As described in section 2.4, Shepp and Lloyd [SL] find that E[ℓmax]/N ≈ 0.6243

for uniform-random (non-spatial) permutations. For spatial permutations, we define

a macroscopic-cycle quotient E[ℓmax]/NfI which is the ratio of mean maximum cycle

length as a fraction of the number of sites in long cycles. Our result (table 11.1 and

figure 11.9) is compatible with that of Shepp and Lloyd for the non-interacting case,

with an increase which appears to be linear as a function of interaction parameter α.

(4) We proved correctness for the pre-existing SO algorithm [GRU]; we invented

the SAR, band-update, and worm algorithms, and proved them correct. The band-

update algorithm suffers from a too-low acceptance probability; the worm algorithm

suffers from a too-long stopping time; the SO algorithm prohibits (with very high

probability) non-zero winding numbers. The SAR algorithm is our current best op-

tion, even though it only permits even winding numbers. Solving the deficiencies of

the band-update or worm algorithms would be worth the effort.
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(5) The order parameter 1/ξ is the most convenient to use for our problem: in

the finite-size-scaling analysis, the crossings are independent of estimated critical

exponent ν̂. The order parameters fI and fmax are second-most convenient; one

must estimate their critical exponents, but they are usable. The order parameters

fS and fW , which depend on winding phenomena, do not pass the finite-size-scaling

hypothesis. Either they are not good order parameters for the model of random

spatial permutations, or they would benefit from a full-winding-number algorithm as

discussed in the previous paragraph.
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Chapter 12

Future work

Macroscopic-cycle quotient: Now that the α-dependence of the macroscopic-cycle

quotient’s constant upon α has been found empirically, one would next like to explain

that dependence analytically.

Non-asymptotic algorithm correctness: The detailed-balance correctness

proof of the swap-and-reverse algorithm shows that there is a non-zero transition

probability between all pairs of permutations. However, those non-zero transition

probabilities can be quite small. As the number of Metropolis steps goes to infinity,

asymptotically all permutations can be reached; more interesting is the question of

which permutations are actually reachable in reasonable simulation time. One an-

swers this question empirically simply by running simulations; perhaps this suffices.

For the system discussed in this paper, as well as for other systems studied using

MCMC methods, it would be useful to have a non-asymptotic correctness theory.

Winding numbers of all parities: Ideally, one would have an algorithm to

permit odd winding numbers, as discussed in section 5.4.

Bose-gas Hamiltonian: Sampling from the true Bose-gas distribution using the

random-cycle model requires three changes. First, one needs to conduct simulations

using the Bose-gas interaction (equation (2.1.1)) rather than the cycle-weight interac-

tion (equation (2.1.3)). The interaction term V is a CPU-intensive Brownian-bridge

computation [BU07]; unpublished work of Ueltschi and Betz shows that it may be ap-

proximated in the weak-interaction case by a simpler Riemann integral. Precomputed

tables and interpolation may make use of this integral feasible.

Second, point positions must be allowed to vary on the continuum. This entails

a second type of Metropolis step, in addition to that shown in section 5.1. Namely,



161

one picks a point and moves it to a new position nearby, using the detailed-balance

condition to choose the acceptance probability.

Third, software efficiency requires a hierarchical partitioning of Λ. The Metropo-

lis step of section 5.1 relies on picking π(y) near to π(x). For points on the lattice,

this is easy: each site has six nearest neighbors. For freely placed points, though,

one must remember which sites are close to which. The most naive implementation

involves computing the distances between all N(N − 1)/2 pairs of points; the O(N2)

computation time is overwhelming. Instead, the lattice may be partitioned into sub-

cubes. Distances need to be computed only between each given point x and those in

x’s subcube and the 26 nearest-neighbor subcubes.

The second and third points simply require a software effort. Implementing them

will be worthwhile only if the interaction terms can be simplified to the point that

they are computationally feasible. This is a mathematical effort.
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Appendix A

Bose-gas derivation of random permutations

In this sketch, we motivate the otherwise ab-initio construction of the model of ran-

dom spatial permutations in chapter 2. More details may be found in [BU07, U07].

As above, we write X = (x1, . . . ,xN) for x1, . . . ,xN in a d-dimensional cube Λ of

width L. The Hamiltonian for N pair-interacting particles is

H(X) = −
N
∑

i=1

∇2
i +

∑

1≤i,j≤N

U(xi − xj). (A.0.1)

The U considered here is either identically zero (for the non-interacting case), or a

hard-core potential with radius a, i.e. U(xi − xj) is infinite for |xi − xj| ≤ a and

zero for |xi − xj| > a. (This is an approximation to the true pair potential between

helium atoms. See figure A.1 [Ceperley].) The hard-core radius a is also known as

the scattering length.

Figure A.1. Pair potential between helium atoms (Ceperley, 1995).
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The partition function for N distinguishable particles1 is Tr(e−βH). Symmetrizing

the partitition function, since our particles are bosons, the trace is

TrL2
sym

(e−βH) = TrL2

(

P+e−βH
)

= TrL2

(

e−βHP+

)

where

P+ f(x1, . . . ,xN) :=
1

N !

∑

π∈Sn

Mπf(x1, . . . ,xN)

and

Mπ(fx1, . . . ,xN) := f(xπ(1), . . . ,xπ(N)).

That is,

TrL2
sym

(e−βH) =
1

N !

∑

π∈SN

TrL2

(

e−βHMπ

)

.

(The operator e−βH is bounded and compact, but this fact is not needed.)

x1 = w
(1)
0

x2 = w
(1)
2β

x5 = w
(5)
0

x5 = w
(5)
2β

y

x

β

Figure A.2. Feynman-Kac representation of a gas of 5 bosons. The horizontal
plane represents the d spatial dimensions, and the vertical axis is the imaginary time
dimension. The picture shows five particles and two cycles, of respective length 4 and
1.

1For a particle Hamiltonian, the β = 1/T factor is in the expected place. This is in contrast
to the permutation expression in chapter 2, where the β factor is, surprisingly, reciprocated. As
discussed in [BU07, U07], the reciprocated β is correct for the permutation Hamiltonian.
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The following steps are involved in developing a bosonic Feynman-Kac formula.

The first three steps closely parallel the steps used to construct the familiar single-

particle Feynman-Kac formula. (1) Interpret e−βHMπ as an expectation over Brown-

ian motions. (2) Write e−βHMπ as an integral operator, and find the kernel. (3) Com-

pute Tr(e−βHMπ) in terms of Brownian bridges. (4) Sum over π ∈ SN to obtain

Z = TrL2
sym

(e−βH). Importantly, one expresses Z as sum over permutations π of

e−HP (X,π), where this new HP will be viewed as a Hamiltonian for permuations π. At

this point, the permutation Hamiltonian is found inside e−HP (X,π); one lacks an expres-

sion for its logarithm. (5) Decouple the non-interacting terms from the interacting

terms in the permutation Hamiltonian, so that one may write e−H
(0)
P

(X,π)−H
(1)
P

(X,π).

The bosonic Feynman-Kac formula now contains terms for two-jump interactions,

three-jump interactions, and so on. (6) A cluster expansion allows one to drop all

but two-jump interactions. The cluster expansion furthermore allows one to take the

logarithm of e−HP (X,π), with an explicit expression for HP (X, π). (7) One recognizes

the random-cycle model from equation (2.1.1) of chapter 2, with an explicit two-jump

interaction V . Specifically, given one permutation jump from xi to xπ(i) and another

permutation jump from xj to xπ(j), the two-jump interaction V (xi,xπ(i),xj ,xπ(j)) in-

volves the probability that two Brownian bridges, running in time 2β from xi to xπ(i)

and xj to xπ(j), respectively, pass within distance 2a from one another.



165

Appendix B

Error bars, autocorrelation, and batched

means

We make concrete various [CB, GS, Berg] ideas regarding autocorrelation of stationary

Markov processes, with the particular goal of placing error bars on sample means. We

focus on processes where the autocorrelation takes the form of a single exponential.

We define a particular toy-model process, the correlated-uniform Markov process,

which is exactly solvable. (This is in contrast to the typical Markov chain Monte

Carlo process: in the MCMC field, one resorts to experimental methods only for

systems which are not exactly solvable.) When a practitioner applies new methods

to an MCMC process which is itself under examination, it can be difficult to identify

computational problems which arise. Using this toy-model process, we elucidate

strengths and shortcomings of autocorrelation and its estimators, clearly separating

properties of the estimators themselves from the properties of the particular Markov

process. The policies developed herein will be used to design and analyze MCMC

experiments for the author’s doctoral dissertation.

B.1 Problem statement

The following problem occurs throughout Markov chain Monte Carlo (MCMC) ex-

periments. Let Xt be an identically distributed, but not necessarily independent,

Markov process; let µX and σ2
X be the common mean and variance, respectively. (We

will construct a specific process Yt with the same properties. We reserve the nota-

tion Xt for a general process with these properties.) Given a time-series realization

X0, . . . , XN−1, the sole desired expressed in this paper is to to estimate µX , with an

error bar on that estimate. The presence of correlations between the Xt’s make this
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process more complicated than in the IID case.

The standard estimator for µX is the sample mean, XN . Given a time-series

realization X0, . . . , XN−1, we compute a single value of XN . Since the Xt’s are random

variables, XN is itself a random variable. When we conduct M such experiments, we

will get M different values of XN . (We will quantify below the dependence of the

variance, or error bar, of XN , upon the autocorrelation of the process Xt.) Suppose for

the sake of discussion that the autocorrelation is exponential: Corr(Xi, Xj) = η|i−j|

for some η ∈ [0, 1). Then η = 0 is the IID case, and higher η’s correspond to more

highly correlated processes. A few such realizations are shown in figure B.1.
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Figure B.1. Five realizations each of the correlated-uniform Markov process Yt with
η = 0.0, 0.9, 0.999.

For any process W1, . . . , WK , write mK(W ) for the sample mean and s2
K(W ) for

the sample variance, the unbiased estimator of Var(W ). Then:
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• mN(Xt), which is XN , estimates µX . This is the sample mean, taken over N

samples.

• s2
N(Xt) estimates σ2

X . This is the sample variance, taken over N samples.

• mM(XN) estimates µXN
. This is also referred to as the sample mean; it is taken

over MN samples.

• s2
M(XN) uses MN data points to estimate σ2

XN
, which is the variance of the

sample mean.

• In the IID case, the true variance of the sample mean is σ2
XN

= σ2
X/N ; t2N (Xt)

= s2
N(Xt)/N is the naive estimator of the variance of the sample mean, using

N data points. It is an unbiased estimator only in the IID case.

• u2
N(Xt) is the corrected estimator of σ2

XN
. The estimators t2N (Xt) and u2

N(Xt)

will be discussed graphically, numerically, and theoretically below. The esti-

mated integrated autocorrelation time τ̂int will be used to compute u2
N(Xt) from

t2N(Xt).

• Var(u2
N(Xt)) is the error of the error bar. It turns out that u2

N(Xt) is a rough

estimator for Var(XN ), and Var(u2
N(Xt)) increases with η. The very name

“error of the error bar” sounds overwrought; yet, it is a necessary consideration

in MCMC experiments, and must be thought through.

The processes Yt of figure B.1, to be defined explicity in section B.4, have µY = 1/2

and σ2
Y = 1/12, regardless of the autocorrelation exponent η. (Note that

√

1/12 ≈
0.2887.) We observe the following behavior from the aforementioned estimators. (See

figures B.7 through B.10 starting on page 186, and table B.2 on page 189.)

• For all η, Y N is unbiased for µY . Its uncertainty widens visibly with autocor-

relation exponent η. This uncertainty is the quantity of interest.
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• Quantitatively, sM(Y N) gives a good idea of this increasing uncertainty. How-

ever, sM(Y N) requires M experiments, where M may be unacceptably large. If

we were always willing to conduct such a large number of experiments, it would

not be necessary to write this paper. We wish to estimate the variance of the

sample mean using only one experiment Y0, . . . , YN−1. This is the rub.

• The corrected estimator u2
N(Yt) corresponds roughly with sM(Y N ), and more-

over is computed from a single experiment Y0, . . . , YN−1. The roughness of the

approximation of the error bar is acceptable: it is only an error bar.

To summarize, s2
M(XN ) is a multi-experiment estimator for the variance of the

sample mean; u2
N(Xt) is a single-experiment estimator. The former is of higher quality,

but is more expensive to obtain; the latter carries its own uncertainty which worsens

as the autocorrelation η increases.

Having motivated the problem, we now develop the notation and theory to make

all of these ideas precise.

B.2 Autocovariance and autocorrelation

Definition B.2.1. A Markov process Xt, t = 0, 1, 2, . . ., is stationary if the Xt’s have

a common mean µX = E[Xt] and variance σ2
X = Var(Xt).

Definition B.2.2. Let Xt be a stationary Markov process with E[Xt] = µX and

Var(Xt) = σ2
X . The autocovariance and autocorrelation of Xt, respectively, are

C(t) = Cov(X0, Xt) = E[X0Xt]− E[X0]E[Xt] = E[X0Xt]− µ2
X

c(t) = Corr(X0, Xt) =
E[X0Xt]− E[X0]E[Xt]

σX0σX
=

E[X0Xt]− µ2
X

σ2
X

.

Remark B.2.3. In the literature, what we call the autocovariance is often referred

to as autocorrelation. This incorrect and misleading terminology is, sadly, quite

widespread.
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Remark B.2.4. Recall that, as with all correlations, the autocorrelation takes values

between −1 and 1.

B.3 The IID uniform process

Here we recall familiar [CB, GS] facts about random numbers U which are uniformly

distributed on a closed interval [a, b]. These will be used as building blocks in section

B.4. Writing the probability density function of U as fU(x), we have

fU(x) =
1

b− a
· 1[a,b](x) µU =

1

b− a

∫ b

a

x dx =
a + b

2

µ2
U + σ2

U = E[U2] =
1

b− a

∫ b

a

x2 dx =
a2 + ab + b2

3
σ2

U =
(b− a)2

12
.

Now consider an IID sequence {Ui} of such random variables, indexed by the integers.

We develop a particularly phrased formula which will simplify the calculations in

section B.4. Note that if X1, X2 are IID with common mean µX and variance σ2
X ,

then E[X2
1 ] = µ2

X +σ2
X whereas E[X1X2] = µ2

X . For a sequence of IID Xi’s, including

our particular uniform Ui’s, this means

E[XiXj ] = µ2
X + δijσ

2
X . (B.3.1)

B.4 The correlated-uniform Markov process

This paper addresses correlated Markov processes, focusing in particular on those with

exponential autocorrelation. Here we construct a simple process for which the mean,

variance, and autocorrelation are exactly solvable. In particular, the autocorrelation

will be controlled by a parameter η ∈ [0, 1], while the mean and variance will be the

same as for IID U(0, 1).

Definition B.4.1. Let U be uniformly distributed on [a, b] as in the previous section,

where a < b are left variable for the moment. Let 0 ≤ η ≤ 1 and a < b. The
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correlated-uniform Markov process Yt is defined by Y0 ∼ U(a, b), and for t ≥ 1,

Yt = ηYt−1 + (1− η)Ut = ηtU0 + (1− η)

t
∑

i=1

ηt−iUi (B.4.2)

where the first equality is a definition and the second equality follows by an easy

induction argument.

Remark. Note that η = 0 is the IID case from the previous section; η = 1 would

give a constant process with zero variance. The η parameter is the control knob with

which we specify the autocorrelation of the process, as will be made precise in section

B.5.

Definition B.4.3. Closely related to this is the correlated-uniform stationary Markov

process (or asymptotic process)

Yt = (1− η)

t
∑

i=−∞

ηt−iUi. (B.4.4)

In practice, we will run the original process for a number of time steps s until

ηs ≈ 0, such that the ηsU0 term of equation (B.4.2) dies out, then consider the values

of the process only from that time forward. In that regime, the process of definition

B.4.3 is an approximation to that of definition B.4.1, but it is easier to manipulate

algebraically.

We seek a, b such that the mean and variance of Yt do not depend on η. The mean

is immediate:

E[Yt] = (1− η)

t
∑

i=−∞

ηt−i
E[Ui] =

a + b

2
.

The variance Var(Yt) is a special case of the covariance Cov(Yt, Yt+k), which will be
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needed below. Equation (B.3.1) and expressions for geometric sums give us

E[YtYt+k] = (1− η)2η2t+k
t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j
E[UiUj ]

= (1− η)2η2t+k
t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j (µ2
U + δijσ

2
U )

= µ2
U(1− η)2η2t+k

t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j + σ2
U(1− η)2η2t+k

t
∑

j=−∞

η−2j

= µ2
U + σ2

U ηk

(

1− η

1 + η

)

.

Then

Var(Yt) = σ2
U

(

1− η

1 + η

)

=
(b− a)2

12

(

1− η

1 + η

)

.

Now we may solve for a and b such that µU and σU are the same as for IID U(0, 1),

namely, 1/2 and 1/12 respectively. Solving the pair of equations

a + b

2
=

1

2
and

(b− a)2

12

(

1− η

1 + η

)

=
1

12
,

we obtain

a =
1

2

(

1−
√

1 + η

1− η

)

and b =
1

2

(

1 +

√

1 + η

1− η

)

. (B.4.5)

Note in particular that for η = 0, the IID case, we recover a = 0, b = 1 as expected.

Figure B.2 shows some realizations for η = 0.0, 0.5, 0.9. For η = 0.9, correlations

are clearly visible. Also note that there is a burn-in time required for the process to

forget its initial state Y0. In this figure, the asymptotic formula of definition B.4.3

appears valid for t > 50 or so, at which point ηt = 0.950 ≈ 0.005 ≈ 0. This burn-in

phenomenon is discussed in more detail in section B.8.

The following is pseudocode (technically, it is Python code, which is largely the

same thing) for displaying N steps of Yt, given the correlation-control parameter η

and the number Ntherm of burn-in iterates to be discarded:
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Figure B.2. Realizations of the correlated-uniform Markov process Yt with η =
0.0, 0.5, 0.9. Burn-in iterates are included.

s = sqrt((1+eta)/(1-eta)); a = 0.5 * (1 - s); b = 0.5 * (1 + s)

Y = random.uniform(a, b) # Burn-in iterates

for k in range(0, Ntherm):

U = random.uniform(a, b)

Y = eta * Y + (1-eta) * U

for k in range(0, N): # Iterates to be displayed

U = random.uniform(a, b)

Y = eta * Y + (1-eta) * U

print Y
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B.5 Statistics of the correlated-uniform Markov process

We now write all statistics of the correlated-uniform Markov process Yt in terms of

η. With a and b in terms of η (equation (B.4.5)), we have

µU =
a + b

2
=

1

2
, σ2

U =
(b− a)2

12
=

1

12

(

1 + η

1− η

)

,

E[Yt] = µY =
a + b

2
=

1

2
, Var(Yt) = σ2

Y =
(b− a)2

12

(

1− η

1 + η

)

=
1

12
;

E[YtYt+k] = µ2
U + σ2

Uηk

(

1− η

1 + η

)

=
1

4
+

ηk

12
,

Cov(Yt, Yt+k) = E[YtYt+k]− E[Yt]E[Yt+k] =
ηk

12
,

Corr(Yt, Yt+k) =
Cov(Yt, Yt+k)

σY σYt+k

= ηk.

The remaining step needed to completely specify the correlated-uniform Markov

process is to write down the PDF of Yt. This could be done using convolutions, since

Yt is a weighted sum (weighted by powers of η) of IID uniform random variables. The

algebra is messy, though, and an expression for the PDF is not needed in this work. It

is sufficient to point out the following: (i) For η = 0, the density is uniform on [0, 1].

(ii) For η close to 1, which is the case of interest in this work, the density closely

resembles a normal with mean 1/2 and variance 1/12. The support is compact, so the

density cannot be Gaussian, but the support is wide enough to include substantial

tail mass. See figure B.3 for empirical histograms.

B.6 The variance of the sample mean

When we use the data from an MCMC simulation to compute the sample mean of a

random variable, the next order of business is to place an error bar on that sample

mean.
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Figure B.3. Histograms of the correlated-uniform Markov process Yt with η =
0.0, 0.5, 0.9: 106 iterates, bins of 0.1 from −0.7 to 1.7. Burn-in iterates have been
discarded.

As before, let Xt be a stationary Markov process with common mean µX , variance

σX , and autocorrelation Corr(Xt, Xt+k) = ηk. Given X0, . . . , XN−1, the sample mean

XN is an unbiased estimator of µX :

XN =
1

N

N−1
∑

i=0

Xi.

By linearity of expectation, E[XN ] = µX . To find the variance of XN , we first need

E[XN
2
]. This is

E[XN
2
] =

1

N2

N−1
∑

i=0

N−1
∑

j=0

E[XiXj ].
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Since

Corr(Xi, Xj) = η|i−j| =
E[Xi, Xj]− µ2

X

σ2
X

,

we have

E[XiXj ] = µ2
X + σ2

Xη|i−j|. (B.6.1)

Then

E[XN
2
] =

1

N2

N−1
∑

i=0

N−1
∑

j=0

(µ2
X + σ2

Xη|i−j|) = µ2
X +

σ2
X

N2

N−1
∑

i=0

N−1
∑

j=0

η|i−j|

= µ2
X +

σ2
X

N2

[

N−1
∑

i=0

1 +

N−2
∑

i=0

η−i

N−1
∑

j=i+1

ηj +

N−1
∑

i=1

ηi

i−1
∑

j=0

η−j

]

.

Applying geometric-sum formulas and several lines of algebra, we get

E[XN
2
] = µ2

X +
σ2

X

N
+

2σ2
Xη

N2(1− η)

[

(N − 1)−
(

η − ηN

1− η

)]

.

With N ≈ N − 1 we have

E[XN
2
] ≈ µ2

X +
σ2

X

N

(

1 + η

1− η

)

− 2σ2
Xη2

N2(1− η)2
(1− ηN−1).

With ηN ≈ 0 and a bit more algebra we have

E[XN
2
] ≈ µ2

X +
σ2

X

N

(

1 + η

1− η

)

and Var(XN) ≈ σ2
X

N

(

1 + η

1− η

)

. (B.6.2)

Recall that for the IID case (η = 0) we have Var(XN) = σ2
X/N . This expression

recovers that; furthermore, correlations enlarge the error bar on the sample mean.

B.7 Estimates of autocorrelation

Throughout this section, let Xt be a stationary Markov process with E[Xt] = µX ,

Var(Xt) = σ2
X , and Corr(Xt, Xt+k) = ηk. (Without loss of generality, take k ≥ 0.)

The simple correlated-uniform Markov process of section B.4 is one example of this;
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moreover, an MCMC process on a finite state space may take this form. (As described

in [Berg], η is related to the second dominant eigenvalue of the transition matrix of

the Markov process. If the third dominant eigenvalue is comparable with the second,

then the autocorrelation will not take the simple exponential form described here.)

Remark B.7.1. In the literature, one more often sees Corr(X0, Xt) = exp(−t/τexp).

Then τexp and η are put into one-to-one correspondence by

τexp = −1/ log η and η = exp(−1/τexp).

For the correlated-uniform process, the autocorrelation is already known; for a

general MCMC process, one wishes to estimate η (or τexp) from realization data.

Recall that

Corr(Xt, Xt+k) =
E[XtXt+k]− E[Xt]E[Xt+k]

σXt
σXt+k

=
E[X0Xk]− µ2

X

σ2
X

(B.7.2)

where the second equality holds by the stationarity of the process, and that we always

have

−1 ≤ Corr(Xt, Xt+k) ≤ 1. (B.7.3)

(This holds for the correlation of any pair of random variables.) Also recall that

σ2
X = E[X2

t ]− E[Xt]
2. (B.7.4)

Recall as well [CB] that, for M realizations X
(0)
t , . . . , X

(M−1)
t of Xt, the unbiased

estimator for the variance of Xt is

s2
Xt

=
1

M − 1





M−1
∑

i=0

(X
(i)
t )2 − 1

M

(

M−1
∑

i=0

X
(i)
t

)2


 . (B.7.5)

Definition B.7.6. Fix t and k. The multi-realization estimator of the autocorre-

lation Corr(Xt, Xt+k), requiring M realizations X
(0)
t , . . .X

(M−1)
t of the process, is a
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straightforward combination of equations (B.7.2), (B.7.4), and (B.7.5). Namely,

ĉm(t, k) =

1
M

∑M−1
i=0

(

X
(i)
t X

(i)
t+k

)

− 1
M2

(

∑M−1
i=0 X

(i)
t

)(

∑M−1
j=0 X

(j)
t+k

)

1
M−1

[

∑M−1
i=0 (X

(i)
t )2 −

“

PM−1
i=0 X

(i)
t

”2

M

]1/2 [

∑M−1
j=0 (X

(j)
t+k)

2 −
“

PM−1
j=0 X

(j)
t+k

”2

M

]1/2
.

Remark. Since the process is stationary, one may be tempted to reuse the Xt variance

estimator for Xt+k — after all, they estimate the same quantity σ2
X . In practice,

however, doing so tends to produce autocorrelation estimates which fall (quite far)

outside the range [−1, 1], violating inequality B.7.3. That is, the second equality in

equation (B.7.2) holds theoretically but not at the estimator level. This same remark

holds for the sliding-window estimator, to be defined next.

The difficulty with the multi-realization estimator is that realizations Xt can be

expensive to compute. Rather than running M processes from t = 0 up to some N ,

which takes O(MN) process-generation time, perhaps we can (carefully) use the sta-

tionarity of the process, estimating the autocorrelation using only a single realization.

This will take only O(N) process-generation time.

Definition B.7.7. Given a single realization X0, . . . , XN−1, take k from 0, 1, 2, . . . , N−
2. The sliding-window estimator of the autocorrelation Corr(X0, Xk), is

ĉ(k) =

1
N−k

∑N−k−1
i=0 (XiXi+k)− 1

(N−k)2

(

∑N−k−1
i=0 Xi

)(

∑N−k−1
j=0 Xj+k

)

(

1
N−k−1

)

[

∑N−k−1
i=0 X2

i −
(

PN−k−1
i=0 Xi)

2

N−k

]1/2 [
∑N−k−1

j=0 X2
j+k −

(
PN−k−1

j=0 Xj+k)
2

N−k

]1/2
.

(B.7.8)

This formula is perhaps intimidating, but is made quite simple with the aid of the

example below, wherein N = 10 and k − 2. Namely:

• We consider all pairs separated by k time steps: X0Xk, X1Xk+1, . . . , XN−k−1XN−1.

There are N − k such pairs.

• The first elements in each pair form a window from X0 to XN−k−1.
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• The second elements in each pair form a window from Xk to XN−1.

• We estimate the mean and variance of X0 by the sample mean and sample

variance over the first window.

• We estimate the mean and variance of Xk by the sample mean and sample

variance over the second window.

• We estimate the cross-moment E[XtXt+k] by the sample mean over pair prod-

ucts.

Example B.7.9. ⊲ There are N = 10 samples, X0 through X9:

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

Picking k = 2, there are two windows of length N − k = 8:

X0 X1 X2 X3 X4 X5 X6 X7

X2 X3 X4 X5 X6 X7 X8 X9

Equation (B.7.8) has five distinct sums: the sum of X0 through X7, the sum of squares

of X0 through X7, the sum of X2 through X9, the sum of squares of X2 through X9,

and the cross sum X0X2 + . . . + X7X9. ⊳

Remark B.7.10. One would hope that ĉ(t) is an unbiased estimator of c(t). Finding

its expectation using the definition is intimidating: we have a ratio of products of sums

of correlated random variables. Taking an experimental approach instead, making

multiple plots of the form of figure B.4, one finds that ĉ(t) does in fact fractionally

underestimate c(t). This affects the estimated integrated autocorrelation time, as

discussed in remark B.9.2.

This estimator has the benefit of making use of all the data in a single realization.

Its drawback is that, for larger k, the sample size N − k is small. Thus, the error in

the estimator increases for larger k.
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Figure B.4. Autocorrelation and estimators thereof for Yt with η = 0.9. Burn-in
iterates have been discarded. The second plot zooms in on the first 50 samples of the
first plot.

Figure B.4 compares estimators against the true value c(k) = Corr(X0, Xk) = ηk

for η = 0.9. Here, N = 1000 time steps have been used; M = 1000 realizations for

the multi-realization estimator ĉm(k). Note that the decreasing sample size, N − k,

of the sliding-window estimator ĉ(k) increases the error of this estimator. For this

reason, ĉs(k) is also plotted. This is the same as ĉm(k), but with M = N − k. The

first plot shows the autocorrelation estimators for k = 0 to 998; the second zooms in

on the first 50 values of k.

Remark B.7.11. We observe the following:

• Comparing the full-length and short-length multi-realization estimators ĉm(k)

vs. ĉs(k) shows that decreasing sample size does have an effect for larger k.

Nonetheless, the sliding-window estimator ĉ(k) shows markedly wilder behavior

for larger k, which cannot be accounted for by small-sample-size effects alone.

• For all three estimators, errors are small when k is small, which is when the

true autocorrelation c(k) = ηk is non-negligible.
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• Thus, one should examine estimators of the autocorrelation only for values of k

until the estimators approach zero. Values past that point are neither accurate

nor needed.

B.8 Integrated autocorrelation time

Following [Berg], we develop the notion of integrated autocorrelation time as follows.

We reconsider the variance of the sample mean (see section B.6) from a different

point of view. Again, Xt is a stationary Markov process with common mean µX and

common variance σ2
X . We have

Var(XN ) = E[(XN − µX)2] =
1

N2

N−1
∑

i=0

N−1
∑

j=0

E[(Xi − µX)(Xj − µX)]

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

E[XiXj − µXXi − µXXj + µ2
X ]

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

(

E[XiXj ]− µ2
X

)

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

Cov(Xi, Xj)

=
1

N2

[

N−1
∑

i=0

Var(Xi) + 2

N−1
∑

t=1

(N − t) Cov(X0, Xt)

]

=
σ2

X

N
+ 2σ2

X

N−1
∑

t=1

(N − t) Corr(X0, Xt)

=
σ2

X

N

[

1 + 2

N−1
∑

t=1

(

1− t

N

)

Corr(X0, Xt)

]

≈ σ2
X

N

[

1 + 2

∞
∑

t=1

Corr(X0, Xt)

]

.

If Xt is IID then we recover the familiar Var(XN) = σ2
X/N ; otherwise we have

Var(XN ) =
σ2

X

N
τint (B.8.1)

where τint is the last bracketed expression above. Note as well that if Corr(X0, Xk) =

ηk, then

τint = 1 + 2
∞
∑

t=1

ηt = 1 +
2η

1− η
=

1 + η

1− η
(B.8.2)
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which is what we would have expected by comparing equations (B.6.2) and (B.8.1).

As a consequence, when c(t) = ηt we have

τint =
1 + η

1− η
and η =

τint − 1

τint + 1
. (B.8.3)

Some values are shown for reference in table B.1.

η 0 0.1 0.2 0.5 0.6 0.9 0.990 0.999
(1 + η)/(1− η) 1 1.222 1.500 3.000 4.000 19 199 1999

Table B.1. η vs. (1 + η)/(1− η).

Remark B.8.4. If the process is IID, i.e. η = 0, then c(0) = 1, c(t) = 0 for all t ≥ 1,

and τint = 1.

Definition B.8.5. Recall that s2
N(Xt) (equation (B.7.5)) estimates σ2

X . Using equa-

tion (B.8.1), the naive estimator and corrected estimator of Var(XN) are

t2N (Xt) =
s2

N (Xt)

N
and u2

N(Xt) =
s2

N(Xt)

N
τ̂int, (B.8.6)

as long as we have an estimator τ̂int of τint.

B.9 Estimation of the integrated autocorrelation time

Recall from remark B.7.11 that ĉ(t) is a rather wild estimator of c(t) at high t. Since

τ̂int = 1 + 2

∞
∑

t=1

ĉ(t)

is nothing more than a sum of c(t), we can expect it to be ill-behaved as well.

Definition B.9.1. The running-sum estimator of τint is

τ̂int(t) = 1 + 2

t
∑

k=1

ĉ(k).
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Figure B.5. Estimated and exact integrated autocorrelation times for Yt with η =
0.9, using three realizations similar to the one in figure B.4. Burn-in iterates have
been discarded. The second plot zooms in on the first 50 samples of the first plot.
The flat-spot estimator τ̂int of τint is found by reading off the vertical coordinate of
the first turning point of each solid-line plot; the true τint is the horizontal asymptote
of the dotted-line plot. Two of the three turning points yield a τ̂int which is less than
the true τint. This is the general case: we find that τ̂int underestimates more often
than it overestimates. See also figure B.8 on page 186.

The idea is to accumulate the reliable low-t values of ĉ(t) until the sum becomes

approximately constant at some s, then stop and declare τ̂int to be τ̂int(s). This is the

flat-spot estimator or turning-point estimator for τint. See figure B.5 for illustration,

where s is approximately 24 for the blue realization and 29 for the red. From the plots,

we estimate τint ≈ 15; using equation (B.8.3), we estimate η = (15 − 1)/(15 + 1) =

0.875. This is reasonable since the data were obtained with η = 0.9, for which the

true τint is 19 by equation (B.8.2).

It is clear from the figure that estimators τ̂int can vary noticeably from one re-

alization to the next. Our estimator for the variance of the sample mean, i.e. the
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Figure B.6. Estimated integrated autocorrelation times for Yt with η =
0.9, 0.99, 0.999, using ten realizations each. N is 100,000; burn-in iterates have been
discarded. Recall that true τint values are 19, 199, and 1999, respectively. The varia-
tion in the vertical coordinate of the first flat spot in each plot, which increases with
η, gives rise to the error of the error bar on the sample mean.

error bar on the sample mean, is u2
N(Xt) (equation (B.8.6)). Since τ̂int is a factor in

u2
N(Xt), variations in τ̂int will result in error of the error bar. Figure B.6 shows that

variations in τ̂int increase with η.

At present I know of no solution to this problem other than the running of multiple

experiments — larger M , using the notation of section B.1. As long as τint is estimated

based on a single experimental result X0, . . . , XN−1, one must be aware that the error

bars on the sample mean are crude.

Remark B.9.2. As was noted in remark B.7.10, ĉ(t) underestimates c(t). Since τ̂int
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is formed from a sum of ĉ(t)’s, τ̂int is also a fractional underestimator of τint, as will

be seen in section B.10.

B.10 Estimation of the variance of the sample mean

Given the flat-spot estimator τ̂int of τint from section B.9 and the naive estimator of

the variance of the sample mean from equation (B.8.6), we may now compute the

corrected estimator of the the variance of the sample mean:

u2
N(Xt) =

s2
N(Xt)

N
τ̂int.

We use the correlated-uniform Markov process to illustrate, since for this process

all quantities have known theoretical values. As in section B.1, we display standard

deviations in our plots and tables, rather than variances: the units of measurement

of the former match those of the mean, and they correspond visually to variations in

the data.

• The mean and variance of Yt are µY = 1/2 and σ2
Y = 1/12; σY ≈ 0.289.

Using η = 0.0, 0.9, 0.999, the true τint is 1, 19, 1999, respectively. We conduct

M = 100 experiments of collecting and analyzing N = 10000 time-series samples

Y0, . . . , YN−1.

• The true mean is shown in row 1 of table B.2. Estimators Y N are shown in

figure B.7. The average of these over all M experiments is shown in row 2 of

table B.2.

• The true naive variance of the sample mean is σ2
Y /N , with true naive standard

deviation of the sample mean σY /
√

N ≈ 0.00289. The true corrected variance

of the sample mean is σ2
Y N

= τint σ2
Y /N = 1/120000, 19/120000, 1999/120000.

The true standard deviations of the sample means are then σY N
≈ 0.0028868,

0.0125831, 0.1290672. These are shown in row 3 of table B.2.
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• The multi-experiment estimator sM(Y N) of σY N
is the sample standard devia-

tion of the M values XN
(0)

, . . . , XN
(M−1)

. These estimators are shown in row

4 of table B.2. As expected, the multi-experiment estimator is a good one.

• Next we turn to single-experiment estimators of the variance of the sample

mean. The estimated naive standard deviation of the sample mean is tN(Yt) =

sN(Yt)/
√

N . These are not plotted for each experiment; their average over all

M experiments is shown in row 5 of table B.2. Note that they match the true

variance of the sample mean only in the IID (η = 0) case.

• True values of τint for each η are shown in row 8 of the table. The flat-spot

estimators τ̂int for all M = 100 experiments are shown in figure B.8. Their

average and sample standard deviation over all M experiments are shown in

rows 9 and 10. As discussed in remark B.9.2, we see that τ̂int fractionally

underestimates τint.

• Using the τ̂int values, the corrected estimators uN(Yt) = tN (Yt)
√

τ̂int are shown,

for all M = 100 experiments, in figure B.9. Their averages over all M experi-

ments are shown in row 6 of table B.2. (Again, the corresponding true values

are in row 2 of the table.) The fractional underestimation of τ̂int carries over

to uN(Yt). One trades the quality of the estimator for the feasibility of its

computation.

• Standard deviations over M experiments of uN(Yt) are shown in row 7 of the

table. Figure B.10 shows, for η = 0.999, the M = 100 values of Y N along with

their respective uN(Yt)’s. These show the error of the error bar.
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Figure B.7. Y N over M = 100 experiments, where the true value is µX = 0.5.
Variance of Y N increases with autocorrelation factor η.
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Figure B.8. τ̂int(Yt) over M = 100 experiments, along with true values. Note that
τ̂int(Yt) fractionally underestimates the true τint(Yt).

B.11 Integrated and exponential autocorrelation times

In remark B.7.1 of section B.7, we noted that if Corr(X0, Xt) = ηt for η ∈ [0, 1), then

we may define an exponential autocorrelation time via

τexp = −1/ log η

such that Corr(X0, Xt) = exp(−t/τexp). Yet section B.8 gave us something similar:

the integrated autocorrelation time τint. In particular, if Corr(X0, Xt) = ηt, then we

had

τint =
1 + η

1− η
.
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Figure B.9. uN(Yt) over M = 100 experiments, along with true values. Note that
uN(Yt) fractionally underestimates the true standard deviation of the sample mean,
σY N

= σY /
√

N .

Figure B.11 compares these two.

B.12 Batched means

Introductory statistics tends to deal with the analysis of IID samples. Yet, realization

sequences from an MCMC experiment tend to be highly correlated. The sample mean

estimates the true mean, since expectation is linear. But when one wishes to place

an accurate error bar on the sample mean, correlations must be taken into account.

One approach (see for example [Berg], who calls this process binning) is to sub-

divide X0, . . . , XN−1 into K = N/B batches of size B. The K sample means over

batches may be treated as IID samples. The independence of the K samples means

that the variance of their sample mean will be reduced, but reducing the sample size

from N to K will increase the variance. We will show that these two effects cancel:

binning N samples down to K samples does not change the variance of the sample

mean. (As shown in [Berg], batched means have their uses: they may be used to

construct a method to estimate τint, as an alternative to the method of section B.9.)

Definition B.12.1. Given X0, . . . , XN−1 with common mean µX and variance σ2
X ,

let B divide N and K = N/B. Then B is the batch size and K is the number of
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Figure B.10. Y N with single-sigma error bars, η = 0, 0.9, 0.999, M = 100 experi-
ments, sorted by increasing Y N . The magnitude and the variation of the error bars
both increase with η.

batches. For k = 0, . . . , K − 1, the kth batch consists of XkB, . . . , X(k+1)B−1. The

sample mean of the kth batch is

Ak =
1

B

B−1
∑

i=0

XkB+i.
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Description η 0 0.9 0.999

1. True mean µY N
0.50000 0.50000 0.50000

2. Sample mean mM (Y N) 0.49948 0.49952 0.51100

mM (Y N) 0.49987 0.50231 0.47341
mM (Y N) 0.49991 0.49895 0.47958

3. True standard deviation
of sample mean

σY N
0.00288 0.01258 0.12906

4. Multi-experiment sM(Y N) 0.00274 0.01166 0.10342
estimator of σY N

sM(Y N) 0.00274 0.01167 0.12303

sM(Y N) 0.00298 0.00986 0.11929
5. Averaged mM(tN(Yt)) 0.00288 0.00287 0.00263
single-experiment naive mM(tN(Yt)) 0.00288 0.00288 0.00260
estimators of σY N

mM(tN(Yt)) 0.00288 0.00287 0.00250
6. Averaged mM(uN(Yt)) 0.00288 0.01279 0.09957
single-experiment corrected mM(uN(Yt)) 0.00289 0.01280 0.10037
estimators of σY N

mM(uN(Yt)) 0.00289 0.01276 0.08947

7. Sample standard sM(uN(Yt)) 0.00004 0.00105 0.04402
deviation of corrected sM(uN(Yt)) 0.00005 0.00108 0.04665
estimators of σY N

sM(uN(Yt)) 0.00006 0.00118 0.03851

8. True integrated τint 1 19 1999
autocorrelation time
9. Averages of estimated mM(τ̂int) 0.999 19.854 1442.627
integrated autocorrelation mM(τ̂int) 1.002 19.763 1500.137
time mM(τ̂int) 1.008 19.857 1279.173
10. Standard deviation sM(τ̂int) 0.028 3.162 865.992
across M experiments sM(τ̂int) 0.031 3.092 1045.842
of τ̂int sM(τ̂int) 0.039 3.628 758.903

Table B.2. Statistics for three trials of M = 100 experiments on N = 10000 samples
of Yt: η = 0.0, 0.9, 0.999.

We now consider the sequence A0, . . . , AK−1. We define the batched mean to be

XN,B =
1

K

K−1
∑

k=0

Ak.

By linearity of expectation, we immediately have E[XN,B] = µX . We next inquire

about the variance of the batched mean, then compare that to the variance of the

(non-batched) sample mean.
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Figure B.11. Integrated and exponential autocorrelation times as a function of η.

B.13 Variance and covariance of batches

To compute Var(Ak) and Corr(A0, Ak), we first need E[AkAℓ] for k = ℓ and k 6= ℓ.

In the k = ℓ case, the computation is the same as in section B.6, with B playing the

role of N . We have

E[A2
k] ≈ µ2

X +
σ2

X

B

(

1 + η

1− η

)

and Var(Ak) ≈
σ2

X

B

(

1 + η

1− η

)

.

For k 6= ℓ, without loss of generality assume k < ℓ. Using equation (B.6.1), we have

E[AkAℓ] =
1

B2

B−1
∑

i=0

B−1
∑

j=0

E[XkB+iXℓB+j ] =
1

B2

B−1
∑

i=0

B−1
∑

j=0

(µ2
X + σ2

XηℓB+j−kB−i)

= µ2
X +

σ2
Xη(ℓ−k)B

B2

B−1
∑

i=0

η−i
B−1
∑

j=0

ηj = µ2
X +

σ2
Xη(ℓ−k)B

B2

(

1− ηB

1− η

)2

.

If the batch size is chosen so that ηB is negligible, then

E[AkAℓ] = µ2
X .
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Now we have (for ηB ≈ 0)

Var(Ak) ≈
σ2

X

B

(

1 + η

1− η

)

and Corr(Ak, Aℓ) =
E[AkAℓ]− µ2

X

σ2
A0

= δk,ℓ. (B.13.1)

This justifies the hope that batches can be constructed to form an IID sequence.

B.14 Variance of the batched mean

We now find out what effect batching has on the variance of the sample mean: batch-

ing produces an IID sequence, which will reduce the variance (equation (B.8.1)), yet it

reduces the sample size from N down to K = N/B, which by central-limit reasoning

should increase the variance.

For the non-batched mean, we have the random variables X0, . . . , XN−1; param-

eters are mean µX , variance σ2
X , autocorrelation ηk, and (from equation (B.8.3))

integrated autocorrelation time τint = (1 + η)/(1− η). Equation (B.6.2) gives

Var(XN) =
σ2

X

N

(

1 + η

1− η

)

. (B.14.1)

For the batched mean, we batch X0, . . . , XN−1 into K IID batches of size B. We

have the random variables A0, . . . , AK−1, with mean µX , variance (σ2
X/B)(1+η)/(1−

η) (equation (B.13.1)), autocorrelation c(k) = δ0,k (since Ak is IID) and integrated

autocorrelation time τint = 1 (remark B.8.4). Then

Var(XN,B) =
σ2

X

KB

(

1 + η

1− η

)

=
σ2

X

N

(

1 + η

1− η

)

.

Thus, to first order in η and N , as long as B is large enough that ηB is negligibly

small, we do not expect batching to change the variance of the sample mean.

Table B.3 shows some sample results of these calculations for the correlated-

uniform Markov process Yt. There are M = 100 experiments of N = 10000 samples.

Each experiment was analyzed as-is (B = 1), as well as with batch size B = 64, 512,

and 4096. (Recall from table B.1 that η = 0, 0.9, 0.999 correspond to τint = 1, 19, 1999,
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respectively.) Now the process being analyzed is A0, . . . , AK−1 where K = N/B. We

note the following:

• For B = 1 (the original time series), the estimator u2 of the variance of the

sample mean employed was the corrected estimator of equation (B.8.6), while

for B = 64, 512, 4096, the Ak’s were treated as if they were IID. That is, for

B > 1 we set u2 = t2.

• Batch size does not, of course, affect the sample mean (column 3 of the table).

Likewise, it does not affect the multi-experiment estimator of the variance of

the sample mean (column 4).

• The true variance of the sample mean, σAN
=
√

τintσ
2
Ak

/K, is shown in column

5.

• The last two columns show the first two autocorrelation estimates. These show

that for η = 0 (the IID case), Yt samples are indeed approximately IID. For

η = 0.9, the B = 64 batches are nearly independent, and the largest batches

are quite weakly correlated. For η = 0.999, where τint = 1999, batch sizes of 64

and 512 are too small, but batch size 4096 is large enough to produce weakly

correlated batches.

• For η = 0, the average of the single-experiment estimator u of the variance

of the sample mean is approximately constant with respect to batch size. For

η = 0.9 and η = 0.999, once the batch size is large enough to get weakly

correlated samples, the estimator u2 on batches agrees with the estimator u2 on

the original time-series data.

• The multi-realization estimator and the averaged single-realization estimator of

the variance of the sample mean (columns 4 and 6) roughly agree, for batch

sizes large enough that batches are weakly correlated.
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• The error of the error bar (column 7 of the table) is not improved by use of

batched means.

η B mM (AN ) sM (AN ) σAN
mM (uN(Ak)) sM (uN(Ak)) ĉAk

(0) ĉAk
(1)

0.000 1 0.5001 0.00113 0.00113 0.00113 0.000002 1.0000 0.0001
0.000 64 0.5001 0.00113 0.00113 0.00113 0.000027 0.9990 0.0378
0.000 512 0.5001 0.00113 0.00113 0.00114 0.000073 0.9922 0.0031
0.000 4096 0.5001 0.00113 0.00113 0.00111 0.000206 0.9375 0.2053

0.900 1 0.4996 0.00481 0.00492 0.00490 0.000034 1.0000 0.8982
0.900 64 0.4996 0.00481 0.00492 0.00451 0.000103 0.9990 0.1591
0.900 512 0.4996 0.00481 0.00492 0.00480 0.000280 0.9922 -0.0552
0.900 4096 0.4996 0.00481 0.00492 0.00476 0.000894 0.9375 0.1445

0.999 1 0.5112 0.04801 0.05042 0.04937 0.004180 1.0000 0.9987
0.999 64 0.5112 0.04801 0.05042 0.00874 0.000756 0.9990 0.9493
0.999 512 0.5112 0.04801 0.05042 0.02301 0.002276 0.9922 0.6462
0.999 4096 0.5112 0.04801 0.05042 0.04280 0.007354 0.9375 -0.0060

Table B.3. Statistics for M = 100 batched experiments on N = 65536 samples of
Yt: η = 0.0, 0.9, 0.999.

B.15 Conclusions on error bars, autocorrelation, and batched

means

Given an MCMC experimental result X0, . . . , XN−1, we may compute the sample

mean XN and an estimator s2
N(Xt) of the sample variance.

Batched means improve neither the bias nor the variation of the error bar. The

variance reduction obtained by (approximate) independence of batches cancels out

the variance increase caused by reduced sample size.

Computing autocorrelations and summing them as described in section B.9, we

may obtain an estimate τ̂int of the integrated autocorrelation time τint. This is used

to update the naive estimated variance of the sample mean t2N(Xt) = s2/N to the

corrected estimator u2
N(Xt) = τ̂ints

2/N . With the understanding that τ̂int has itself a
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noticeable variance and a fractional underbias, uN estimates the standard deviation

of the sample mean.



195

Index

A

a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

accept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

acceptance rate . . . . . . . . . . . . . . . . . . 107

accumulation phase . . . . . . . . . . . 58, 108

annealed model . . . . . . . . . . . . . . . . . . . .25

annealed point positions . . . . . . . . . .158

ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

antipodal problem . . . . . . . . . . . . . . . . . 35

aperiodic . . . . . . . . . . . . . . . . . . .53, 67, 92

asymptotic process . . . . . . . . . . . . . . . 170

autocorrelation . . . . . . . . . . 47, 166, 168

autocovariance . . . . . . . . . . . . . . . . . . . 168

B

band-update . . . . . . . . . . . . . . . . . . . . . . 72

base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

batch size . . . . . . . . . . . . . . . . . . . . . . . . 187

batched mean . . . . . . . . . . . . . . . 187, 189

binning . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Bose-Einstein condensation . . . . . . . . 15

Bose, S.N. . . . . . . . . . . . . . . . . . . . . . . . . . 15

bounded operator . . . . . . . . . . . . . . . . 163

Brownian bridges . . . . . . . . . . . . . . . . . .77

burn-in time . . . . . . . . . . . . . . . . . . 55, 171

C

C language . . . . . . . . . . . . . . . . . . . . . . . 142

c(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C(t), c(t) . . . . . . . . . . . . . . . . . . . . . . . . . 168

close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

closed permutation . . . . . . . . . . . . . . . . 79

collapse . . . . . . . . . . . . . . . . . . . . . . . . . . 153

common cycle . . . . . . . . . . . . . . . . . . . . . 37

compact operator . . . . . . . . . . . . . . . . 163

composition of permutations 65, 73, 92

condensate fraction . . . . . . . . . . . . . . . . 16

condensation . . . . . . . . . . . . . . . . . . . . . . 15

configuration space . . . . . . . . . . . . . . . . 57

connected to . . . . . . . . . . . . . . . . . . . 37, 63

◦–◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 63

conservation of winding number . . . 69

consistency checks . . . . . . . . . . . . . . . . 127

continuous distribution . . . . . . . . . . . . 26

continuum . . . . . . . . . . . . . . . . . . . . . . . . .25

control knob . . . . . . . . . . . . . . . . . . . . . 170



196

convergence . . . . . . . . . . . . . . . . . . . .55, 95

corrected estimator 167, 168, 181, 193

correlated-uniform Markov process 165,

170

correlated-uniform stationary Markov pro-

cess . . . . . . . . . . . . . . . . . . . . . . 170

correlation . . . . . . . . . . . . . . . . . . . . . . . 168

correlation length . . . . . . . . 39, 121, 147

correlations . . . . . . . . . . . . . . . . . . . . . . 165

covariance . . . . . . . . . . . . . . . . . . . 157, 168

critical exponent . . . . . . . . . . . . . . . . . 148

critical manifold . . . . . . . . . . . . . . . . . . . 30

critical temperature . . . . . . . . . . 15, 158

cross fibers . . . . . . . . . . . . . . . . . . . . . . . . 83

crossing method . . . . . . . . . . . . . . . . . . 152

crossing plots . . . . . . . . . . . . . . . . . . . . 148

cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

cycle length . . . . . . . . . . . . . . . . . . 36, 121

cycle list . . . . . . . . . . . . . . . . . . . . . . . . . 105

cycle merge . . . . . . . . . . . . . . . . . . .68, 115

cycle percolation . . . . . . . . . . . . . . . . . . 15

cycle split . . . . . . . . . . . . . . . . . . . . 68, 115

cycle weights . . . . . . . . . . . . . . . . . . 19, 24

cycle-length caching . . . . . . . . . . . . . . 112

D

data structure . . . . . . . . . . . . . . . . . . . . 105

decaying cycle weights . . . . . . . . . . . . . 30

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

density of sites . . . . . . . . . . . . . . . . . . . . 40

density-matrix operator . . . . . . . . . . . 15

detailed balance . . . . . . . . . . . .53, 67, 92

die-tipping . . . . . . . . . . . . . . . . . . . . . . . . 52

difference vector . . . . . . . . . . . 35, 44, 70

discrete distribution . . . . . . . . . . . 25, 26

discrete-time random process . . . . . . 48

disjoint partition . . . . . . . . . . . . . . . . . . 83

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

distance-dependent terms . . . . . . . . . .28

E

eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . 55

eigenvector . . . . . . . . . . . . . . . . . . . . . . . . 55

Einstein, A. . . . . . . . . . . . . . . . . . . . . . . . 15

embarrassingly parallel . . . . . . . . . . . 145

energy density . . . . . . . . . . . . . . . . . . . .119

energy function . . . . . . . . . . . . . . . . 57, 79

energy minima . . . . . . . . . . . . . . . . . . . . 95

energy per site . . . . . . . . . . . . . . . . . . . 119

ERCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ergodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ergodic sampling theorem . . . . . . . . . 55

ergodic theorem . . . . . . . . . . . . . . . 53, 56

error bar . . . . . . . . . . . . . . . 148, 165, 173

error of the error bar . . . 167, 183, 185

estimator . . . . . . . . . . . . . . . . . . . . . 47, 166



197

η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

even winding numbers . . . . . . . . . . . . . 95

Ewens distribution . . . . . . . . . . . . . . . . 28

expectation . . . . . . . . . . . . . . . . . . . . 26, 47

exponential . . . . . . . . . . . . . . . . . . . . . . 166

exponential autocorrelation time . 186

extended energy . . . . . . . . . . . . . . . . . . . 80

extended Gibbs distribution . . . . . . . 80

extended lattice . . . . . . . . . . . . . . . . . . . 79

extended partition function . . . . . . . . 80

external potential . . . . . . . . . . . . . . . . . 15

F

Feynman-Kac . . . . . . . . . . . . . . . . . . . . . 77

Feynman-Kac formula . . . . . . . . . . . . 164

Feynman-Kac representation . . . . . . 15

Feynman, R.P. . . . . . . . . . . . . . . . . . . . . 15

fI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 122

fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

fibration . . . . . . . . . . . . . . . . . . . . . . . . . . .83

finite volume . . . . . . . . . . . . . . . . . 35, 147

finite-size scaling . . . . . . . . . . . . . 21, 147

flat-spot estimator . . . . . . . . . . . . . . . 182

fmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

footer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Fourier methods . . . . . . . . . . . . . . . . . . . 30

fraction of sites . . . . . . . . . . . . . . . . . . . . 41

fraction of sites in winding cycles . . 44

fS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44, 125

fW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

G

G sector . . . . . . . . . . . . . . . . . . . . . . . . . . .79

general-cycle model . . . . . . . . . . . . . . . .27

geometric sum . . . . . . . . . . . . . . . . . . . 175

geometric sums . . . . . . . . . . . . . . . . . . .171

Gibbs distribution . . . . . . . . . 48, 58, 79

Gibbs measure . . . . . . . . . . . . . . . . . . . . 23

global phenomenon . . . . . . . . . . . . . . . . 73

Golomb . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

grand-canonical ensemble . . . . . . . . . . 78

ground state . . . . . . . . . . . . . . . . . . . . . . .15

H

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 23

hard-core potential . . . . . . . . . . . . . . . 162

head swap . . . . . . . . . . . . . . . . . . . . . . . . . 81

header . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

helium atoms . . . . . . . . . . . . . . . . . . . . 162

high-performance computing . . . . . 145

histograms . . . . . . . . . . . . . . . . . . . . . . . 173

homogeneous . . . . . . . . . . . . . . . . . . 49, 91

homogeneous chain . . . . . . . . . . . . . . . . 51

hop across . . . . . . . . . . . . . . . . . . . . . . . . .95

hypotheses . . . . . . . . . . . . . . . . . . . . . . . 147

I



198

identically distributed . . . . . . . . . . . . 165

identity permutation . . . . . . . . . . . . . . 28

IID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IID samples . . . . . . . . . . . . . . . . . . . . . . 187

IID uniform process . . . . . . . . . . . . . . 169

image map . . . . . . . . . . . . . . . . . . . . . . . . 65

infinite volume . . . . . . . . . . . . . . . . . . . 147

infinite-volume limit . . . . . . . . . . . . . . . 35

initial configuration . . . . . . . . . . . . . . . 57

initial distribution . . . . . . . . . . . . . 49, 58

initialization bias . . . . . . . . . . . . . . . . . . 47

inject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

integrated autocorrelation time . . . 56,

125, 167, 180, 186

interactions . . . . . . . . . . . . . . . . . . . . . . . 23

invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 51

invariant distribution . . . . . . . . . . 53, 54

invariant-distribution theorem . . . . . 53

irreducible . . . . . . . . . . . . . . . . . . . . . 53, 65

Ising model . . . . . . . . . . . . . . . . . . . . 56, 73

J

j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

joint distribution . . . . . . . . . . . . . . . . . . 25

jx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

L

ℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Λ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

law of total probability . . . . . . . . . . . . 50

limiting distribution . . . . . . . . . . . . . . . 54

linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

linked list . . . . . . . . . . . . . . . . . . . . . . . . 107

liquid helium . . . . . . . . . . . . . . . . . . . . . . 16

ℓmax . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 43

local changes . . . . . . . . . . . . . . . . . . . . . . 73

London, F. . . . . . . . . . . . . . . . . . . . . . . . . 16

long permutation cycles . . . . . . . . . . . 15

M

macroscopic cycle quotient . . . . . . . . 43

macroscopic occupation . . . . . . . . . . . 15

macroscopic-cycle quotient . . . .31, 154

marginal distribution . . . . . . . . . . . . . . 79

marginal distributions . . . . . . . . . . . . . 25

marginality condition . . . . . . . . . . . . . .80

Markov chain . . . . . . . . . . . . . . . . . . . . . .49

Markov chain Monte Carlo . . . . . . . . 21

Markov chains . . . . . . . . . . . . . . . . . . . . .48

Markov matrices . . . . . . . . . . . . . . . . . . 61

Markov matrix . . . . . . . . . . . . . . . . . . . . 49

Markov process . . . . . . . . . . 49, 165, 168

maximum jump length . . . . . . . . . . . 121

mcrcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

mean jump length . . . . . . . . . . . . 39, 121



199

merge . . . . . . . . . . . . . . . . . . . . .68, 69, 115

Mersenne Twister . . . . . . . . . . . . . . . . . 22

metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Metropolis . . . . . . . . . . . . . . . . . . . . . 55, 57

Metropolis algorithm . . . . . . . . . . 79, 81

Metropolis proposal . . . . . . . . . . . . . . 111

Metropolis step . . . . . . 57, 60, 110, 111

Metropolis sweep . . . . . . . . . . . . . 57, 109

Metropolis update . . . . . . . . . . . . . . . .111

mixing time . . . . . . . . . . . . . . . . . . . . . . . 55

mM(XN) . . . . . . . . . . . . . . . . . . . . . . . . .167

mN (Xt) . . . . . . . . . . . . . . . . . . . . . . . . . . 167

multi-experiment estimator . . 168, 185

multi-realization estimator . . . . . . . 176

multimodal distribution . . . . 47, 71, 95

N

naive estimator . . . . . . . . . 167, 181, 193

nearest-neighbor . . . . . . . . . . . . . . . . . . .62

non-interacting case . . . . . . . . . . . . . . . 27

non-spatial . . . . . . . . . . . . . . . . . . . . . . . . 79

number of batches . . . . . . . . . . . . . . . .187

O

Onnes, H.K. . . . . . . . . . . . . . . . . . . . . . . . 16

open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

open permutation . . . . . . . . . . . . . . . . . 79

order parameter . . . . . . . . . . . . . . . . . . 147

order parameters . . . . . . . . . . . . . . 34, 45

P

parallel processing . . . . . . . . . . . . . . . .145

particle density . . . . . . . . . . . . . . . . . . . . 40

partition function . . . . . . . . . . . . . . 25, 80

path-integral Monte Carlo . . . . . . . . . 20

period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

periodic boundary conditions . . 23, 43

permutations . . . . . . . . . . . . . . . . . . . . . . 23

phase transition . . . . . . . . . . . . . . . . . . . 29

photons . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

π′ ◦–◦π . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

PIMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

point positions . . . . . . . . . . . . . . . . . . . . 23

points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

power law . . . . . . . . . . . . . . . . . . . . . . . . 147

preimage . . . . . . . . . . . . . . . . . . . . . . . . . 107

probability density function . . . . . . 169

probability maxima . . . . . . . . . . . . . . . .95

probability measure . . . . . . . . . . . . . . . 23

propose . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

pseudocode . . . . . . . . . . . . . . . . . . . . . . .171

Python language . . . . . . . . . . . . 142, 171

Q

quadratic . . . . . . . . . . . . . . . . . . . . . . . . . .95

quenched model . . . . . . . . . . . . . . . . . . . 25

R

random sequence . . . . . . . . . . . . . . . . . . 48



200

random site selection . . . . . . . . . . . . . . 60

random variable . . . . . . . . . . . . . . . . . . . 47

reciprocated . . . . . . . . . . . . . . . . . . . . . . 163

regression . . . . . . . . . . . . . . . . . . . . . . . . 148

reject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

reverse sweep . . . . . . . . . . . . . . . . . . . . .110

reversible . . . . . . . . . . . . . . . . . . . . . . . . . .53

RNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

rough estimator . . . . . . . . . . . . . . . . . . 167

rubidium . . . . . . . . . . . . . . . . . . . . . . . . . . 16

running-sum estimator . . . . . . . . . . . 181

rvrcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

S

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

s2
M(XN) . . . . . . . . . . . . . . . . . . . . . . . . . .167

s2
N(Xt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

sample mean . . . . . . . . . . . 166, 167, 174

sample variance . . . . . . . . . . . . . 166, 167

sampling variability . . . . . . . . . . . . . . . 47

scaled winding number . . . . . . . . . . . . 44

scaling function . . . . . . . . . . . . . . . . . . 149

scattering length . . . . . . . . . . . . . .17, 162

second dominant eigenvalue . . . . . . 176

sequential site selection . . . . . . . . . . . . 60

Shepp and Lloyd . . . . . . . . . . . . . . . . . . 21

short-jump-length regime . . 29, 34, 35,

70, 121

σ2
Y N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

single-experiment estimator . .168, 185

site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

sliding-window estimator . . . . . . . . . 177

sM(Y N ) . . . . . . . . . . . . . . . . . . . . . . . . . . 185

smoothed system energy . . . . . . . . . .116

smoothing window size . . . . . . . . . . . 118

software . . . . . . . . . . . . . . . . . . . . . . . . . . 105

software-development environment 129,

137

spatial cycle length . . . . . . . . . . . . . . . . 36

spatial Ewens distribution . . . . . . . . . 28

spatial permutations . . . . . . . . . . . . . . .23

spectral gap . . . . . . . . . . . . . . . . . . . . . . 118

split . . . . . . . . . . . . . . . . . . . . . . 68, 69, 115

state space . . . . . . . . . . . . . . . . . . . . . . . . 23

stationary . . . . . . . . . . . . . . . . . . . . . . . . 168

stationary distribution . . . . . . . . . . . . .54

stationary Markov process . . . . . . . .168

stationary sequence . . . . . . . . . . . . . . . .51

step . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 59

stochastic matrix . . . . . . . . . . . . . . . . . . 49

stopping time . . . . . . . . . . . . . . . . . . . . 111

stopping-time problem . . . . . . . . . . . . .95

swap-and-reverse . . . . . . . . . . . . . . . . . . 72

swap-only algorithm . . . . . . . . . . . . . . . 60

swap-only sweep . . . . . . . . . . . . . . . . . .109

sweep . . . . . . . . . . . . . . . . . . . . . . 57, 59, 81



201

Swendsen-Wang . . . . . . . . . . . . . . . . . . . 73

symmetrizing . . . . . . . . . . . . . . . . . . . . .163

T

t2N(Xt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

tail swap . . . . . . . . . . . . . . . . . . . . . . . . . . 81

τint . . . . . . . . . . . . . . . . . . . . . . . . . . 180, 184

τ̂int . . . . . . . . . . . . . . . . . . . . . 167, 181, 185

temperature . . . . . . . . . . . . . . . . . . . . . . . 57

thermalization . . . . . . . . . . . . . . . . . . . . .47

thermalization phase . . . . . . . . . .58, 108

thermalization time . . . . . . . . . . . . . . . 55

thermalized . . . . . . . . . . . . . . . . . . .58, 116

time series . . . . . . . . . . . . . . . . . . . . . . . 165

torus . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 95

trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

transition matrix . . . . . . . . . . . . . . . . . . 52

transition probabilities . . . . . . . . . . . . 49

transitive on fibers . . . . . . . . . . . . . . . . 83

transpositions . . . . . . . . . . . . . . . . . . . . . 65

trivial . . . . . . . . . . . . . . . . . . . . . . . . . 60, 82

trivially parallel . . . . . . . . . . . . . . . . . . 145

tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . 95

turning points . . . . . . . . . . . . . . . 116, 118

turning-point estimator . . . . . . . . . . .182

two-cycle model . . . . . . . . . . . . . . . . . . . 27

typical permutation . . . . . . . . . . . . . . . 28

U

U . . . . . . . . . . . . . . . . . . . . . . . . . . . 162, 169

u2
N(Xt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

unbiased estimator . . . . . . . . . . 166, 176

uniform distribution . . . . . . . . . . . . . . . 28

uniform permutations . . . . . . . . . . . . . 31

uniform probability distribution . . . 57

uniform process . . . . . . . . . . . . . . . . . . 169

universal function . . . . . . . . . . . . . . . . 147

V

Var(u2
N(Xt)) . . . . . . . . . . . . . . . . . . . . . 167

variance . . . . . . . . . . . . . . . . . . . . . . . . . . 184

variance of the sample mean . . . . . .167

W

weakly interacting . . . . . . . . . . . . . . . . . 16

winding number . . . . . . . . . . . . . . . 43, 69

winding vector . . . . . . . . . . . . . . . . . . . . 44

window . . . . . . . . . . . . . . . . . . . . . . . . . . 177

winds through . . . . . . . . . . . . . . . . . . . . . 44

worm algorithm . . . . . . . . . . . . . . . .77, 81

worm algorithms . . . . . . . . . . . . . . . . . . 21

worm sweep . . . . . . . . . . . . . . . . . . 82, 110

wormhole point . . . . . . . . . . . . . . . 78, 106

wormspan . . . . . . . . . . . . . . . . . . . . . . . . . 95

X

x ◦–◦y . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



202

Y

Yt . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 170

Z

Z sector . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

zero energy change . . . . . . . . . . . . . . . . 95

zero Fourier mode . . . . . . . . . . . . . . . . . 15

zero-centered modulus . . . . . . . . . . . . . 35



203

References

The random-cycle model:

[BU07] Betz, V. and Ueltschi, D. Spatial random permutations and infinite cycles.
arXiv:0711.1188. Commun. Math. Phys. 285, 469-501 (2009).

[BU08] Betz, V. and Ueltschi, D. Spatial random permutations with small cycle
weights. arXiv:0812.0569v1. Probabl. Th. Rel. Fields (2010).

[BU10] Betz, V. and Ueltschi, D. Critical temperature of dilute Bose gases. Physical
Review A 91, 023611 (2010). arXiv:0910.3558.

[BUV09] Betz, V. Ueltschi, D., and Velenik, Y. Random permutations with cycle
weights. arXiv:0908.2217.

[GRU] Gandolfo, D., Ruiz, J., and Ueltschi, D. On a model of random cycles.
arXiv:cond-mat/0703315. Statist. Phys. 129, 663-676 (2007).

[Lugo] Lugo, M. Profiles of permutations. Electronic Journal of Combinatorics, 16

(2009) R99.
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