
Worm portion of dissertation (rough draft)

John Kerl

April 7, 2009

1

Contents

Contents 2

1 Disclaimer 3

2 The random-cycle model and the GRU algorithm 3

2.1 The random-cycle model . 3

2.2 The GRU algorithm . 3

2.3 Explicit construction of the Markov matrix . 4

2.4 Correctness of the GRU algorithm . 6

3 The random-cycle model and the worm algorithm 9

3.1 Winding cycles . 9

3.2 PIMC motivation . 9

3.3 Idea of the worm algorithm . 9

3.4 Extended random-cycle model . 11

3.5 Proof of marginality . 11

3.6 The worm algorithm . 12

3.7 Fibration of SN+1 over SN . 13

3.8 Explicit construction of the Markov matrix . 17

3.9 Correctness . 18

4 ∆H computations 21

4.1 GRU and worm with N2 interactions . 21

4.2 GRU and worm with Nℓ interactions . 22

4.3 GRU with V interactions . 23

4.4 Worm with V interactions . 24

Index 25

2

1 Disclaimer

These are rough notes for the portion of my dissertation relating to the RCM worm algorithm.

2 The random-cycle model and the GRU algorithm

2.1 The random-cycle model

We have N points x1, . . . ,xN in a cube [0, L]d in R
d (nominally, d = 3) with periodic boundary conditions.

For π ∈ SN , we have energy functions

H(π) =
1

4β

N
∑

i=1

‖xi − xπ(i)‖
2 +

N
∑

ℓ=2

αℓNℓ(π) (cycle weights) (2.1.1)

or

H(π) =
1

4β

N
∑

i=1

‖xi − xπ(i)‖
2 +

∑

i<j

V (xi,xπ(i),xj ,xπ(j)) (jump-pair interactions). (2.1.2)

Remark 2.1.3. We should write H(x1, . . . ,xN , π). However, either we work on a lattice where the xi’s are
held fixed, or on the continuum where the xi’s are integrated out.

Remark 2.1.4. For jump-pair interactions, the arrow xi 7→ xπ(i) interacts with the arrow xj 7→ xπ(j).

Definition 2.1.5. At present we restrict attention to the lattice points L:

L = [0, L]d ∩ Z
d.

Note that there are N = Ld lattice sites.

From either of these energy functions we define a probability density on SN via a Gibbs distribution:

P (π) =
e−H(π)

Z
(2.1.6)

where the partition function is

Z =
∑

π∈SN

e−H(π). (2.1.7)

Definition 2.1.8. Fixing π ∈ SN , for x ∈ L, ℓπ(x) (or simply ℓ(x)) is the smallest positive number a such
that πa(x) = x. This is the length of the cycle containing x.

2.2 The GRU algorithm

The GRU algorithm for sampling from this distribution is as follows:

• Start with the identity or uniform-random permutation.

3

• Sweep through sites x of the lattice in either lexical or uniform-random order.

• For each site x, do a Metropolis step:

– Choose a site π(y) from among the six nearest neighbors of π(x).

– Propose to change π to the permutation π′ which has π′(z) = π(z) for all z 6= x,y but π′(x) = π(y)
and π′(y) = π(x). (See figure 1.)

– With probability proportional to min{1, e−∆H} where ∆H = H(π′) − H(π), accept the change.
(If the change is rejected, π′ = π.)

• After each sweep1, obtain a value of random variable(s) for inclusion in computation of their sample
means.

swap w.p.
∼ 1 ∧ e−∆H

xx

π(x)π(x)

yy

π(y)π(y)

Figure 1: Metropolis moves for the GRU algorithm.

Definition 2.2.1. A GRU swap is trivial if x = y.

2.3 Explicit construction of the Markov matrix

For section 2.4 we will need an explicit construction of the Markov matrix corresponding to the GRU
algorithm as described in section 2.2.

The Markov perspective on the algorithm is that the distribution P (0)(π) of the first permutation is ei-
ther supported solely on the identity, or uniform on all N ! permutations. The distribution for subsequent
permutations is

P (k+1)(π′) =
∑

π∈SN

P (k)(π)M(π, π′)

or, in matrix/vector notation,

P(k+1) = P(k)M.

In this section we precisely describe the matrix M; in section 2.4 we show that P(k) approaches the Gibbs
distribution (equation 2.1.6).

The matrix M is N ! × N !: rows are indexed by π1, . . . , πN ! and columns are indexed by π′
1, . . . , π

′
N !. Most

of the entries of M are zero: Metropolis steps change only two permutation sites whereas most π, π′ differ
at more than two sites.

Definition 2.3.1. For π, π′ ∈ SN , define

d(π, π′) = #{i = 1, 2, . . . , N : π(i) 6= π′(i)}.

1Or after a specified number of sweeps. This choice depends on autocorrelation time, which is beyond the scope of this

section.

4

Remark. Note that d(π, π′) 6= 1 since if two permutations agree on N − 1 sites, they must agree on the
remaining site.

Lemma 2.3.2. The function d(π, π′) is a metric on SN .

Proof. Symmetry is obvious, as is non-negativity. For positive definiteness, note that d(π, π′) = 0 iff π = π′.
For the triangle inequality, let π, π′, π′′ ∈ SN . Partition the set {1, 2, . . . , N} into the four disjoint sets

A = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) = π′′(i)},

B = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) 6= π′′(i)},

C = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) = π′′(i)},

D = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) 6= π′′(i)}.

Then π = π′′ on all of A; π 6= π′′ on all of B and C; and π, π′′ may or may not agree on various elements of
D:

A B C D
π = π′ π = π′ π 6= π′ π 6= π′

π′ = π′′ π′ 6= π′′ π′ = π′′ π′ 6= π′′

π = π′′ π 6= π′′ π′ 6= π′′ Varies

That is,

d(π, π′) = #C + #D,

d(π′, π′′) = #B + #D,

#B + #C ≤ d(π, π′′) ≤ #B + #C + #D.

Then

d(π, π′′) ≤ #B + #C + #D ≤ #B + #C + 2#D = d(π, π′) + d(π′, π′′).

Definition 2.3.3. Lattice sites x,y are nearest-neighbor if ‖x − y‖ = 1.

Definition 2.3.4. For π ∈ SN , define

R(π) = {π′ ∈ SN : d(π, π′) = 2 and ‖π(x) − π(y)‖ = 1}

where the x and y are taken to be the two points at which π, π′ differ. Then R(π) is the set of permutations
π′ reachable from π on a GRU swap.

The Metropolis steps are then described as follows. For each π ∈ SN ,

M(π, π′) =























C
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ R(π),

1 −
∑

π′∈R(π)

C
(

1 ∧ e−H(π′)+H(π)
)

, π = π′;

0, otherwise.

To find out what C is:

• There are N choices of lattice points x.

5

• For each x, there are 6 choices of π(y) which are nearest neighbors to π(x).

• This double-counts the 3N distinct choices of π′ reachable from π in a single Metropolis step, since
choosing x and then y results in the same Metropolis step as choosing y and then x.

We require rows sums to be 1 for stochastic matrices so we may take

C =
1

3N
.

This prefactor of 1/3N is the same for all non-zero entries of M for GRU Metropolis. Then

M(π, π′) =























1
3N

(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ R(π),

1 −
∑

π′∈R(π)

C
(

1 ∧ e−H(π′)+H(π)
)

, π = π′;

0, otherwise.

(2.3.5)

2.4 Correctness of the GRU algorithm

It is clear that the GRU algorithm produces a sequence of permutations, but with what distribution? From
Markov-chain theory, we know the following: If the chain is irreducible, aperiodic, and satisfies detailed
balance, then the chain has the Gibbs distribution (equation 2.1.6) as its unique invariant distribution.

Terminology: detailed balance is the same as reversibility. Also, an irreducible, aperiodic chain on a
finite state space is called ergodic.

Also note from Markov-chain theory that all states in a recurrence class have the same period. Thus, if
we can show that the chain is irreducible (i.e. the entire state space is a single recurrence class), then for
aperiodicity of the chain it suffices to show that a single state (e.g. the identity permutation) has period 1.

Proposition 2.4.1 (Irreducibility). For all π, π′, there is an n such that Mn(π, π′) > 0. That is, any
permutation is reachable from any other.

Proof. This non-trivial result needs to be proved.

Remark. Below we will discuss winding cycles, and the empirical fact that the GRU algorithm reaches
them only rarely. The chain is irreducible but the non-zero transition probability can still be very small.

Definition 2.4.2. A permutation π has period p if any return to π must occur at multiples of p steps.
Precisely, let Πn be the random variable which is the nth value of the Markov chain. Then

p = gcd{n : P (Πn = π | Π0 = π) > 0}.

Furthermore, the chain is said to be aperiodic if all states are aperiodic.

Proposition 2.4.3 (Aperiodicity). The GRU algorithm’s Markov chain is aperiodic.

Proof. From Markov-chain theory, we know that all states in a recurrence class have the same period.
Thus, it suffices to show that one state, e.g. the identity, is aperiodic. If there is non-zero probability of
transitioning from the identity to itself, the identity is an aperiodic state. But this in fact the case: The
identity has zero energy (equations 2.1.1, 2.1.2). Any state proposed as a transition from the identity is
necessarily a two-cycle, for which the distance terms in equation 2.1.1,2.1.2 are positive. The cycle-weight
terms or interaction terms are non-negative. Thus ∆H > 0, and the GRU Metropolis transition probability
is strictly less than 1. Therefore there is a non-zero probability of staying at the identity permutation.

6

Proposition 2.4.4 (Detailed balance). For all π, π′ ∈ SN ,

P (π)M(π, π′) = P (π′)M(π′, π). (2.4.5)

Proof. The detailed-balance statement in terms of the Gibbs distribution (equation 2.1.6) and the GRU
Metropolis transition matrix (equation 2.3.5) is

e−H(π)

Z

(

1 ∧ e−H(π′)eH(π)
)

?
=

e−H(π′)

Z

(

1 ∧ e−H(π)eH(π′)
)

.

The Z’s cancel. The lemma below shows that M(π, π′) 6= 0 iff M(π′, π) 6= 0. If M(π, π′) = 0, then detailed
balance holds. If M(π, π′) 6= 0, then there are two cases. If H(π′) ≤ H(π), then

e−H(π) (1) = e−H(π′)
(

e−H(π)eH(π′)
)

.

If H(π′) > H(π),

e−H(π)
(

e−H(π′)eH(π)
)

= e−H(π′) (1) .

In all cases, detailed balance holds.

Lemma 2.4.6. For all π, π′ ∈ SN ,

M(π, π′) 6= 0 ⇐⇒ M(π′, π) 6= 0.

Proof. If d(π, π′) > 2, then M(π, π′) = 0 and M(π′, π) = 0.

If d(π, π′) = 2, then π and π′ differ at two sites x and y. Put

π(x) = u, π′(x) = v,

π(y) = v, π′(y) = u.

If ‖u − v‖ = 1 then M(π, π′) 6= 0 and M(π′, π) 6= 0 since u and v are nearest-neighbor lattice sites. If
‖u− v‖ > 1 then M(π, π′) = 0 and M(π′, π) = 0 since u and v are not nearest-neighbor lattice sites.

Last, if π = π′, then M(π, π′) = M(π′, π).

This lemma completes the proof that the GRU algorithm satisfies detailed balance and thus has the Gibbs
distribution as its invariant distribution.

The following proposition is not a correctness result, but rather a sanity check. It shows that cycles may
grow or shrink upon GRU moves.

Figure 2: GRU swaps merge disjoint cycles and split single cycles. The left-hand permutation can be reached
from the right-hand permutation via a GRU swap, and vice versa.

7

Proposition 2.4.7. If x and y are in disjoint cycles before a non-trivial GRU swap then they are in the
same cycle afterward and vice versa (see figure 2).

Proof. First suppose that x and y are in disjoint cycles. Let the respective cycle lengths be ℓ(x) = a and
ℓ(y) = b. Those cycles are

x 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x and y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

Since these are disjoint cycles, all elements listed are distinct lattice sites. After the swap, we have

y 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x and x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

This is a single cycle of length a + b, starting with y, including x, and returning to y.

Second, suppose that x and y are in the same cycle. Let a be the smallest positive integer such that
πa(x) = y; let b be the smallest positive integer such that πb(y) = x. (These numbers are both positive
since the swap is non-trivial, i.e. x 6= y.) Then we have

x 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

This is a single cycle of length a + b; all lattice sites listed are distinct. After the swap, we have

y 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y and x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

These are disjoint cycles of length a and b, respectively; the first contains x and the second contains y.

8

3 The random-cycle model and the worm algorithm

Here an alternative to the GRU algorithm is motivated and proved correct.

3.1 Winding cycles

Recall that we have permutations on [0, L]3 with periodic boundary conditions. Topologically, this is a
3-torus. Permutation cycles may wind around the 3-torus some number of times in the x, y, and/or z
directions. If a cycle goes around once in the clockwise direction, we want to say it has sign +1; likewise, we
want sign −1 for the counterclockwise direction. The following definition formalizes this intuition.

Definition 3.1.1. The winding number W of a permutation is the triple of integers

W = (Wx, Wy, Wz) =
1

L

N
∑

i=1

(xπ(i) − xi).

We also write

W2 = W · W = W 2
x + W 2

y + W 2
z .

It is found empirically with the GRU algorithm that winding cycles are created with opposite signs, such
that permutations have winding number zero. E.g. there might be a cycle with Wx = 1 and another cycle
with Wx = −1. The same problem is observed in PIMC studies. (References TBD.)

One solution is to modify the GRU algorithm to reverse, with probability 1/2, the direction of arrows in
modified cycles. This is a partial remedy: it results in permutations with even winding numbers.

The superfluid fraction is [cite PC87]

fS =
〈W2〉L2

3βN
=

〈W2〉

3βL
.

We use this as an order parameter with which to detect the critical temperature.

3.2 PIMC motivation

Say something here about PIMC, worldlines, and the gist of the PIMC worm algorithm. Mention the
grand-canonical ensemble. References TBD.

[figures here]

3.3 Idea of the worm algorithm

The key selling point of the random-cycle model is that Brownian bridges have been integrated out. Most
of the complexity of PIMC simulations goes away. If I want to adapt a PIMC worm algorithm to the RCM,
I need to spend a lot of my time learning about PIMC, but probably ultimately most of the complexity will
also go away. Instead, it is simpler to ask: If we were to have a worm algorithm for the random-cycle model,
what properties would it have? We require the following:

9

• We have a lattice with a fixed number N of points. There is no desire to work in the grand-canonical
ensemble.

• We want the ability to open and close permutation cycles. (An open cycle is a “worm”.)

• Given that, tips of open cycles may wander around the 3-torus before closing, permitting arbitrary
winding numbers.

Idea: sometimes open a cycle, then modify it with GRU-like steps, then close it again. Following PIMC
worm, all Metropolis steps involve the worm. This does touch all lattice points: a worm is opened at a site,
then modified, then closed. Then, a worm is opened somewhere else, and so on.

Question: Can we leverage our knowledge of permutations?

Closed cycle on N = 3 points. Open cycle on N = 3 points. Open cycle viewed as a
permutation on N + 1 = 4 points.

Figure 3: Open cycles as permutations on N + 1 points.

Closed cycle:
(

1 2 3
2 3 1

)

Open cycle:
(

1 2 3
2 3 1

)

Here, 1 7→ 2, 2 7→ 3, 3 7→ nothing, and nothing → 1. Call that nothing something — the wormhole point.
It is an (N + 1)st point:

(

1 2 3 w
2 3 w 1

)

Henceforth, the wormhole point will be written as w or N + 1. In diagrams, it will be an open dot while the
other N points will be written with filled dots. (See figure 3.)

Now we have permutations on SN+1. Given π ∈ SN , inject π into SN+1 via π(w) = w.

Definition 3.3.1. For π ∈ SN+1, we say π is a closed permutation if π(w) = w. We say π is an open

permutation if π(w) 6= w. Likewise, a cycle of π is open or closed, respectively, if it does or does not
contain w.

Remark. The PIMC jargon is that closed permutations are in the Z sector (for partition function), while
open permutations are in the G sector (for Matsubara Green’s function).

The goal is to invent an energy function, Gibbs distribution, and Metropolis algorithm for these extended
permutations in SN+1 such that the marginal distribution on SN+1, conditioned on closed permutations,
matches the RCM Gibbs distribution (equation 2.1.6). Then, random variables will be sampled only at
closed permutations.

10

3.4 Extended random-cycle model

Recall that we inject π ∈ SN into SN+1 via π(w) = w. The (N + 1)st point w is non-spatial: it has no
distance associated with it.

Definition 3.4.1. The extended lattice is

L′ := L ∪ {w}

Definition 3.4.2. For π ∈ SN+1, define

H ′(π) =
1

4β

N
∑

i=1

π(xi) 6=w

‖xi − xπ(i)‖
2 +

N
∑

ℓ=2

αℓNℓ(π) + γ1SN+1\SN
(π). (3.4.3)

Note that this extended energy agrees with the RCM energy (equation 2.1.1) on closed permutations.
This is used to prove the marginality condition below.

A small positive γ factor is sufficient to establish aperiodicity of the Markov chain (proposition 3.9.4).

The extended Gibbs distribution and extended partition function are defined in the obvious way.

Definition 3.4.4. Let

P ′(π) =
e−H′(π)

Z ′
(3.4.5)

where the partition function is

Z ′ =
∑

π∈SN+1

e−H′(π). (3.4.6)

3.5 Proof of marginality

As long as the energy function for the ERCM and the RCM agree on closed permutations, the desired
marginality condition holds. This means that either of the interactions in 2.1.1 or 2.1.2 — or any other to-
be-invented interaction models — may use the worm algorithm as long as they agree on closed permutations.

Proposition 3.5.1 (Marginality condition). Let SN →֒ SN+1 by taking π(w) = w. Let H, H ′ be energy
functions on SN and SN+1, respectively, such that for all π ∈ SN ,

H(π) = H ′(π). (3.5.2)

Let P, P ′, Z, Z ′ be as above. Then for π ∈ SN ,

P ′(π | π ∈ SN) = P (π). (3.5.3)

Proof. Let π ∈ SN . The left-hand side of equation 3.5.3 is, by definition of conditional expectation,

P ′(π | π ∈ SN) =
P ′(π) 1SN

(π)

P ′(SN)
.

11

The numerator is the Gibbs probability for closed permutations, or zero for open ones:

P ′(π) 1SN
(π) =

1

Z ′
e−H′(π) 1SN

(π) =
1

Z ′
e−H(π) 1SN

(π)

since H and H ′ agree on closed permutations. The denominator is the total probability of closed permuta-
tions:

P ′(SN) =
1

Z ′

∑

π∈SN

e−H′(π) =
1

Z ′

∑

π∈SN

e−H(π).

Since π ∈ SN , the ratio is

1
Z′

e−H(π) 1SN
(π)

1
Z′

∑

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)
∑

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)

Z
= P (π).

3.6 The worm algorithm

Now that we have the correct Gibbs distribution for the ERCM, the next step is to devise a Metropolis
algorithm to sample from it. Below, we will prove correctness.

Open at x w.p.

Close w.p.

Head swap at x w.p.

Tail swap at x w.p.
∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

π−1(w)π−1(w)

π−1(w)π−1(w)

x

x

x

x

xx

π(x)

π(x)

π(x)

π(x)

π(x)π(x)

w w

ww

ww

ww

π(w) π(w)

π(w)π(w)

Figure 4: Metropolis moves for the worm algorithm.

The worm algorithm is as follows:

12

• Start with the identity or uniform-random closed permutation.

• The permutation is now closed, so π(w) = w. Select a lattice site x at uniform random. With
probability proportional to 1∧ e−∆H , open the permutation by swapping the arrows of x and w. This
is called an open move. (See figure 4.)

• Now that the permutation is open, do a head swap, tail swap, or close.

• Head swap: Pick a lattice site x nearest-neighbor to the lattice site π−1(w). With probability propor-
tional to 1∧ e−∆H , swap arrows as in figure 4. The head swap is trivial if x = π−1(w), which happens
only if the head swap is rejected. The head swap would be a close if x = w, but we choose x to be a
lattice site. Thus, the permutation remains open on a head swap.

• Tail swap: Pick a lattice site π(x) nearest-neighbor to the lattice site π(w). With probability propor-
tional to 1 ∧ e−∆H , swap arrows as in figure 4. The tail swap is trivial if π(x) = π(w), which happens
only if the tail swap is rejected. The tail swap would be a close if π(x) = w, but we choose π(x) to be
a lattice site. Thus, the permutation remains open on a tail swap.

• Close: with probability proportional to 1∧ e−∆H , swap arrows as in figure 4. The permutation is now
closed.

• Once the permutation is closed — after an open, some number of head/tail swaps, and a close, or
after a rejected open — a worm sweep has been completed. At every sweep (or after every specified
number of sweeps as noted in the autocorrelation footnote above), one may obtain a value of random
variable(s) for inclusion in computation of their sample means.

Definition 3.6.1. A head swap at x is trivial if x = π−1(w); a tail swap at x is trivial if π(x) = π(w).

3.7 Fibration of SN+1 over SN

The definitions and lemmas in this section facilitate explicit construction of the Markov matrix, and are
necessary for proving correctness of the worm algorithm.

The key points about the structure of the fibration, formalized by the lemmas below, are:

• Each open permutation is one opener move away from a base closed permutation. The N open
permutations above a base closed permutation π are the fiber over π.

• This induces a disjoint partition of the open permutations SN+1 \ SN .

• Opens and closes stay within fibers; non-trivial head swaps and tail swaps cross fibers.

• For each open permutation, the six non-trivial head swaps and six tail swaps result in twelve distinct
permutations.

• Head swaps and tail swaps are transitive on fibers.

We first define maps corresponding to worm Metropolis moves.

Definition 3.7.1. The four worm Metropolis moves of figure 4 may be viewed in terms of maps. Throughout,
z ∈ L ∪ {w}.

13

Figure 5: Fibration of S4 over S3. Closed permutations (i.e. S3) are along the bottom row; open permutations
(i.e. S4 \ S3) are above the bottom row. The column, or fiber, above each closed permutation π contains
the open permutations obtained from π by an opener move. Arrows modified by opener moves are shown in
black.

Let O : SN × L → SN+1 \ SN send O(π,x) = π′ such that

π′(x) = w,

π′(w) = π(x),

π′(z) = π(z), z 6= x, w.

Let C : SN+1 \ SN → SN send C(π) = π′ such that

π′(π−1(w)) = π(w),

π′(w) = w,

π′(z) = π(z), z 6= π−1(w), w.

Let S : SN+1 \ SN × L → SN+1 \ SN send S(π,x) = π′ such that

π′(x) = w,

π′(π−1(w)) = π(x),

π′(z) = π(z), z 6= x, π−1(w).

14

Let T : SN+1 \ SN × L → SN+1 \ SN send T (π,x) = π′ such that

π′(x) = π(w),

π′(w) = π(x),

π′(z) = π(z), z 6= x, w.

Throughout the proofs of the fibration-structure lemmas, we will use the following fact.

Lemma 3.7.2. If x 6= y, then π(x) 6= π(y) and π−1(x) 6= π−1(y).

Proof. If x 6= y and π(x) = π(y), then π is not 1-1 which is a contradiction since π is a permutation. This
applies to π−1 as well, since π−1 is also a permutation.

Now we may prove the fibration-structure lemmas.

Lemma 3.7.3. Each open permutation π is one opener move away from a base closed permuation π′. That
is, for all π ∈ SN+1 \ SN , there exists π′ ∈ SN such that C(π) = π′.

Proof. Let π ∈ SN+1. Since π is open, π(w) 6= w and π−1(w) 6= w. Let a = π−1(w) and b = π(w). Both
are lattice points. Applying C, we have C(π) = π′ where π′(a) = b, π′(w) = w, and π′(z) = π(z) for all
remaining lattice points z 6= a,b. Since π′(w) = w, π′ is closed.

Definition 3.7.4. For π ∈ SN , C−1(π) ⊂ SN+1 \ SN is the fiber of open permutations over π.

Lemma 3.7.5. Opens and closes stay within fibers, and each fiber has N elements.

Proof. Closes stay within fibers by definition of fiber. Next, fix π ∈ SN and let x1,x2 ∈ L. (These are two
different ways to open the same closed permutation.) Let

π′
1 = O(π,x1), π′

2 = O(π,x2).

Then π′
1 and π′

2 have
x1 7→ w 7→ π(x1), x2 7→ w 7→ π(x2),

respectively, agreeing with π at all other lattice points z. Now, C(π′
1) and C(π′

2) have

x1 7→ π(x1), w 7→ w, x2 7→ π(x2), w 7→ w

respectively, agreeing with π at all other lattice points z. But this means C(π′
1) agrees with C(π′

2) agree at
all points of L′, so C(π′

1) = C(π′
2). Thus, π′

1 and π′
2 are in the same fiber.

For the last claim, fix π ∈ SN and enumerate the N lattice points of L as x1, . . . ,xN . We claim that the N
permutations

π′
1 = O(π,x1), . . . , π

′
N = O(π,xN),

which are all now known to be in the same fiber, are all distinct. To see this, fix i 6= j from out of
{1, 2, . . . , N}. Then π′

i and π′
j have

xi 7→ w 7→ π(xi), xj 7→ w 7→ π(xj).

Since xi 6= xj , by lemma 3.7.2 π(xi) 6= π(xj). Since

π′
i(w) = π(xi) 6= π(xj) = π′

j(w),

π′
i and π′

j send w to different points. Therefore, the permutations π′
i and π′

j are distinct.

15

Lemma 3.7.6. This fibration induces a disjoint partition of the open permutations SN+1 \ SN . That is, for
π′

1, π
′
2 ∈ SN ,

π′
1 6= π′

2 =⇒ C−1(π′
1) ∩ C−1(π′

2) = ∅ and
⋃

π∈SN

C−1(π) = SN+1 \ SN .

Proof. For the first claim, suppose the intersection is non-empty. Let π ∈ SN+1 \ SN be such that π ∈
C−1(π′

1) and π ∈ C−1(π′
2). This means C(π) = π′

1 and C(π) = π′
2 with π′

1 6= π′
2, which is a contradiction

since the map C is uniquely defined for all π ∈ SN+1 \ SN .

For the second claim: there are N ! closed permutations. We know from the first claim that the N ! fibers, one
above each closed permutation, are all disjoint. From lemma 3.7.5, we know that each fiber has N elements.
We have accounted for all N ·N ! = (N +1)!−N ! open permutations, so we must have all of SN+1 \ SN .

Lemma 3.7.7. Non-trivial head swaps and tail swaps (definition 3.6.1) cross fibers.

Proof. First consider head swaps. Let π, π′ ∈ SN+1 \ SN differ by a non-trivial head swap, namely, there is
x 6= π−1(w) such that π′ = S(π,x). Then π and π′ have

π : x 7→ π(x) 7→ π2(x),
π′ : π−1(w) 7→ π(x) 7→ π2(x),

π−1(w) 7→ w 7→ π(w),
x 7→ w 7→ π(w),

respectively. Now apply C to each: C(π) and C(π′) have

C(π) : x 7→ π(x) 7→ π2(x),
C(π′) : π−1(w) 7→ π(x) 7→ π2(x),

π−1(w) 7→ π(w),
x 7→ π(w),

w 7→ w,
w 7→ w,

respectively. Since x 6= π−1(w), C(π) 6= C(π′).

Next, consider tail swaps. Let π, π′ ∈ SN+1 \ SN differ by a non-trivial tail swap, namely, there is π(x) 6=
π(w) such that π′ = T (π,x). Then π and π′ have

π : π−1(x) 7→ x 7→ π(x),
π′ : π−1(x) 7→ x 7→ π(w),

π−1(w) 7→ w 7→ π(w),
π−1(w) 7→ w 7→ π(x),

respectively. Now apply C to each: C(π) and C(π′) have

C(π) : π−1(x) 7→ x 7→ π(x),
C(π′) : π−1(w) 7→ x 7→ π(w),

π−1(w) 7→ π(w),
π−1(w) 7→ π(x),

w 7→ w,
w 7→ w,

respectively. Since π(x) 6= π(w), C(π) 6= C(π′).

Lemma 3.7.8. For each open permutation, the six non-trivial head swaps and six non-trivial tail swaps
result in twelve distinct permutations.

Proof. Fix π ∈ SN+1 \ SN . Let x1, . . . ,x6 be the six nearest-neighbor lattice sites to the lattice site π−1(w);
let y1, . . . ,y6 be the six lattice sites such that π(y1), . . . , π(y6) are nearest-neighbor lattices site to the lattice
site π(w). (See figure 4.)

First, we show that the six permutations S(π,x1), . . . , S(π,x6) are distinct. Let i 6= j for i, j = 1, . . . , 6; let
πi = S(π,xi) and πj = S(π,xj). Then π has

π : xi 7→ π(xi), xj 7→ π(xj), π−1(w) 7→ w;

16

πi, and πj have
πi : xi 7→ w,
πj : xj 7→ w,

π−1(w) 7→ π(xi),
π−1(w) 7→ π(xj),

respectively. Since xi 6= xj , πi 6= πj .

Second, we show that the six permutations T (π,y1), . . . , T (π,y6) are distinct. Let i 6= j for i, j = 1, . . . , 6;
let πi = T (π,yi) and πj = T (π,yj). Then π has

π : yi 7→ π(yi), yj 7→ π(yj), w 7→ π(w);

πi, and πj have
πi : yi 7→ π(w),
πj : yj 7→ π(w),

w 7→ π(yi),
w 7→ π(yj),

respectively. Since yi 6= yj , by lemma 3.7.2 π(yi) 6= π(yj). Since πi, πj send w to to different sites, πi 6= πj .

Third, we show that the head-swaps of π are distinct from the tail-swaps of π. Fix π ∈ SN+1 \ SN and let
i, j ∈ {1, . . . , 6}. Then π has

π : xi 7→ π(xi), yj 7→ π(yj), π−1(w) 7→ w 7→ π(w);

S(π,xi) and T (π,yj) have

S(π,xi) : π−1(w) 7→ π(xi),
T (π,yj) : yj 7→ π(w),

xi 7→ w 7→ π(w);
π−1(w) 7→ w 7→ yj ;

respectively. Under these two permutations, w has images π(w) and yj , respectively, and preimages xi and
π−1(w). By definition 3.6.1, the non-trivial head swap S(π,xi) has xi 6= π−1(w) and the non-trivial tail
swap T (π,yj) has π(w) 6= yj . Thus, S(π,xi) and T (π,yj) are distinct permutations.

Lemma 3.7.9. Head swaps and tail swaps are transitive on fibers.

Proof. This needs to be proved. This key result will establish irreducibility of the chain.

3.8 Explicit construction of the Markov matrix

Transition probabilities were described as being proportional to 1 ∧ e−∆H . We put the constants of propor-
tionality to be:

• a for head swaps and tail swaps;

• b for closer moves;

• c for opener moves.

For GRU, we chose C solely by the row-normalization condition. Here, with a more complicated algorithm,
we will choose them to satisfy detailed balance.

The Markov matrix is now (N + 1)! × (N + 1)!:

• A closed permutation transitions only to itself, or to any of the N open permutations in the fiber above
it. Thus, there are N + 1 non-zero entries in π’s row of M.

17

• An open permutation transitions to any of the 12 open permutations available by head-swapping or
tail-swapping, or to itself, or to the closed permutation at the base of its fiber. Thus, there are 14
non-zero entries in π’s row of M.

Definition 3.8.1. For open π, let

{x1, . . . ,x6} = {x ∈ L : ‖x, π−1(w)‖ = 1} and {y1, . . . ,y6} = {y ∈ L : ‖π(y), π(w)‖ = 1}.

Then define

RS(π) = {S(π,x1), . . . , S(π,x6)},

RT (π) = {T (π,y1), . . . , T (π,y6)}.

These are the twelve open permutations reachable from π via head swaps and tail swaps, respectively (lemma
3.7.8). For closed π, define

RO(π) = {O(π,x1), . . . , O(π,xN)}.

These are the N open permutations reachable from π via opener moves.

The entries of the transition matrix are as follows.

If π is closed:

M(π, π′) =























c
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RO(π);

1 −
∑

π′∈RO(π)

c
(

1 ∧ e−H(π′)+H(π)
)

, π′ = π;

0, otherwise.

If π is open:

M(π, π′) =















































a
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RS(π);

a
(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ RT (π);

b
(

1 ∧ e−H(π′)+H(π)
)

, π′ = C(π);

1 −
∑

π′∈RS(π)∪RT (π)

a
(

1 ∧ e−H(π′)+H(π)
)

− b
(

1 ∧ e−H(C(π))+H(π)
)

, π′ = π;

0, otherwise.

Row normalization for closed π: c(1 ∧ e−∆H) is between 0 and c so
∑

rest is between 0 and cN . Take

c = 1/N. (3.8.2)

Row normalization for open π:

12a + b ≤ 1. (3.8.3)

3.9 Correctness

Proposition 3.9.1 (Irreducibility). The worm algorithm’s Markov chain is irreducible.

18

Proof. As for the GRU algorithm, this non-trivial result needs to be proved.

We mention some partial results.

Proposition 3.9.2. The worm algorithm’s Markov chain is irreducible if the GRU algorithm’s Markov chain
is irreducible.

Proof. The key point is that the composition of an open, head swap, and close are precisely a GRU swap.
Let x and y be lattice points such that π(x) and π(y) are nearest neighbors. Starting with π, then applying
an open at x, a head swap at y, and a close, we have

π : x 7→ π(x),
π′ = O(π,x) : x 7→ w,
π′′ = S(π′,y) : x 7→ π(y),
π′′′ = C(π′′) : x 7→ π(y),

y 7→ π(y),
y 7→ π(y),
y 7→ w,
y 7→ π(x),

w 7→ w;
w 7→ π(x);
w 7→ π(x);
w 7→ w.

This shows that, if the GRU algorithm is irreducible on SN , the worm algorithm is irreducible on SN . But
then the worm algorithm is also irreducible on SN+1: fix an initial and final permutation; close the initial
permutation, if it is open, to obtain a closed permutation; use the preceding argument to reach the closed
permutation which lies under the fiber of the desired final open permutation; do an open move (see lemma
3.7.5) if the final permutation is open.

Remark 3.9.3. The worm algorithm has an addtional degree of freedom. If x and y are nearest-neighbor
lattice sites, then the composition of an open at x, a tail swap at y, and a close results in a similar swap of
the jump targets of x and y:

π : x 7→ π(x),
π′ = O(π,x) : x 7→ w,
π′′ = T (π′,y) : x 7→ w,
π′′′ = C(π′′) : x 7→ π(y),

y 7→ π(y),
y 7→ π(y),
y 7→ π(x)
y 7→ π(x),

w 7→ w;
w 7→ π(x);
w 7→ π(y);
w 7→ w.

Proposition 3.9.4 (Aperiodicity). The worm algorithm’s Markov chain is aperiodic.

Proof. This is essentially the same as in the GRU algorithm (proposition 2.4.3): given the small positive γ
in equation 3.4.3, an opener move from the identity entails an increase in energy, and thus a reject of such
an opener move occurs with a non-zero probability.

(This argument applies in the non-interacting case. For N2 and Nℓ, it also applies. For Vij , we need to check
that an opener move from the identity doesn’t decrease energy.)

Proposition 3.9.5 (Detailed balance). The Markov chain of the worm algorithm satisfies detailed balance
with b = c.

Proof. We need

P ′(π)M(π, π′) = P ′(π′)M(π′, π).

For closed π to closed π′: If π = π′ then we have detailed balance trivially. If π 6= π′ then M(π, π′) =
M(π′, π) = 0 since there are no transitions between distinct closed permutations.

19

For closed π to open π′: If π′ is not in the fiber above π, then M(π, π′) = M(π′, π) = 0 since opens and closes
respect fibers (lemma 3.7.5). Now suppose π′ is in the fiber above π. As in the GRU algorithm (proposition
2.4.4), do cases on ∆H positive or negative. If H ′(π′) ≤ H ′(π), then

e−H′(π)c = e−H′(π′)be−H′(π)eH′(π′).

Choose

b = c (3.9.6)

to satisfy detailed balance. The case H ′(π′) > H ′(π) results in the same b = c condition.

For open π to closed π′: If π is not in the fiber above π′, then M(π, π′) = M(π′, π) = 0 (lemma 3.7.5). If π
is in the fiber above π′, then we recover the b = c condition.

It now remains to consider open π transitioning to open π′. We assume this to be the case for the rest of
the proof.

If M(π, π′) = 0 then we claim M(π′, π) = 0, as in lemma 2.4.6. We have π′ 6= π, π′ /∈ RS(π), and π′ /∈ RT (π).
We need to show π 6= π′ (which is obvious), π /∈ RS(π′), and π /∈ RT (π′). We prove the contrapositive:

π ∈ {π′} ∪ RS(π′) ∪ RT (π′) =⇒ π′ ∈ {π} ∪ RS(π) ∪ RT (π).

If π = π′ then detailed balance is trivially satisfied. Suppose π ∈ RS(π′). Then for some xi, i = 1, . . . , 6, π′

and π have
π′ : xi 7→ π′(xi),
π : xi 7→ w,

π−1(w) 7→ w 7→ w,
π−1(w) 7→ w 7→ π′(xi).

The lattice sites xi and w are nearest neighbors and π′, π agree at all other sites, so there is a head swap
sending π to π′. The case π ∈ RT (π′) is completely analogous. This completes the proof of the claim that
M(π, π′) = 0 =⇒ M(π′, π) = 0.

If M(π, π′) 6= 0 then we claim M(π′, π) 6= 0, again as in lemma 2.4.6. The logic is the same as in the
contrapositive argument which was just completed.

The last step is to show detailed balance for open π, π′ where M(π, π′) 6= 0. Again we do cases on whether
the energy decreases or increases. If H ′(π′) ≤ H ′(π), then equation 3.9.6 is

ae−H′(π) (1) = ae−H′(π′)
(

e−H′(π)eH′(π′)
)

.

If H ′(π′) > H ′(π), then we have

ae−H′(π)
(

e−H′(π′)eH′(π)
)

= ae−H′(π′) (1) .

In either case, detailed balance holds.

Remark. Note that for closed π, there are N choices of open π′; for open π, there is one choice of closed
π′. In the software implementation, the 1/N for opens comes in through uniform-random choice of x ∈ L.
The result is that, for closed π, one may only attempt an open. For open π, one attempts a close 1/N of the
time, and head or tail swaps each half the rest of the time, respectively.

As a sanity check, we point out that cycles may grow or shrink upon worm moves.

Proposition 3.9.7. Non-trivial worm head swaps and tail swaps either split one cycle into two, or join two
cycles into one.

Proof. This is the same as for the GRU case (proposition 3.9.7), which is strictly an algebraic result: the
non-spatiality of the w point plays no role.

20

4 ∆H computations

When computing ∆H for the GRU or worm algorithms, it is inefficient to find H(π′) and H(π) separately,
then compute their difference: GRU and worm moves are local, and most of the energy terms are unchanged
from π to π′. Instead (this is true for Metropolis simulations in general), one discovers a formula for the
energy change in a proposed Metropolis move. Even though these minimal energy-change formulas are a
software-optimization detail, they need to be considered carefully lest errors intrude.

4.1 GRU and worm with N2 interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle lengths. Thus, the
same ∆N2 formulas apply to both algorithms.

Recall the definition of GRU swap from section 2.2. The simplicity of figure 6 masks a bit of detail: namely,
the four points may not all be distinct. Thus, there are several cases. (See figure 7.)

xx

π(x)π(x)

π(y)π(y)

yy

Figure 6: GRU swap.

Cases 1a and 2a

Cases 3a and 4a

Case 1b

Case 2b

Case 3b

Case 4b

Cases 5a and 6a

Case 7a

Case 8a

Case 5b

Case 6b

Case 7b

Case 8b

Figure 7: Cases for ∆N2.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial GRU move; π′ = π. ∆N2 = 0.

• Case 1: x = π(x).

– Case 1a: y = π(y). ∆N2 = +1.

21

– Case 1b: y 6= π(y) but y = π2(y). ∆N2 = −1.

– Case 1c: y 6= π(y), π2(y). ∆N2 = 0.

• Case 2: y = π(y).

– Case 2a: x = π(x). Same as case 1a. ∆N2 = +1.

– Case 2b: x 6= π(x) but x = π2(x). ∆N2 = −1.

– Case 2c: x 6= π(x), π2(x). ∆N2 = 0.

• Case 3: x = π(y).

– Case 3a: π(x) = y. ∆N2 = −1.

– Case 3b: π2(x) = y. ∆N2 = +1.

– Case 3c: y 6= π(x), π2(x). ∆N2 = 0.

• Case 4: π(x) = y.

– Case 4a: π(y) = x. Same as case 3a. ∆N2 = −1.

– Case 4b: π2(y) = x. ∆N2 = +1.

– Case 4c: x 6= π(y), π2(y). ∆N2 = 0.

• Case 5: π2(x) = x.

– Case 5a: π2(y) = y. ∆N2 = −2.

– Case 5b: π2(y) 6= y. ∆N2 = −1.

• Case 6: π2(y) = y.

– Case 6a: π2(x) = x. Same as 5a. ∆N2 = −2.

– Case 6b: π2(x) 6= x. ∆N2 = −1.

• Case 7: π2(x) = y.

– Case 7a: π2(y) = x. ∆N2 = +2.

– Case 7b: π2(y) 6= x. ∆N2 = +1.

• Case 8: π2(y) = x.

– Case 8a: π2(x) = y. ∆N2 = +2.

– Case 8b: π2(x) 6= y. ∆N2 = +1.

• All other cases: ∆N2 = 0.

4.2 GRU and worm with Nℓ interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle lengths. Thus, the
same ∆N2 formulas apply to both algorithms.

Recall proposition 2.4.7: if x and y are in separate cycles before the swap, they are in the same cycle
afterward, and vice versa. Throughout this section, please consult figure 8 for illumination.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial GRU move; π′ = π. ∆N2 = 0.

22

Case 1a Case 1b

Case 2a Case 2b

Case 3 Case 4

Figure 8: Cases for ∆Nℓ. Sites and arrows not participating in changes are shown in grey.

• Case 1: x and y are in different cycles, but one of them is in a one-cycle.

– Case 1a: x = π(x): ∆N1 = −1, ∆Nℓπ(y) = −1, ∆Nℓπ(y)+1 = +1.

– Case 1b: y = π(y): ∆N1 = −1, ∆Nℓπ(x) = −1, ∆Nℓπ(x)+1 = +1.

• Case 2: x and y are in the same cycle, but one is the jump target of the other.

– Case 2a: y = π(x). ∆Nℓπ(x) = −1, ∆Nℓπ(x)−1 = +1, ∆N1 = +1.

– Case 2a: x = π(y). ∆Nℓπ(y) = −1, ∆Nℓπ(y)−1 = +1, ∆N1 = +1.

• Case 3: x and y are in the same cycle, and neither is the jump target of the other. Let a be the
smallest positive integer such that πa(x) = y; let b be the smallest positive integer such that πb(x) = x.
∆Na+b = −1, ∆Na = +1, ∆Nb = +1.

• Case 4: x and y are in separate cycles. ∆Nℓπ(x) = −1, ∆Nℓπ(y) = −1, ∆Nℓπ(x)+ℓπ(y) = +1.

4.3 GRU with V interactions

Recall from proposition 3.5.1 that as long as the extended energy function H ′ agrees with the energy function
H on closed cycles, P ′ has the correct marginal distribution on closed cycles. Thus, when writing energy
terms for open cycles, we can choose how to define the energy. For N2 and Nℓ (the previous two sections), it
is simplest to say that the non-spatial point w can partcipate in permutation cycles. For other interactions
that depend on the spatiality of points, it is simplest to say that w does not participate. Thus, here we split
out GRU and worm cases.

The change in energy is simply the contributions from the old arrows x 7→ π(x) and y 7→ π(y) to all other
arrows, along with their mutual interaction, subtracted from the contributions from the new arrows x 7→ π(y)
and y 7→ π(x) to all other arrows, along with their mutual interaction.

23

∑

v 6=x,y

V (x, π(y),v, π(v)) +
∑

v 6=x,y

V (y, π(x),v, π(v)) + V (x, π(y),y, π(x))

−
∑

v 6=x,y

V (x, π(x),v, π(v)) −
∑

v 6=x,y

V (y, π(y),v, π(v)) − V (x, π(x),y, π(y)).

4.4 Worm with V interactions

The non-spatial point has no interactions, so we simply track the creation and destruction of spatial-to-spatial
arrows for the four types of worm move.

Open:

−
∑

v 6=x,w

V (x, π(x),v, π(v)).

Close:

∑

v 6=π−1(w),w

V (π−1(w), π(w),v, π(v)).

Head swap:

∑

v 6=x,π−1(w)

V (π−1(w), π(x),v, π(v)) −
∑

v 6=x,π−1(w)

V (x, π(x),v, π(v)).

Tail swap:

∑

v 6=x,w

V (x, π(w),v, π(v)) −
∑

v 6=x,w

V (x, π(x),v, π(v)).

24

25

Index

C

close . 13
closed permutation . 10
cross fibers . 13

D

detailed balance . 6
disjoint partition . 13

E

energy functions .3
ergodic . 6
extended energy .11
extended Gibbs distribution . 11
extended lattice . 11
extended partition function . 11

F

fiber . 13

G

G sector . 10
Gibbs distribution .3
GRU algorithm . 3

H

head swap . 13

I

inject . 10

L

L . 3
L′ .11
lattice points . 3

M

metric .5
Metropolis step . 4

N

nearest-neighbor . 5
non-spatial . 11

O

open . 13
open permutation . 10

P

partition function .3, 11

period .6
probability density . 3

R

reversibility . 6
reversible . 6

S

superfluid fraction .9

T

tail swap . 13
trivial . 4, 13

W

winding number . 9
worm algorithm . 12
worm sweep . 13
wormhole point . 10

Z

Z sector . 10

26

	Contents
	Disclaimer
	The random-cycle model and the GRU algorithm
	The random-cycle model
	The GRU algorithm
	Explicit construction of the Markov matrix
	Correctness of the GRU algorithm

	The random-cycle model and the worm algorithm
	Winding cycles
	PIMC motivation
	Idea of the worm algorithm
	Extended random-cycle model
	Proof of marginality
	The worm algorithm
	Fibration of SN+1 over SN
	Explicit construction of the Markov matrix
	Correctness

	H computations
	GRU and worm with N2 interactions
	GRU and worm with N interactions
	GRU with V interactions
	Worm with V interactions

	Index

