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We show that the statistical properties of a vibrated granular bead-chain are similar to standard
models of polymers in equilibrium. Granular chains of length up to N = 1024 beads were confined
within a circular vibrating bed, and their configurations were imaged. To differentiate the effects of
persistence and confinement on the chain, we compared with simulations of both persistent random
walk (RW) and self-avoiding walk (SAW) models. Static properties, such as the radius of gyration
and structure factor, are governed for short chains (N ≤ 128) by persistence and can be matched
by those of RWs. Self-avoidance and confinement effects are both important for longer chains and
the results are well described by equilibrated SAWs. We also find that the collective dynamics of
the granular chain is similar to the Rouse model of polymers. In particular, as long as confinement
is negligible, the center of mass of the chain diffuses with a diffusion coefficient that scales as 1/N ,
and the dynamic structure factor decays exponentially in time.

PACS numbers: 05.40.-a 82.35.Lr 05.70.Jk 81.05.Rm

I. INTRODUCTION

A question of fundamental interest is the extent to
which equilibrium statistical physics and entropic con-
siderations apply to excited granular matter [1–4]. Be-
cause of the dissipative nature of the collisions, energy
has to be constantly supplied in order to keep granu-
lar matter moving. It is plausible that under sufficiently
random driving and over long enough times, a granular
system will explore most of the available configurational
space, such that its properties can be described by equi-
librium statistics. Indeed, Edwards has proposed [2] a
generalized statistical mechanical approach where ther-
modynamic quantities are calculated from averages over
grain configurations, but this approach has not been rig-
orously established.

An appealing system to explore this connection is a
granular chain excited by a vibrated rough substrate,
where the corresponding equilibrium model for polymers
is well developed [5–7]. A vibrated bed is used widely in
industry to transport and sort granular matter, and is a
convenient method to obtain a driven out-of-equilibrium
steady state [8–10]. Equilibrium-like properties have
been observed with spherical particles with such vibrated
systems [11]. Granular chains consisting of beads con-
nected with flexible links were introduced by Ben-Naim et
al. to study unknotting [12, 13], and entropic tightening
of chains [14]. The collapse of a polymer has been mod-
eled using a vibrated bead chain in a thin layer of liquid
which induces an attractive potential [15]. Pretins and
Sisan [16] performed experiments with a chain of plastic
spheres agitated by self-propelled balls to examine the
applicability of a self-avoiding walk (SAW) model of poly-
mers [5–7]. Although they observed that the end-to-end
length of the plastic-sphere polymer scales with the num-
ber of links with an exponent of ν = 0.75, the maximum

number of links studied was only 15. Further, the pos-
sible effect of chain persistence on the scaling properties
was not explored, nor was dynamics. Novel filling pat-
terns have been shown to occur when persistence length
of an elastic wire is large compared with the container
size [17–19], and may be also considered as a model sys-
tem to understand crumpling [20]. Therefore, a detailed
study which examines the interplay of chain length, per-
sistence length and container size, is necessary.

In this paper, we investigate the structure and dynam-
ics of a granular chain on a vibrated plate by direct imag-
ing to test if the statistical models developed in the con-
text of molecular polymers can be applied to such an out-
of-equilibrium system. The length of the chain is varied
over three orders of magnitude, scaling across its persis-
tence length and the system size. For short chains, we
find that a random walk (RW) with a persistence length,
constrained to the same size container, is sufficient to
capture the radius of gyration and the structure factor
observed in the experiments. As the length of the chain is
increased, avoided crossings become important, and the
data is observed to be in good agreement with the sim-
ulations for a confined SAW with the same persistence
length. We also examine the dynamics of the granular
chain, and find simple diffusive motion described by the
so-called Rouse model [5]. Specifically, at short times,
in a regime where the granular temperature is constant,
the center of mass of the chain undergoes diffusion with a
diffusion coefficient that scales inversely with the length
of the chain. Further, we probe how the dynamic struc-
ture factor – which is used to characterize the chain over
various length scales – evolves. The expected exponen-
tial decay is observed as long as the boundary effects are
small (for short chains and short times), but is modi-
fied non-trivially by the interplay of self-avoidance and
confinement.
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II. METHODS

The granular chain used in the experiments consists
of nickel-plated aluminum spherical beads with diame-
ter d = 3.12 mm connected to each other by a loose
link. The bead number N ranges from 1 to 1024 in
our experiments. The links between the beads can take
lengths between 0mm and 1.5 mm, and the chain can
have a maximum angle between two consecutive links of
approximately ±π/4 radians. The persistence length of
the chain ξp, can be related to the decay of link-angle
correlations by

〈cos(θn − θ1)〉 = 〈cos(θ2 − θ1)〉n−1 ≡ exp
[
− (n− 1)d

ξp

]
,

(1)
where θn is the direction angle of the nth link between
beads, and angular brackets denote an average over all
configurations. The first equality follows from the in-
dependence of changes in angle [21]. Thus, ξp/d =
−1/ ln[〈cos(θ2 − θ1)〉], and assuming that θn − θn−1 are
uniformly distributed between −π/4 and π/4, we find
〈cos(θ2 − θ1)〉 = 2

√
2/π, and ξp ≈ 9.5d.

The chain is kept inside a flat circular container with
diameter L = 28.3 cm and is therefore about 90d across.
A layer of 1 mm steel beads is glued to the bottom of
the container to create a rough surface. The roughness
helps transfer energy into the chains both in the vertical
and horizontal directions, and prevents the formation of
tightly wound spiral features discussed in Ref. [22]. An
electro-magnetic shaker is used to continuously vibrate
the container vertically using a sinusoidal input wave-
form with a frequency f = 30Hz and peak acceleration
Γ = 3gE , where gE is the Earth’s gravitational accelera-
tion. The container is monitored using an accelerometer.
The acceleration is chosen so that the chain is excited
sufficiently strongly to move and re-arrange in a reason-
able time, but not so strongly that one segment of the
chain can leap over another segment. That is, when seen
from above, the chain can be considered a two dimen-
sional system at all times. Limited experiments were also
performed with Γ = 2gE , 3.5gE , and different vibration
frequencies. Similar chain structure and dynamics were
observed and therefore, for simplicity, we have kept the
driving parameters constant in the results reported here.

We record the motion of the chain inside the container
from above with a digital camera with a pixel resolution
of 1024×1024. An example of an observed configuration
is shown in Fig. 1(insert). A frame rate of 20 Hz is used to
record a movie and statistical averaging is performed over
a set of 10 movies each containing 2000 frames. In spe-
cial cases, where particle velocity is to be determined, a
higher frame rate of 1000 Hz is used to record the movies.
We then use a centroid algorithm [23] to find the bead
positions to within a tenth of a particle diameter. With
sufficient care, we find that the error rate in identification
is less than 1 in 10,000 beads.

On the numerical side, we perform Monte Carlo (MC)
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FIG. 1: (Color Online) The mean radius of gyration, Rg, of
the chains versus the number of beads, N . As the chains
increase in size, Rg asymptotically approaches the radius of
gyration of a chain uniformly distributed inside the container
(indicated by the horizontal dashed line). To guide the eye,
Nν is plotted for ν = 3/4 (solid line) and ν = 1 (dotted line).
Insert: An example of a chain configuration observed in the
experiments (N = 1024).

simulations of a two dimensional chain of N particles. We
consider an athermal system, in that the spatial configu-
rations were either permitted, and have vanishing energy,
or completely forbidden. The excluded volume interac-
tion is implemented by not allowing the distance between
centers of any pair of particles to be smaller than d (hard
spheres), while the connectivity of the chain is enforced
by not allowing a pair of connected particles to be sep-
arated by more than 1.4d. Only configurations in which
the angle between adjacent bonds did not exceed π/4 are
permitted. We assume that the chain is confined by a
circular enclosure, corresponding to the size of the ex-
perimental container. To differentiate between the roles
of persistence and self-avoidance, we also studied random
(non-self-avoiding) walks. In such simulations the hard
sphere interaction between non-adjacent particles are ne-
glected. In an elementary MC move we randomly pick
a particle and attempt to move it by a small amount in
a randomly chosen direction. If the new position forms
a permitted configuration, the move is accepted. Oth-
erwise, the particle remains in its original position. The
size of the step is chosen to keep the move acceptance rate
close to 50%; N elementary moves constitute a single MC
time unit. The total length of the simulation was set to
103N2 MC time units. In the absence of confinement,
the typical relaxation times of a polymer performing dif-
fusive dynamics are of order N1+2ν = N2.5. Thus for
small and moderate values of N our sample is very well
equilibrated. For larger values of N the confinement ef-
fects strongly slow down equilibration. Nevertheless, our
results for N = 512 are well equilibrated, while we esti-
mate that for N = 1024 the total simulation time only
slightly exceeds the equilibration time. Various quan-
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tities, such as the radius of gyration and the structure
factor are then calculated for configurations obtained in
the simulations and averaged.

III. STATICS

A simple measure which captures the size of an object
is the radius of gyration Rg defined by

R2
g =

1
2N2

N∑
n=1

N∑
m=1

〈
(Rn −Rm)2

〉
. (2)

Here, Rn is the location of the nth bead, and N is
the number of beads in the chain. Figure 1 shows
Rg obtained from the experiments along with the con-
fined RW and SAW simulations with imposed persistence
length. As a guide for the eye, we have included plots of
Rg ∝ Nν , with ν = 1 and 3/4. The former describes a
straight rod with N beads, while the latter corresponds
to an unconfined SAW in 2 dimensions [5]. At small N ,
the experimental data more or less align with ν = 1.
This is to be expected as the chains have a persistence
length ξp ≈ 9.5d. As N increases above ξp/d, the exper-
imental data systematically starts to fall below ν = 1.
For larger N , when the unconfined polymer size becomes
comparable to that of the container, the data gradually
approaches Rg of a uniform disc. According to Fig. 1,
the influence of the boundaries appears for N > 128.

In order to separate the effects of self-avoidance on the
observed Rg, we compare the data with corresponding
RW simulations which have the same persistence length
as the granular chains and are performed within the same
container size. Interestingly, the experiments and the
RW simulations compare very well for N ≤ 128. Thus,
it appears that avoided crossings are relatively unimpor-
tant for short chains but become more important as N
increases, thus causing RW to underestimate Rg observed
in the experiments. The experimental data is better de-
scribed by a SAW simulations at higher N .

To investigate the structure more critically and over
various length scales, we next examine the static struc-
ture factor, defined by

g(q) =
1

N2

N∑
n=1

N∑
m=1

〈exp[ıq · (Rn −Rm)]〉. (3)

In Fig. 3, we plot g(q) as a function of the magnitude
q averaged over all directions of the wave vector q, and
all configurations in the experiments. In principle, g(q)
is purely real if we average over an infinite ensemble.
In practice, we note that for a sufficiently large number
of observed configurations, the imaginary part of g(q) is
small compared to the real part, and we plot only the
real part in Fig. 2.

Now, g(q) for an unconfined linear polymer in the limit
of small and large wave number is expected [5] to scale

0.001

0.01

0.1

1

0.01
2 4 6

0.1
2 4 6

1
2 4 6

10qd

 N=1024
 RW
 SAW

0.001

0.01

0.1

1

0.01
2 4

0.1
2 4

1
2 4

10

 N=512
 RW
 SAW

0.001

0.01

0.1

1

0.01 0.1 1 10

 N = 4 
 N = 16 
 N = 64

 N = 128 
 N = 256

g(
q)

(a)

(b)

(c)

1.0

0.4

g(
q)

0.100.00 qRg

FIG. 2: (Color Online) (a) The structure factor g(q) of the
chains obtained from the experiments (symbols) and the cor-
responding RW simulations (solid curves). A line with a slope
−4/3, which corresponds to unconfined SAW with ν = 3/4,
is also plotted to guide the eye. The RW simulations confined
to the same size container agree well with experiments for
N < 256, but systematic deviations are observed for N ≥ 256
because of the importance of avoided crossings. The peak
near q = 2π/d corresponds to the average bead spacing of the
chain. The insert shows that for small q the data for different
N can be collapsed to a single curve according to Eq. (4a)
(solid curve). (b, c) For longer chains, the experimental g(q)
(circles) are better described by the SAW simulation.

as

g(q) = 1− (qRg)
2
/2, for qRg � 1 (4a)

g(q) ∝ q−1/ν , for qRg � 1 (4b)

where ν = 3/4 in two dimensions. In the insert to
Fig. 2(a), we can clearly observe that the initial decay
of g(q) is consistent with Eq. (4a).

The experimental data is well described by confined
RW simulations over the entire range of q plotted for
N < 256. This implies that crossings are rare enough
for these short chains that the volume exclusion of is
not significant. Of course, as N is increased, the system
becomes more dense and crossings become inevitable, in-
creasing the size of the chain. To examine if the SAW
simulations compare with the experimental data, we have
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FIG. 3: (Color Online) The mean squared displacement of the
center of mass (CM) of the granular chain, plotted against
time for various chain lengths. Linear fits are plotted over a
time interval before boundary effects lead to downward cur-
vature.

plotted them along with RW simulations for N = 512,
and N = 1024 in Fig. 2(b,c). In both cases, the ex-
perimental data is better described by the SAW simula-
tions. It is important to note that g(q) is not described
by Eq. (4b) for larger q because of the confinement.

IV. DYNAMICS

Next, we investigate the dynamic features of the chain
by first examining the motion of its center of mass (CM).
In particular, we track

∆RCM(t) = RCM(t)−RCM(0),

where RCM(t) is the two dimensional position of the cen-
ter of mass of the chain at time t. The mean squared
displacement (MSD) of the center of mass 〈(∆RCM(t))2〉
is plotted in Fig. 3. MSD is initially observed to scale
linearly before saturating as chains encounter the con-
tainer boundary. Fits corresponding to normal diffusion
are added to guide the eye. Clearly, shorter chains diffuse
faster than longer chains. For the longest chain, the mo-
tion appears to be sub-diffusive, reflecting the constraints
imposed by confinement. In two dimensions, the diffusion
constant D can be deduced from 〈(∆RCM(t))2〉 = 4Dt,
and fitting the data over a range where MSD is linear.
The obtained diffusion constant DN for a chain with N
beads is plotted in Fig. 4(a) as a function of N , and, for
moderate and large N , it is roughly proportional to N−1.

According to the Rouse model for dilute polymer so-
lutions [5] – which simply assumes that each monomer
experiences a viscous drag proportional to its velocity –
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FIG. 4: (Color Online) (a) The diffusion constant DN ex-
tracted from the slopes of the lines shown in Fig. 3 and using
〈(∆RCM(t))2〉 = 4DN t. DN ∝ 1/N corresponds to the Rouse
model, and indicated by the dashed line. The granular tem-
perature Tg of the chain (the right axis) is observed to be
approximately constant for N > 4. The average value of Tg

for N > 1 is shown as a solid line. (b) The mean squared
displacements shown in Fig. 3 can be collapsed onto a sin-
gle master curve, when time is re-scaled with the measured
DN and container size L. This shows that even long chains
exhibit normal diffusion at short enough times.

DN scales with N as

DN =
kBT

Nζ
, (5)

where T is the temperature, kB is the Boltzmann con-
stant, and ζ is the friction coefficient acting on a bead.
For a granular polymer, we can measure a granular tem-
perature Tg corresponding to the in plane velocities of the
beads, which may be considered to be analogous to ther-
mal excitations of particles in a polymer system. There-
fore, kBT → Tg = 1

2m〈v2〉, where m is the mass of a bead
and v is its instantaneous velocity. Tg obtained from the
experiments is shown on the right axis of Fig. 4(a), and is
observed to be constant except for N = 1. From the fit to
the experimental data, we find ζ ≈ 2.87× 10−2 N-m−1s.

Therefore, when the granular chain moves on a vi-
brated rough surface and interacts through collisions with
the surface, it is plausible that the plate plays the role
of a thermal bath which not only supplies energy but
also gives rise to an effective viscous drag. To further
demonstrate the agreement with Rouse dynamics, we re-
plot 〈(∆RCM(t))2〉 for each chain against time scaled by
L2/DN in Fig. 4(b). All the curves collapse very nearly
onto a master curve further confirming that DN ∝ N−1

over a broad range of chain-lengths and time scales.
Another means of tracking the time evolution of a

multi-particle system is the dynamical structure factor
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FIG. 5: (Color Online) (a) The dynamical structure fac-
tor, g(q, t)/g(q, 0) versus time for several values of N and
q = 0.1 d−1. For large N the decay of g(q, t) is slower than
exponential. (b) Here g(q, t)/g(q, 0) is plotted against DNq2t
for N = 8 and 16 for values of q that satisfy Eq. (7a). The
solid line depicts exp(−DNq2t).

defined by

g(q, t) =
1

N2

∑
n,m

〈exp[iq · (Rn(t)−Rm(0))]〉.

For an unconfined polymer, this quantity decays in time
as [5]

g(q, t) ∝ exp(−DNq2t). (6)

However, such a decay is observed only if the conditions

qRg � 1, (7a)

and

|Rn(t)−Rm(0)| � Rg , (7b)

are satisfied. The above inequalities ensure that the mo-
tion of the polymer is probed at long enough times to
observe its collective diffusion. These conditions are ac-
tually quite restrictive in our experiments, as the con-
finement by the circular boundaries severely constrain
the times over which diffusion is observed, and there is
only a limited range of N that leads to the decay given
by Eq. (6).

In Fig. 5(a) we plot g(q, t)/g(q, 0) for several N ,
and find that the decay at large N is slower than
expected from Eq. (6). Clearly at such large values the

confinement of the polymer leads to rapid saturation of
the displacement fluctuations. The dynamical structure
factor for shorter chains of N = 8 and N = 16, where
conditions of Eq. (7) are best met, is plotted in Fig. 5(b).
Using Eq. (6) and the data of from Fig. 5(a), we can
extract D8/d2 = 2.1±0.1 s−1 and D16/d2 = 1.1±0.3 s−1.
Within experimental error bars, these values are con-
sistent with the diffusion coefficients obtained from the
motion of the center of mass in Fig. 4(a). With this
choice for DN the data is collapsed onto the single
exponential curve shown in Fig. 5(b). It appears that,
as long as Eq. (7) are satisfied, DN is independent of
the choice of q.

V. SUMMARY

In conclusion, we find that the configurations of vi-
brated granular chains are well described by standard
models of polymers when persistence length, container
size, and avoided crossings are taken into account. This
provides an illustrative example of a granular system
where concepts of configuration entropy are useful for
description of collective behavior. Furthermore, the dif-
fusion of the center of mass scales inversely with the size
of the chain, and is consistent with the Rouse model of
polymer dynamics. We also illustrate that the dynamic
structure factor decays exponentially with time, provided
that the effects of confinement are negligible. Since our
study implies that granular chains show properties simi-
lar to equilibrium models, it is tempting to explore exper-
iments such as ours to understand the behavior of poly-
mers in circumstances where direct visualization is not
possible (e.g. polymer [24] and DNA molecules bound to
lipid bilayers [25]).
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