
DISTRIBUTIONAL PROPERTIES OF BRIDGE DECOMPOSITIONS
OF UPSAW

Abstract.

1. Introduction

The study of self-avoiding random walks goes back at least to the 1950’s. Even in the
special case of random walks supported on regular 2-d lattices, there are several types of
self-avoiding random walks that have been intensely researched by mathematicians and physi-
cists. These include but are not limited to the self-avoiding walk, the myopic self-avoiding
walk, the loop-erased random walk and the percolation exploration process. Here we are
specifically interested in processes supported on subsets of the square lattice.

Kesten’s 1963 article, “On the number of SAWs” garners interest in the subject by intro-
ducing a simply posed question, ‘how many SAWs of length n on a square lattice are there?’,
that still cannot be solved rigorously and is computationally unfeasible even for relatively
small n. Moreover, many details of the asymptotic behavior of the number of SAWs of length
n as n→∞ still alludes derivation.

Precisely, an n-step self-avoiding walk is a sequence of lattice sites [ω(0), ω(1), . . . , ω(n)] ⊂
Z + iZ satisfying

• ω(0) = 0,
• |ω(j + 1)− ω(j)| = 1
• ω(i) 6= ω(j) for i 6= j

We use the notation Cn to denote the number of SAWs of length n. Kesten recognized that
Cn quickly becomes uncomputable with the size of n and conjectured that

cN ∼ Aβ−Nc Nγ−1,

for some constants βc, A, γ > 0. It can be shown that

βc := ( lim
N→∞

c
1/N
N )−1,

exists and is finite. The parameter 1/βc is called the connective constant of SAW.
We have not yet defined a probability measure on the n-step SAWs. The n-step self-

avoiding random walk is defined to be the uniform measure on n-step SAWs. The whole-plane
self-avoiding random walk (starting at the origin) or infinite whole plane SAW (starting at
the origin) is defined to be the limit as n→∞ of the uniform measure on n-step SAWs.

One specific variation of the infinite self-avoiding random walk we consider here is the
infinite half-plane SAW. We define this random walk by first restricting our n-step SAWs to
those with Im[ωj]> 0 for all j > 0; such a walk is called an n-step (upper) half-plane SAW
(starting at the origin). The infinite half-plane SAW (UPSAW) is defined to be the limit
as n → ∞ of the uniform measure on n-step half-plane SAWs. This is not the only way
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UPSAW can be defined; existence of the limit and alternate methods of defining the measure
are reviewed Section 2.

The infinite half-plane SAW is supported on Z + iN, with N := {0, 1, 2, . . . }. In the
context of the present study, it is intuitively helpful to allow the mesh width of our square
half-plane lattice to vary; that is, we consider the same probability measure defined above
on the lattice δZ + iδN for some mesh width δ > 0. It is thought that these probability
measures converge to a non-degenerate probability measure on simple paths supported on
H := {z ∈ C :Im[z]≥ 0} as δ → 0. Recent advances in mathematical physics support this
conjecture and provide a likely candidate for the scaling limit [7]. The candidate is denoted
chordal SLE8/3; some details on the origins and properties of chordal SLE8/3 are provided in
Section 3.

Another variation of the infinite self-avoiding random walk and the primary object of this
study is self-avoiding random walk in the k-strip defined by Z + i{0, 1, 2, . . . k} with k <∞.
Fixing k ∈ N/{0}, self-avoiding walks ω := [ω(0), ω(1), . . . , ω(n)] ⊂ Z + i{0, 1, . . . k} that we
consider here satisfy

• n ≥ k,
• ω(0) = 0, Im[ω(n)]= k
• |ω(j + 1)− ω(j)| = 1, and
• ω(i) 6= ω(j) for i 6= j.

Use |ω| to denote the length, n, of such a walk. We define the self-avoiding random walk on
the k-strip to be the probability measure on such walks given by,

P[ω] :=
β
−|ω|
c

Z
where Z :=

∑
|ω|≥k

β−|ω|c

Note that this is equivalent to defining a probability measure on the lattice strip given by
δZ + i{0, δ, 2δ . . . kδ} with δ = 1/k or the normalized k-strip. Motivations similar to those
that led to the conjecture that the fine-mesh scaling limit of UPSAW converges to chordal
SLE8/3 also lead to a conjecture that self-avoiding random walk on the normalized k-strip
conditioned to terminate at a point x + i ∈ H, with x ∈ R fixed, converges to chordal
SLE8/3 as k →∞ (due to a property of SLE8/3 called conformal invariance, chordal SLE8/3

is well-defined in any simply connected domain with specified initial and terminal points).
In this paper we use the conjecture that UPSAW and SAW on the normalized k-strip

conditioned to terminate at x + i converge to chordal SLE8/3 in the upper half plane and
chordal SLE8/3 on the strip (initialized at 0 and terminating at x+i), respectively, to predict
certain random variables associated with SAW on the normalized k-strip for large k, say
k >> 0. We then conduct numerical experiments to test the accuracy of these predictions.

In Section 2.1, we take a slight detour that reviews an alternate definition of the UPSAW
in terms of infinite concatenations of objects called irreducible bridges. Bridges are special
cases of self-avoiding walks, ω, defined precisely in Subsection 2.1; these objects also live
in k-strips or, alternatively, normalized k strips, depending on the context. Theorems in
Section 2.1 will allow us to conclude that for fixed k > 0, distributions of (not necessarily
irreducible) bridges on these k-strips conditioned to terminate at fixed points m + ik, with
m ∈ Z, correspond exactly to the self-avoiding random walk on the k-strip conditioned to
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terminate at m+ ik. The purpose of the section is to allow for the use of known numerical
algorithms for simulating UPSAWs in the creation new algorithms for simulating the self-
avoiding random walk on the k-strip.

In Section 3, we review key properties of SLE8/3 then diagram how properties of SLE8/3

and the conjecture that the fine-mesh scaling limit of SAW is SLE8/3 can be used to predict
certain random variables associated with the self-avoiding random walk on the k-strip for
k >> 0. Finally, in the three subsections of Section 4, we use the conclusions of Section 2
to design numerical simulations that test the predictions made in the three subsections of
Section 3, respectively.

2. Half-plane SAWs and bridges

2.1. Infinite half-plane SAW [Lawler].

2.2. Interior point [Lawler].

2.3. Limit of counting measure [Lawler].

3. Predictions using SLE8/3

It was realized in the late 1990’s that a stochastic differential equation, now called (chordal)
Schramm-Loewner evolution (SLEκ) in recognition of Oded Schramm’s contribution to the
theory, characterizes a family of measures on 2-d paths distinguished by their invariance with
respect to conformal transformation and a stochastic requirement called the domain Markov
property. This differential equation is a special case of the classical Loewner equation of
complex analytic origin.

Schramm’s collaborations with Werner and Lawler eventually led to a proof that a process
supported on square mesh grids in the plane, called the loop-erased random walk (originally
defined in [5]), converges weakly to SLE2 as the mesh size goes to 0 ([6]). The loop-erased
random walk is a random walk that avoids itself, but it is not equivalent to UPSAW. In [7],
the same authors argue that the following conjecture must hold if one supposes that SAW
is a conformally invariant measure. In this conjecture and for the remainder of the chapter
we use the notation =(z) :=Im[z] and <(z) :=Re[z].

Conjecture 3.1. UPSAW converges weakly to SLE8/3 as the mesh size goes to 0. Moreover,

if f : H→ {z ∈ H : 0 < =z < 1} is a conformal map whose unique continuous extension to
H satisfies f(0) = 0 and f(∞) = x+ i, then the self-avoiding random walk on the normalized
k-strip, conditioned to terminate at x+ i, converges weakly to SLE8/3 as k →∞.

A proof that SAW is indeed a conformally invariant process is currently intractable, so the
statement remains a conjecture; however, there is strong numerical evidence to support this
conjecture ([1]). An illustration of SLE8/3 generated by a numerical simulation is pictured
in Figure 1.

In this section, we use Conjecture 3.1 to predict exact distributions of random variables
associated with bridges, ω, conditioned to have large heights, h(ω) >> 0. These distributions
are then compared with numerically simulated distributions of bridges that are adapted from
simulations of half-planes SAWs by way of the propositions in Section 2.
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Figure 1. Numerical simulation of SLE8/3

3.1. Density of real component of terminal point for the self-avoiding random
walk on the normalized k strip.

Conjecture 3.2. Let P k denote the probability measure of the self-avoiding random walk on
the normalized k-strip. Then for all k > 0, P k[=ω(|ω|) = 1] = 1 and

lim
k→∞

P k[<ω(|ω|) ≤ x] =

∫ x

−∞
cosh

(π
2
ξ
)−5/4

dξ

3.2. Rightmost point distribution. We begin by stating an important result for SLE8/3.
The following theorem, originally proved in [7], is crucial in the derivation of the main
prediction in this section.

Theorem 3.1. (Lawler, Schramm, Werner) Let γ be the SLE8/3 generating curve. Suppose

A ⊂ H is compact and H \ A is simply connected with 0 /∈ A. If ΦA : H \ A → H denotes
the unique conformal map that fixes 0 and ∞ and has Φ′A(∞) = 1, then the distribution of
two-dimensional curves given by chordal SLE8/3 satisfies,

P[γ ∩ A = ∅] = Φ′A(0)5/8

By utilizing Theorem 3.1 and Conjecture 3.1, we can calculate hitting-probabilities for the
SAWs in the strip, ω, under the probability measure described above. This is accomplished
as follows. Choose x ∈ R and y > 0. We want to compute the probability that a chordal
SLE8/3 generating curve, γ, in the y-strip initialized at 0 and terminated at x+ iy contains
a point γ(t) with <γ(t) > r > x. The SLE8/3 process is conformally invariant, so for each
choice of x ∈ R and r > x, we can apply the sequence of conformal maps illustrated in
Figure 2 and effectively reduce the problem to computing the probability that a chordal
SLE8/3 generating curve in the upper half plane (from 0 to ∞) intersects a semicircle, A,
on the boundary of H, as seen in the figure. The map ΦA, defined and pictured in Figure
3, satisfies the antecedent of Theorem 3.1, therefore allowing us to compute the desired
probability exactly.
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Figure 2. A sequence of conformal maps

Figure 3. Φ map
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Next, we use then use Conjecture 3.2 to get the following prediction for k >> 0,

P

[
max

1≤j≤|ω|
(<(ω(j)) > r)

]
≈∫

R
cosh

(xπ
2k

)−5/4
(

1−
(
a(x)

c(x)

)2
)
dx.

The integral on the right hand side of the previous equation can be evaluated numerically
to allow for an approximation of the probability that SAW in the k-strip, with k >> 0, has
max0≤j≤|ω|<(ω(j)) > r. In Subsection 4.2, we compare the theoretical rightmost point den-
sity conjectured here with the experimental rightmost point density achieved with numerical
simulations.

3.3. Left-passing probability. One example of a useful computational formula associated
with SLEκ is Schramm’s left-passing probability, p(z), of a point z ∈ H with respect to the
SLEκ generating curve (Schramm called this a ‘left crossing probability,’ but we use slightly
different terminology here). This function on H is defined for κ ∈ (0, 8), and its definition
is given in terms of winding numbers. For κ ∈ (0, 4], an equivalent, more easily stated
definition is given by,

(1) P[γ passes left of z] = p(z) = P[z ∈ H+
∞]

where H+
∞ is defined to be the connected component of H\γ[0,∞) that contains R+ := {x ∈

R : x > 0}. If κ ∈ (0, 4], then γ is simple and γ(t) → ∞ w.p.1, so H \ γ[0,∞) has exactly
two simply connected components; thus, p is well-defined.

It is important to point out that any definition of p depends on the conjecture that γ(t)
diverges to ∞ as t→∞, a known property of the SLEκ generating curve. It is also known
that if γ is the SLEκ generating curve for any 0 < κ < 8, then for all z ∈ H \ {0},

P[z ∈ γ(0,∞)] = 0.

It follows that,

(2) P[γ passes left of z] = 1−P[γ passes right of z].

Thus, the event ‘γ passes right of z’ is exactly the event described by ‘γ does not pass left
of z.’

The SLEκ left passing probability, p, can also be defined for a more general range, κ ∈
(0, 8), but SAW can only correspond to the special case of κ = 8/3, so we omit the more
general definition of left passing probability which is written in terms of winding numbers of
z ∈ H with respect to a certain closed curve related to the generating curve [9].

Schramm derived an explicit formula for p by applying Ito’s formula to a known martingale
and setting the drift component to 0 in order to derive a deterministic Fokker-Plank equation
for a two-point hitting density related to the left passing probability, p(z). The partial
differential equation attained for p(z) = p(x+ iy) is

(3)

(
2x

|z|2

)
∂p

∂x
− 2y

|z|2
∂p

∂y
+
κ

2

∂2p

∂x2
= 0,
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Figure 4. A sequence of conformal maps

with boundary conditions p(z) ↑ 1 as arg z ↓ 0 and p(z) ↓ 0 as arg z ↑ π. The scale invariance
of SLEκ suggests a substitution w = x/y that allows one to reduce (3) to an equation in one
variable that can be solved explicitly in terms of hypergeometric functions [9]. In the special
case κ = 8/3, one finds that,

(4) P[γ passes left of z] = 1− cos(arg(z))

In a similar derivation to that of the previous subsection, we use the fact that SLE8/3 is
conformally invariant to define a sequence of conformal maps that allows to compute the
left-passing probability of SLE8/3 in the y-strip conditioned to terminate at a fixed point
x + iy by using the known formula (4) for SLE8/3 given above. This sequence of conformal
maps is defined and illustrated in Figure 4.

Finally, we use then use Conjecture 3.2 to arrive at the following prediction that applies
to any point z in the interior of the k-strip (k >> 0),

P [SAW in the k-strip crosses left of z] ≈
c

2

∫
R

cosh
(xπ

2

)−5/4
(

1− cos arg

(
exp(πz/k)− 1

exp(πz/k) + exp(πx)

))
dx.

where

(5) c =

(∫
R

cosh
(xπ

2

)−5/4
)−1
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Figure 5. Comparison of numerical data (blue bars) and exact prediction
(red line) of the density of the real component of the terminal point for the
self-avoiding random walk on the normalized k strip.

This theoretical computation of left-passing probabilities is compared to results of numer-
ical experiments in

4. Numerical Results

The propositions from Section 2 allow us to simulate (not necessarily irreducible) bridges of
height k by adapting existing numerical algorithms for simulating infinite half-plane SAWs.
This is accomplished by fixing a height k that is much smaller than the expected height of a
simulated infinite half-plane SAW with a very a large number of steps, and then collecting
all of the bridges of exactly that height.

4.1. Comparison of theoretical and numerical hitting density. The comparison is
pictured in Figure 5.

4.2. Comparison of theoretical and numerical rightmost point density. Compar-
isons are pictured in Figure 6 and Figure 7.

4.3. Comparison of theoretical and numerical left-passing probabilities. A picture
of the theoretical left-passing probabilities is shown in Figure 8 and the difference between
the theoretical left-passing probabilities and the experimentally computed left-passing prob-
abilities are pictured in Figure 9.
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Figure 6. Comparison of the theoretical rightmost point density (blue) and
numerical rightmost point density (red).

Figure 7. Close-up of comparison of the theoretical rightmost point density
(blue) and numerical rightmost point density (red).
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Figure 8. Graph of the theoretical left-passing probabilities.

Figure 9. Graph of the difference between the theoretical left-passing prob-
abilities and the experimentally computed left-passing probabilities.
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