## Exam #2 · Thursday, March 1, 2007

| MATH 124 · Calculus I · Section 8 · Spring 2007                                                                                          | Name                                           |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| <b>Problem 1.</b> Let $f(x) = x^x$ . Numerically approximate three successively smaller values of $h$ .                                  | f'(2) using difference quotients. Use at least |
|                                                                                                                                          |                                                |
|                                                                                                                                          |                                                |
|                                                                                                                                          |                                                |
| <b>Problem 2.</b> On a mountain-climbing expedition, you find $y$ be your altitude above sea level, measured in feet; let $H$            |                                                |
| Part (a). What are the units of $H'(y)$ ?                                                                                                |                                                |
| Part (b). What is the sign of $H'(y)$ ?                                                                                                  |                                                |
| Part (c). Give a practical interpretation of $H^{-1}(35)$ .                                                                              |                                                |
|                                                                                                                                          |                                                |
| Part (d). Give a practical interpretation of $H'(7500)$ .                                                                                |                                                |
|                                                                                                                                          |                                                |
| <b>Problem 3.</b> In a lab experiment, you have microorgan of microganisms, in millions, is a function of time $t$ in number is given by |                                                |

 $m(t)=4.1e^{0.24t}.$  Find the rate of change in population on day 5 of the experiment. In your answer, please show units.

**Problem 4.** Let  $G(t) = 2^{-rt} \sin(at)$ . Find G'(t).

**Problem 5.** Let  $f(z) = \tan^{-1}(z)$ . Compute f''(1).

**Problem 6.** Let  $q(x) = \ln(2 + 2x + x^2)$ .

Part (a). Find q'(x).

**Part** (b). Find an equation for the tangent line to q(x) at x=3.

**Problem 7.** Let F(t) and G(t) be given by the following graphs.



Part (a). Find G'(40).

**Part (b).** Let  $H(t) = \frac{F(t)}{G(t)}$ . Find H'(50).

Part (c). Let H(t) = F(G(t)). Find H'(30).

Problem 8. Let

$$f(x) = \begin{cases} \sin(x), & x \ge 0\\ x - x^3, & x \le 0. \end{cases}$$

Part (a). Find f'(x). Write it as a piecewise function.

**Part** (b). Is the original function f(x) differentiable at x = 0? Why or why not? (Hint: graph it.)

**Problem 9.** When is  $g(x) = x^3 + bx^2 + cx + d$  concave up? Assume b, c, d are constants. (You will need to solve an inequality.)