Exam \#3 solutions • Tuesday, April 3, 2007

MATH 124 • Calculus I • Section $8 \cdot$ Spring 2007
Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation, unless a problem specifically requests a verbal response.
John Kerl (kerl at math dot arizona dot edu).
Problem 1. Consider the following graph of $f^{\prime}(x)$:

I repeat for emphasis: I am showing you the graph of $f^{\prime}(x)$, but I will ask you questions about $f(x)$.
Part (a). Which of the labeled points are critical points of $f(x)$?
Solution: Critical points of f occur where f^{\prime} is zero or undefined. There are none of the latter; f^{\prime} is zero at points A, D, and F.

Part (b). Which of those critical points are local maxima (not minima) of $f(x)$? (In this problem, I am not interested in local extrema at boundary points.)

Solution: Local maxima must occur at the critical points $(A, D$, and F) or boundary points; the latter are not of interest here. We can use the first-derivative test on each of these three points.

- At point $A, f^{\prime}(x)$ is negative on both sides of A. This means f is decreasing on either side of A, so A is a false alarm of f.
- At point $D, f^{\prime}(x)$ is negative to the left and positive to the right. Thus D is a local minimum of f.
- At point $F, f^{\prime}(x)$ is positive to the left and negative to the right. Thus F is a local maximum of f.
Alternatively, we can try the second-derivative test.
- At point $A, f^{\prime}(x)$ has zero slope, i.e. $f^{\prime \prime}(A)$ is 0 . The second-derivative test is inconclusive here.
- At point $D, f^{\prime}(x)$ has positive slope, i.e. $f^{\prime \prime}(D)>0$. Thus D is a local minimum of f.
- At point $F, f^{\prime}(x)$ has negative slope, i.e. $f^{\prime \prime}(F)<0$. Thus F is a local maximum of f.

In conclusion, f has a local maximum at F.
Part (c). Which labeled points are inflection points of $f(x)$?
Solution: Inflection points of f occur where $f^{\prime \prime}$ is zero, i.e. where f^{\prime} has zero slope. These are points A, C, and E.

Problem 2. Find $d y / d x$ if $\ln (y) \sin (y)=\cos (x)$.
Solution: Using implicit differentiation and the product rule, we have

$$
\begin{aligned}
\frac{1}{y} \sin (y) \frac{d y}{d x}+\ln (y) \cos (y) \frac{d y}{d x} & =-\sin (x) \\
\left(\frac{1}{y} \sin (y)+\ln (y) \cos (y)\right) \frac{d y}{d x} & =-\sin (x) \\
\frac{d y}{d x} & =\frac{-\sin (x)}{\left(\frac{1}{y} \sin (y)+\ln (y) \cos (y)\right)}=\frac{-y \sin (x)}{\sin (y)+y \ln (y) \cos (y)}
\end{aligned}
$$

Problem 3. Let $f(z)=z^{4}+a / z^{4}$. Find a such that $f(z)$ has a minimum at $z=2$.
Solution: If $f(z)$ is to have a minimum at $z=2$, we must have $f^{\prime}(2)=0$. Differentiating, we have

$$
f^{\prime}(z)=4 z^{3}-4 a / z^{5}
$$

evaluating at $z=2$ we have

$$
f^{\prime}(2)=32-4 a / 32
$$

Setting this to zero and solving for a gives us

$$
\begin{aligned}
32-4 a / 32 & =0 \\
32 & =4 a / 32 \\
4 a & =1024 \\
a & =256
\end{aligned}
$$

Problem 4. Let $g(x)=\sin ^{2}(x)-\cos (x)$.
Part (a). Find an equation for the tangent line to $g(x)$ at $x=\pi / 2$.
Solution: As usual, we use point-slope form: $y=y_{0}+m\left(x-x_{0}\right)$. Here, $x_{0}=\pi / 2 ; y_{0}=g\left(x_{0}\right)=1$; $m=g^{\prime}\left(x_{0}\right)$. Using the chain rule we get $g^{\prime}(x)=2 \sin (x) \cos (x)+\sin (x)$; evaluating at x_{0} we have $g^{\prime}(\pi / 2)=1$. Putting these together we obtain

$$
y=1+(x-\pi / 2)=x+1-\pi / 2
$$

Part (b). Write down an equation for the error function involving $g(x)$ and the linear approximation.
Solution: The error function is the original function minus the tangent-line approximation:

$$
E(x)=\left(\sin ^{2}(x)-\cos (x)\right)-(x+1-\pi / 2)=\sin ^{2}(x)-\cos (x)-x-1+\pi / 2
$$

Problem 5. Find b and d such that $f(x)=x^{3}+b x^{2}+d$ has an inflection point at $x=3$ and y-intercept -5 .

Solution: The y-intercept of a function $f(x)$ is $f(0)$. Thus $d=-5$. If f is to have an inflection point at $x=3$, we must have $f^{\prime \prime}(3)=0$. Differentiating, we have

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+2 b x \\
f^{\prime \prime}(x) & =6 x+2 b
\end{aligned}
$$

Evaluating at $x=3$ and setting equal to zero, we get

$$
\begin{aligned}
6 \cdot 3+2 b & =0 \\
2 b & =-18 \\
b & =-9 .
\end{aligned}
$$

Problem 6. Does the limit

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{0.0024 x}}
$$

exist? If so, what is it, and why? If not, why not?
Solution: This limit is of the form ∞ / ∞, so l'Hôpital's rule applies. Differentiating top and bottom we get

$$
\lim _{x \rightarrow \infty} \frac{2 x}{0.0024 e^{0.0024 x}}
$$

which is still of the form ∞ / ∞. Using l'Hôpital's rule again, we have

$$
\lim _{x \rightarrow \infty} \frac{2}{0.0024^{2} e^{0.0024 x}}
$$

This has a constant on top and a function increasing without bound on the bottom, so the limit is zero.

Problem 7. A rectangular region is to be painted inside a semicircular region as follows:

The semicircle has radius 7 feet. Find x that maximizes the area of the rectangle. (You must show all your work and use calculus.)

Solution: The area of the rectangle is its length times its width, i.e. $A=2 x y$. To be able to do calculus on A we need to write it in terms of a single variable. The equation of a circle of radius 7 centered at the origin is $x^{2}+y^{2}=49$; the equation for the upper semicircle is $y=\sqrt{49-x^{2}}$. Substituting this into A and differentiating (using the product and chain rules), we have

$$
\begin{aligned}
A & =2 x \sqrt{49-x^{2}} \\
\frac{d A}{d x} & =2 \sqrt{49-x^{2}}+2 x \frac{-2 x}{2 \sqrt{49-x^{2}}} \\
& =2 \sqrt{49-x^{2}}-\frac{2 x^{2}}{\sqrt{49-x^{2}}} .
\end{aligned}
$$

Setting this equal to zero and solving for x we have

$$
\begin{aligned}
2 \sqrt{49-x^{2}}-\frac{2 x^{2}}{\sqrt{49-x^{2}}} & =0 \\
\sqrt{49-x^{2}} & =\frac{x^{2}}{\sqrt{49-x^{2}}} \\
49-x^{2} & =x^{2} \\
2 x^{2} & =49 \\
x & =7 / \sqrt{2} .
\end{aligned}
$$

The maximum of A happens at a critical point (which we just found) or a boundary point. The boundary values of x are 0 and 7 ; areas there are both zero. Thus the maximum area occurs at $x=7 / \sqrt{2} \approx 4.950$.

Problem 8. An amusement-park ride is upright and circular with 50 -foot radius. Passengers are seated around the perimeter while the wheel turns counterclockwise at some (as yet unknown) constant rate:

The height of the labeled passenger above the ground is given by

$$
y=50+50 \sin (\theta)
$$

If the passenger's height above ground is increasing by 3.2 feet per second at angle $\theta=\pi / 3$, how fast is the wheel turning? Include units in your answer.

Solution: The quantities y and θ both vary with time and are related by the equation $y=50+50 \sin (\theta)$. Differentiating both sides with respect to time we find

$$
\frac{d y}{d t}=50 \cos (\theta) \frac{d \theta}{d t}
$$

Since we are given the rate of change of y and we are asked to find the rate of change of θ, we need to solve for $d \theta / d t$. This is

$$
\frac{d \theta}{d t}=\frac{d y / d t}{50 \cos (\theta)}
$$

When $\theta=\pi / 3$, this is

$$
\left.\frac{d \theta}{d t}\right|_{\theta=\pi / 3}=\frac{3.2}{50 \cos (\pi / 3)} \cdot=\frac{3.2}{50 \cdot 0.5}=0.128
$$

The units of $d \theta / d t$ are the units of θ over the units of t, i.e. radians per second.

