Name \qquad
Problem 1. Let

$$
\begin{aligned}
x(t) & =3 t^{2}-6 t \\
y(t) & =\frac{4}{3} t^{3}-4 t
\end{aligned}
$$

Part (a). Find the time(s) t, if any, when the particle comes to a stop.

Part (b). Find an equation for the tangent line to this curve at $t=3$.

Problem 2. The function $H(t)$ describes the growth rate in thousands per month of flour beetles in a jar, where t is measured in months since the start of the year.
Part (a). What are the units of $\int_{4}^{7} H(t) d t$?

Part (b). Give a practical interpretation of $\int_{4}^{7} H(t) d t$.

Problem 3. The air pressure within a chamber is given by

$$
P(t)=2.1+0.4 t^{0.5}
$$

where P is in units called atmospheres and t is measured in hours. Find the average pressure over the time between $t=2$ hours and $t=5$ hours.

Problem 4. Find the exact area between $f(x)=e^{x}-2$ and $g(x)=-1$ on the interval $[2,4]$.

Problem 5. Find the general antiderivative:

$$
\int\left(\frac{y^{2.1}}{3}-\frac{7}{y}+0.2 A e^{y}+B\right) d y .
$$

Problem 6. Let $g^{\prime}(x)$ be given by the following graph, and suppose $g(0)=2$:

Part (a). What are the x-coordinates of the critical points of $g(x)$?

Part (b). What are the x-coordinates of the inflection points of $g(x)$?

Part (c). Find the values of $g(x)$ at the critical and inflection points.

Part (d). Sketch a graph of $g(x)$. Label critical points and inflection points of $g(x)$.

Problem 7. The quantity A varies with time as specified by

$$
\frac{d A}{d t}=7.3 \cos (t)-0.04
$$

Part (a). Write down a general solution for A.

Part (b). Given that $A(0)=2.1$, write down a specific solution for A.

Problem 8.

Part (a). Let

$$
G(x)=\int_{1}^{x} e^{t^{2}} d t
$$

Determine (with justification) whether $G(x)$ is increasing, decreasing, or constant.

Part (b). Now let

$$
G(x)=\int_{1}^{a x+b} e^{t^{2}} d t
$$

Find $G^{\prime}(x)$.

