
Exam #4 solutions · Thurday, April 26, 2007

MATH 124 · Calculus I · Section 8 · Spring 2007

Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation,

unless a problem specifically requests a verbal response.

John Kerl (kerl at math dot arizona dot edu).

Problem 1. Let

x(t) = 3t2 − 6t

y(t) =
4

3
t3 − 4t.

Part (a). Find the time(s) t, if any, when the particle comes to a stop.

Solution: We need to find when dx/dt and dy/dt are both zero. We have

dx/dt = 6t − 6

dy/dt = 4t2 − 4.

The former is zero when t = 1; the latter is zero when t = ±1. They are simultaneously zero only at
t = 1.

Part (b). Find an equation for the tangent line to this curve at t = 3.

Solution: Parametric equations for a line through a point (x0, y0) in the direction a, b are

x = x0 + at

y = y0 + bt.

The point (x0, y0) is found by plugging t = 3 into the original equations:

x0 = 3 · 32 − 6 · 3 = 9

y0 =
4

3
33 − 4 · 3 = 24.

The a and b are dx/dt|t=3 and dy/dt|t=3:

a =
dx

dt

∣

∣

∣

∣

t=3

= 6 · 3 − 6 = 12

b =
dy

dt

∣

∣

∣

∣

t=3

= 4 · 32 − 4 = 32

So, the tangent line has equations

x = 9 + 12t

y = 24 + 32t.
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Problem 2. The function H(t) describes the growth rate in thousands per month of flour beetles in a
jar, where t is measured in months since the start of the year.

Part (a). What are the units of
∫ 7
4 H(t)dt?

Solution: The units of an integral are the units of the integrand times the units of the dependent
variable. Since H(t) is thousands of beetles per month and t is months, the units of the integral are
thousands of beetles.

Part (b). Give a practical interpretation of
∫ 7
4 H(t)dt.

Solution: This is the population change between month 4 and month 7.

Problem 3. The air pressure within a chamber is given by

P (t) = 2.1 + 0.4t0.5

where P is in units called atmospheres and t is measured in hours. Find the average pressure over the
time between t = 2 hours and t = 5 hours.

Solution: Compute
∫ 5
2 P (t)

5 − 2
=

∫ 5
2 (2.1 + 0.4t0.5)

5 − 2
.

The integral is

2.1t +
0.4t1.5

1.5

∣

∣

∣

∣

5

2

=

(

10.5 +
0.4 · 51.5

1.5

)

−

(

4.2 +
0.4 · 21.5

1.5

)

≈ 8.53.

Then the average value is
8.53/3 ≈ 2.84.

Note that if you graph P (t) from 2 to 5, you’ll see that it rises slowly from P (2) ≈ 2.7 to P (5) ≈ 3.0.
Thus, an average of 2.84 is reasonable.

Problem 4. Find the exact area between f(x) = ex − 2 and g(x) = −1 on the interval [2, 4].

Solution: The area between f(x) and g(x) from 2 to 4 is
∫ 4
2 (f(x) − g(x)) dx so we can compute

∫ 4

2
(ex − 2 − (−1)) dx =

∫ 4

2
(ex − 1) dx

= ex − x

∣

∣

∣

∣

4

2

= (e4 − 4) − (e2 − 2)

= e4 − e2 − 2.

Problem 5. Find the general antiderivative:
∫

(

y2.1

3
−

7

y
+ 0.2Aey + B

)

dy.

Solution:
y3.1

9.3
− 7 ln(|y|) + 0.2Aey + By + C.
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Problem 6. Let g′(x) be given by the following graph, and suppose g(0) = 2:
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Part (a). What are the x-coordinates of the critical points of g(x)?

Solution: Critical points of g(x) occur when g′(x) is zero (or undefined). From the graph we see g′(x) = 0
at x = 0, 2, 4.

Part (b). What are the x-coordinates of the inflection points of g(x)?

Solution: Inflection points of g(x) occur at extrema of g′(x). These are at x = 1, 3.

Part (c). Find the values of g(x) at the critical and inflection points.

Solution: We are given g(0) = 2, and we are given g′(x) in graphical format. This suggests the
fundamental theorem of calculus, one landmark at a time. By “landmark” I mean a critical or inflection
point.

g(1) = g(0) +

∫ 1

0
g′(x) dx = 2 + 10 = 12.

g(2) = g(1) +

∫ 1

2
g′(x) dx = 12 + 10 = 22.

g(3) = g(2) +

∫ 2

3
g′(x) dx = 22 − 5 = 17.

g(4) = g(3) +

∫ 3

4
g′(x) dx = 17 − 5 = 12.

Part (d). Sketch a graph of g(x). Label critical points and inflection points of g(x).
Solution: Using the above information we can plot the critical points (0, 2), (2, 22), and (4, 12), along
with the inflection points (1, 12) and (3, 17). Then we can connect the dots as follows:

• Since g′(x) is positive on (0, 2), g(x) is increasing there.
• Since g′(x) is negative on (2, 4), g(x) is decreasing there.
• Since g′(x) increases on (0, 1) and (3, 4), g(x) is concave up there.
• Since g′(x) decreases on (1, 2) and (2, 3), g(x) is concave down there.

(The sketch is on the next page.)
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Here is a sketch:
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Problem 7. The quantity A varies with time as specified by

dA

dt
= 7.3 cos(t) − 0.04.

Part (a). Write down a general solution for A.

Solution: The general antiderivative is

7.3 sin(t) − 0.04t + C.

Part (b). Given that A(0) = 2.1, write down a specific solution for A.

Solution: Using the initial condition, we have

2.1 = 7.3 sin(0) − 0.04 · 0 + C = C.

So, the solution is
7.3 sin(t) − 0.04t + 2.1.
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Problem 8.
Part (a). Let

G(x) =

∫ x

1
et2dt.

Determine (with justification) whether G(x) is increasing, decreasing, or constant.

Solution: A function is increasing, decreasing, or constant when its derivative is positive, negative, or
zero, respectively. The derivative is

G′(x) =
d

dx

∫ x

1
et2dt = ex2

using the second fundamental theorem of calculus. The output of exponential functions is always
positive, so this function is increasing everywhere.

Here is another solution, which a student came up with: et2 is always positive, so as the right endpoint
of the integral slides rightward from 1, only positive areas are added. Thus, the integral function is
increasing.

Part (b). Now let

G(x) =

∫ ax+b

1
et2dt.

Find G′(x).

Solution: Using the second fundamental theorem and the chain rule, we evaluate the integrand at the
right endpoint (upper limit), times the derivative of the right endpoint. This is

G′(x) = ae(ax+b)2 .


