
Lattice quadrupling for percolation in quantum networks

John Kerl

Department of Mathematics, University of Arizona

June 10, 2009

University of Arizona FRG Workshop
Quantum spin systems, theory, and applications in quantum computation

June 8-12, 2009

J. Kerl (Arizona) Lattice quadrupling June 10, 2009 1 / 31



Goals

Warning . . . in contrast to much of the discussion in this workshop, I will not mention

Lieb-Robinson bounds!

The current work was mostly done in an independent-study project, under Jan Wehr, a
year ago. At the time, I lacked the necessary knowledge of finite-size scaling to complete
the project, but the semester was over . . . and it wasn’t my dissertation project so I left it
aside.

Having since learned some things about finite-size scaling in my dissertation research, I
realized I can now finish this project. I am interested in any advice you may have as I
prepare it for publication.

This work extends Entanglement Distribution in Pure-State Quantum Networks,
Perseguers, Cirac, Aćın, Lewenstein, and Wehr, arXiv:0708.1025v2. I will recapitulate
some points about quantum networking (see also Nielsen and Chuang for reference) as
well as 2D results from the Perseguers et al. paper. Then I will present my 3D work.

My goals with respect to you: (1) Show you a surprising connection between quantum
networking and classical percolation. (2) Give you a flavor of where those “numerical

results” come from: in particular, how we use finite-size computations to draw
conclusions about infinite systems.
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: perfect case

Quantum computation involves manipulation of qubits: ψ = c |0〉 + d |1〉 with
|c|2 + |d|2 = 1. Quantum devices require quantum wires: devices to move qubits from
point A to point B.

Alice, in possession of qubit ψ at point A, can’t measure her qubit; this would collapse
(modify) its state. Using local operations and classical communication (LOCC), though,
Alice can communicate her qubit to Bob.

A B A′
Before After

A′′ψ

ψ

Ingredients: An entangled pair (Bell state) of qubits A and B, e.g. 1√
2
|00〉 + 1√

2
|11〉, a

classical wire, and the message qubit ψ.
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Review of quantum teleportation and entanglement swapping

Quantum teleportation: imperfect case

This can be done even with a non-maximally entangled pair of qubits, i.e. a |00〉 + b |11〉
with |a|2 + |b|2 = 1. But now the message qubit ψ is successfully moved from point A to
point B only with singlet conversion probability (SCP) which depends on a and b.

First one converts the pair a |00〉 + b |11〉 into the perfect singlet 1√
2
|00〉 + 1√

2
|11〉. This

succeeds with probability p which is 2(1 − |a|2) if |a| ≤ |b|, else 2(1 − |b|2).

Then, one does quantum teleportation as in the perfect case.
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Review of quantum teleportation and entanglement swapping

Entanglement swapping: perfect case

The next step toward constructing a quantum network is to chain a pair of links. There
are two options.

(1) Simply teleport ψ from A to B, then from B to C.

(2) Entanglement swapping changes A-B and B-C links into a B-B link (which is
discarded) and an A-C link. Using quantum teleportation, a message qubit ψ may then
be moved from point A to point C. Here we discuss only step 1, since step 2 is just as
before. Thus, ψ doesn’t appear in the figures here.

Before
AA BB

After
CC

β
(12)
00 β

(34)
00 β

(14)
00

β
(23)
00

Which approach is better? That is the key point under discussion today.
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Review of quantum teleportation and entanglement swapping

Entanglement swapping: perfect and imperfect cases

Alice and Charlie may then do quantum teleportation using the (14) states. Any of the
four Bell basis states may be used for teleportation.

Since the measurement outcome at (23) specifies the states at (1) and (4), one could

apply quantum gates to put β
(14)
kℓ into the state β

(14)
00 . However, this would require

non-local quantum operations, and the paradigm under consideration is LOCC.

In density-matrix terminology, one says that after entanglement swapping, the (14) state
is mixed: it has a 4-point classical probability distribution.

* * *

As with quantum teleportation, this can again be done if the A-B and B-C links start off
non-maximally entangled. It is shown in Perseguers et al., section III, that the average
SCP p does not change.
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Review of the 2D square lattice
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Review of the 2D square lattice

Quantum communication on the 2D square lattice; doubling

One may form a 1D chain of links. The probability of successful end-to-end
communication over N links is pN , which goes to zero in the infinite limit. One may
instead leverage the well-known results of percolation to attempt to achieve higher
teleportation probability on a 2D lattice. Perseguers et al. consider many lattice
geometries; I confine my discussion to the square lattice.

On the left is a square lattice formed of quantum-teleportation links. One may ask for
the probability of communicating a qubit ψ (not shown) from point A to point B.

In the middle figure, we isolate Bob nodes and perform entanglement swapping twice per
circle. The Bob nodes are discarded; what remains, in the right-hand figure, is a doubled
lattice.

AA

A′

B′B

B
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Review of the 2D square lattice

Doubling the 2D square lattice

In both cases, suppose that A is far from B, as are A′ and B′. On the other hand, A
and A′, as well as B and B’, occupy adjacent corners of a square. One may
communicate along the black lattice from point A to point B, or along the grey lattice
from point A′ to point B′. Zoom out for a clearer look:

BB
B′B′

AA
A′A′

Recall that the percolation probability p is the same for the original lattice as for each of
the doubled lattices.

Question: Which technique gives higher end-to-end teleportation probability — the
original lattice or the doubled lattice?
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Review of the 2D square lattice

Doubling the 2D square lattice

For the doubled lattice: If p > pc = 0.5, there are infinite clusters C, C′ (black and grey,
respectively) with probability 1. Successful communication from A to B requires
A,B ∈ C. These two events are (asymptotically) independent, so we have

P (A ∈ C) = θ(p), P (B ∈ C) = θ(p), P (A,B ∈ C) = θ2(p).

Likewise, P (A′, B′ ∈ C′) = θ2(p).

Taking advantage of both lattices, we can communicate from A’s area to B’s area if
either path is open. We want to find P (A,B ∈ C or A′, B′ ∈ C′).

Note that if events U and V are independent, P (U ∪ V ) does not factor but P (U ∩ V )
does. The inclusion-exclusion formula allows us to replace a union with an alternating
sum of intersections, which factor. We find

P (A,B ∈ C or A′, B′ ∈ C′)

= P (A,B ∈ C) + P (A′, B′ ∈ C′) − P (A,B ∈ C and A′, B′ ∈ C′)

= 2θ2(p) − θ4(p) = θ2(p)(2− θ2(p)) := g(θ(p)).
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Review of the 2D square lattice

Doubling the 2D square lattice

For the non-doubled lattice, by comparison, there is a single infinite cluster C. We want

P (A,B ∈ C or A,B′ ∈ C or A′, B ∈ C or A′, B′ ∈ C).

Perseguers et al. claim (but omit the proof) that this is asymptotically π2(p) where

π(p) = P (A or A′ ∈ C).

This may be proved using inclusion-exclusion.

To estimate π2(p), Perseguers et al. use the FKG inequality and another Greek-lettered
event probability; their resulting analysis of Monte Carlo simulations only applies for
p = pc. This is unnecessary: one may consider π2(p) directly in Monte Carlo simulations,
and one may obtain results which apply for p away from pc.

In summary, the probabilities of successful communication on the non-doubled and
doubled lattices are

Pdouble = θ2(p)(2 − θ2(p)) and Psingle = π2(p).

The doubled lattice is better if

π2(p) < θ2(p)(2− θ2(p)).

Perseguers et al. find that this is indeed true for p = pc.
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

The first part of the figure shows the non-quadrupled lattice. The second part of the
figure shows that each node actually has 6 qubits, although this detail is omitted from
the rest of the figure for simplicity.

The third part shows the quadrupled lattice. In a manner analogous to the 2D case,
center nodes do measurements onto the Bell basis and Bob themselves out of
pariticipation. Four interlocking lattices — red, green, blue, and black — remain.

The fourth part shows the labeling of A1, A2, A3, and A4 which are analogs of A and A′

in the 2D case.

A1

A2

A3

A4

As before, we ask whether successful communication on the quadrupled lattice is more
likely than on the non-quadrupled lattice.
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

For the quadrupled lattice: If p > pc ≈ 0.2488126, there are infinite clusters C1, C2, C3,
and C4 (red, green, blue, and black, respectively) with probability 1. Successful
communication from Ai to Bi requires Ai, Bi ∈ Ci for i = 1, 2, 3, 4. These two events
are (asymptotically) independent, so we have

P (Ai ∈ Ci) = θ(p), P (Bi ∈ Ci) = θ(p), P (Ai, Bi ∈ Ci) = θ2(p).

Taking advantage of all four lattices, we can communicate from A1’s area to B1’s area if
any of the four paths are open. Using inclusion-exclusion, we find

P
`

∪4
i=1(Ai, Bi ∈ Ci)

´

=
4

X

i=1

P (Ai, Bi ∈ Ci) −
X

i

X

j 6=i

P (Ai, Bi ∈ Ci and Aj , Bj ∈ Cj)

+
X

i

X

j 6=i

X

k 6=j

P (Ai, Bi ∈ Ci and Aj , Bj ∈ Cj and Ak, Bk ∈ Ck)

− P
`

∩4
i=1(Ai, Bi ∈ Ci)

´

= 4θ2(p) − 6θ4(p) + 4θ6(p) − θ8(p)

= θ2(p)(4− 6θ2(p) + 4θ4(p) − θ6(p)) := h(θ(p)).
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Quadrupling the 3D rectangular lattice

Quadrupling the 3D rectangular lattice

For the non-quadrupled lattice, there is a single infinite cluster C. One can show that

P
`

∪4
i=1 ∪4

j=1 (Ai, Bj ∈ C)
´

reduces, as in the 2D case, asymptotically to σ2(p) where

σ(p) := P (∪4
i=1Ai ∈ C).

Proof: Inclusion-exclusion.

Analogously to the 2D case, the quadrupled lattice is better if

σ2(p) < h(θ(p)).
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Monte Carlo simulations
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Monte Carlo simulations

Monte Carlo simulations

Overview: For L = 20, 25, 30, 35, 40, 45, . . . as far as patience and CPU time hold out,
and for various values of p above pc, estimate

σL(p) := PL

`

∪4
i=1(Ai ∈ C)

´

and
θL(p) := PL (A ∈ C)

for L× L× L lattices. (Note that this is now strictly a percolation question: quantum
information is encapsulated in the singlet conversion probability p.)

It will be helpful to do this also for 2D — π(p) and θ(p) — to recover and extend the
results from Perseguers et al.
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Monte Carlo simulations

Monte Carlo simulations for fixed L and p

The algorithms for fixed L and p are simple.

To estimate a single value of σL(p) or θL(p), do N trials detecting the event
∪4

i=1(Ai ∈ C) or A ∈ C, respectively. Average these over the N trials to estimate PL of
that event. When choosing N , recall that the sample mean tends centrally toward a
normal distribution and that the normal’s standard deviation goes as 1/

√
N . (I.e. to get

another decimal place in the estimate of PL(E) for some event E, one needs to run 100
times as many experiments.)

For each trial:

• Populate the bonds of the lattice. Each is open with probability p.

• To compute θL(p) or σL(p), mark all clusters and identify the largest one (as
described below). Once the largest cluster is marked, it is easy to find if one point
(for θ) or any of a specified four (for σ) are in that cluster.

J. Kerl (Arizona) Lattice quadrupling June 10, 2009 20 / 31



Monte Carlo simulations

Cluster marking and sizing

Cluster marking:

• Again keep a matrix of site marks, now serving as cluster numbers, all initially set to
zero.

• Set cluster number = 1.

• For each site A:

• If A’s cluster number is non-zero (site A has already been visited), continue to the
next site.

• In the site-marks matrix, mark A with the current cluster number.
• For each bonded neighbor of A, recursively call the subroutine.
• After the recursion, increment the cluster number by 1.

Cluster sizing:

• Walk through the sites of the lattice, counting the size of each cluster.

• Remember the cluster number of the largest cluster. Call this C.
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Monte Carlo simulations

Lattice before and after cluster numbering: L = 14, p = 0.6

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o o o

o . - . . - . - . - . . - . . - . - . - . . . . o o 1 - 1 2 - 2 - 2 - 2 2 - 2 2 - 2 - 2 - 2 . . 3 o

o | | | | | | | | | o o | | | | | | | | | o

o . . . - . - . . - . - . - . . - . - . - . . . o o 1 2 2 - 2 - 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 4 3 o

o | | | | | | o o | | | | | | o

o . - . - . - . - . . - . - . . - . - . . - . . - . o o 2 - 2 - 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 4 - 4 o

o | | | | | | | | o o | | | | | | | | o

o . . . - . - . . . - . . - . . . - . . - . o o . 2 2 - 2 - 2 2 2 - 2 2 - 2 5 4 - 4 4 - 4 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . . - . . - . - . - . . . . - . - . - . o o 2 2 - 2 2 - 2 2 - 2 - 2 - 2 2 5 4 - 4 - 4 - 4 o

o | | | | | | | o o | | | | | | | o

o . - . . - . - . - . . - . . . . - . - . . - . o o 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . - . - . . . - . - . - . . - . - . - . - . o o 6 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 o

o | | | | | | | o o | | | | | | | o

o . . - . . . - . . - . - . - . . . - . - . - . o o 6 2 - 2 2 2 - 2 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 o

o | | | | | | | | | | | | o o | | | | | | | | | | | | o

o . . . . - . - . - . - . . . . - . - . . - . o o . 2 2 2 - 2 - 2 - 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . - . - . - . . . . - . - . - . - . - . . . - . o o 2 - 2 - 2 - 2 7 8 2 - 2 - 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . - . . . - . . . - . . . . - . - . - . . o o 2 - 2 2 7 - 7 8 2 - 2 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . . - . . - . - . - . . - . . . - . - . - . . o o 2 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . - . . . - . - . . . - . - . - . . . - . o o 2 - 2 - 2 2 2 - 2 - 2 2 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . . . - . - . - . - . - . . - . - . . . . o o 2 - 2 2 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 9 2 2 o

o | | | | | | | o o | | | | | | | o

o . . - . - . . . . - . - . - . - . - . . . . o o . 2 - 2 - 2 2 . 2 - 2 - 2 - 2 - 2 - 2 9 . . o

o o o o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Finite-size scaling
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Finite-size scaling

Finite-size scaling

We want to know for which p’s we have σ2
∞(p) ≤ h(θ∞(p))2. What we have is σL(p)’s

and θL(p)’s for finite L, with error bars from Monte Carlo sampling. How do we connect

the two? What is finite-size scaling — what can (and can’t) it do for us?

FSS hypothesis (Fisher 1971, Cardy 1998, . . . ):

σL(p) = σ∞(p)F (L/ξ(p)),

where the correlation length behaves as ξ(p) ∼ |p− pc|−ν as p→ pc. Also,
σ∞(p) ∼ (p− pc)

ρ as pց pc. (Similar scaling applies for θ as well as σ.) That is,
corrections enter only through the ratio L/ξ. There are two regimes: L≫ ξ
(infinite-system values are approached), or not (finite-size effects are apparent).

Known properties of the scaling function F : (1) it goes to 1 as L→ ∞, i.e. σL

approaches σ∞ . . . eventually. (2) As pց pc, F (x) ∼ x−ρ/ν .

For this project, I don’t want to use property (2) — I want to know more about σ and θ
than merely their near-critical behavior. Can I use property (1) — when is L big enough
that finite-size effects are overcome?

This L≫ ξ case is in contrast to my disseration work (on a different model, the
spatial-permutation model of Ueltschi and Betz), where L≪ ξ for most feasible L’s and
the critical behavior (near Tc) is in fact the principal object of interest.
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Finite-size scaling

Finite-size scaling: Clusters

Here are 200 × 200 2D lattices with p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Singleton clusters are
marked grey; clusters of size bigger than 1 are marked with randomly selected colors.
The correlation length ξ(p) is the average diameter of non-infinite clusters. It diverges to
infinity as p approaches pc from either side.

Intuition: When L≫ ξ, if you find the largest cluster in the L-box, you can be sure
you’ve found the unique infinite cluster within the infinite lattice. When L≪ ξ, you may
have mistakenly found a large but finite cluster (finite-size effects).
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Finite-size scaling

Finite-size scaling: raw data

See the next slide for some data, obtained as follows.

2D: For p from 0.450 up to 0.550 in steps of 0.002:

For L from 20 to 100 in steps of 10:

For each of three trials:

Plot π2
L(p) or g(θL(p)).

3D: For p from 0.241 up to 0.279 in steps of 0.001:

For L from 20 to 75 in steps of 5:

For each of three trials:

Plot σ2
L(p) or h(θL(p)).
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Finite-size scaling

Finite-size scaling: raw data

As L increases, the curves approach the expected infinite-lattice shapes . . . but how
quickly?
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Finite-size scaling

Finite-size scaling: raw data transposed

The key to visualizing the scaling behavior is to plot the growth of the data as a function
of L, with p values as data series. For p outside [0.252,0,261] (3D), σ2 and h(θ) have
reached their infinite-lattice values, as L has passed ξ. For intermediate p, finite-size
effects apply.

20 30 40 50 60 70 80 90 100
L
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0.4
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0.8

1.0

p
i^

2
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)

2D pi^2(p) for p=0.450 to 0.550 by 0.002
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2D g(theta_L(p)) for p=0.450 to 0.550 by 0.002
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3D sigma^2(p) for p=0.241 to 0.280 by 0.001
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3D h(theta_L(p)) for p=0.241 to 0.280 by 0.001
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Finite-size scaling

Finite-size scaling: 2D comparison

Here we select out L = 100 for 2D and treat it as the infinite limit. (For p from 0.460 to
0.506, we do not have L≫ ξ.) It is intuitively clear that g(θ) beats σ2 by a wide margin
— not only at p = pc = 0.5 (Perseguers et al.) but for all p reliably far from pc (L≫ ξ).
I do not doubt that an FSS analysis for p near pc (L≪ ξ) will reach the same conclusion.

0.44 0.46 0.48 0.50 0.52 0.54 0.56
p

0.0

0.2

0.4

0.6

0.8

1.0
2D pi^2 vs. g(theta), L=100

pi^2
pi^2
pi^2
g(theta)
g(theta)
g(theta)
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Finite-size scaling

Finite-size scaling: 3D comparison

Next we select out L = 65 for 3D and treat it as the infinite limit. (For p from 0.252 to
0.261, we do not have L≫ ξ.) Here, h(θ) and σ2 are quite close. There is a region
(p = 0.253 to 0.257) where it appears that h(θ) beats σ2, and a region (p = 0.258 to
0.274) where it appears that the opposite is true.

Improved data accuracy (more CPU time) will reduce the error bars. Regardless, though,
when error bars nearly overlap, one must use statistical confidence levels to quantify the
apparent inequality σ2 < h(θ) or σ2 > h(θ).
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Finite-size scaling

Conclusions and next steps

Conclusions thus far: In 2D, the doubled lattice beats the non-doubled lattice. In 3D,
there is a range of p’s for which the quadrupled lattice appears to beat the
non-quadrupled lattice by a narrow but statistically significant margin.

Next steps:

• Re-run the simulations with periodic rather than free boundary conditions. This
gives faster convergence in L of σL(p) and θL(p) to σ(p) and θ(p), respectively.
Also use larger values of N in order to reduce the sample variance of σ and θ.

• Consider broader ranges of p; use larger values of L for 2D to confidently reach
L≫ ξ.

• Obtain a numerical estimate of ξ for 2D and 3D.

• Do finite-scaling for p near pc (L≪ ξ) to determine critical exponents and obtain
values for π, σ, θ.

• In the computations done thus far, three runs were done for each value of L and p.
This gives a rough visual error bar. For selected values of p, one should do k ≫ 3
trials. Treat those k trials of σL(p) and θL(p) as normally distributed about their
respective sample means. The statistical question becomes, at what confidence

level can we state that the sample mean of g(θ) exceeds that of σ2?

J. Kerl (Arizona) Lattice quadrupling June 10, 2009 31 / 31


	
	Review of quantum teleportation and entanglement swapping
	Review of the 2D square lattice
	Quadrupling the 3D rectangular lattice
	Monte Carlo simulations
	Finite-size scaling

