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Overview

Overview

I exposit Daniel Ueltschi’s 2007 paper [U07] The model of interacting spatial

permutations and its relation to the Bose gas (Qmath 10 proceedings, Romania, Sep.
2007). Also of interest: [GRU], [BU07], [BU08].

• Problem: determine the effects of interparticle interactions on the critical
temperature of Bose-Einstein condensation.

• We begin with a Hamiltonian H for particles with two-body interactions.

• Using a multi-body Feynman-Kac approach involving permutation symmetry of
bosonic wave functions, one obtains a Hamiltonian HP in which permutation jumps
rather than particles interact.

• A cluster expansion, to first order in the scattering length of the particles, yields a
Hamiltonian with only jump-pair interactions.

• Properties of random-cycle models are discussed.

• A simplified two-cycle-interaction model permits analytical determination of the shift
in critical temperature.
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Historical context

Historical context

• Theory: Bose and Einstein (1924): quantum statistics of photons; condensation of
non-interacting particles (macroscopic occupation of the ground state of the external
potential); critical temperature. Feynman (1953): long permutation cycles should
correspond to BEC. Sütő (1993, 2002): BEC implies long cycles in the non-ideal
gas; converse for the ideal gas only.

• Experiment: Onnes (1908) liquefied helium. London (1938): drew a connection with
BEC but the interactions are strong. Cornell and Wieman (1995): BEC of weakly
interacting rubidium gas.

• Shift in critical temperature: The a = 0 critical line of the (ρ, β, a) manifold is well

understood; off a = 0 less is known. Interactions ultimately decrease T
(a)
c , but for

small a, physicists expect

∆T

Tc
=

T
(a)
c − T

(0)
c

T
(0)
c

∼ a.

ρ

β

Critical line a = 0, ρ = ζ(3/2)/(4πβ)3/2

Weak-interaction regime

Critical manifold in (ρ, β, a) for small a

Tc(0)
Tc(a)?

Slice for fixed ρ

a

a T = 1/β
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Historical context

Historical context

• 1964: Huang: ∆T
Tc

∼ (aρ1/3)3/2, increases

• 1971: Fetter & Walecka: ∆T
Tc

decreases

• 1982: Toyoda: ∆T
Tc

decreases

• 1992: Stoof: ∆T
Tc

= c aρ1/3 + o(aρ1/3), c > 0

• 1996: Bijlsma & Stoof: c = 4.66

• 1997: Grüter, Ceperley, Laloë: c = 0.34

• 1999: Holzmann, Grüter, Laloë: c = 0.7; Holzmann, Krauth: c = 2.3;

• 1999: Baym et. al.: c = 2.9

• 2000: Reppy et. al.: c = 5.1

• 2001: Kashurnikov, Prokof’ev, Svistunov: c = 1.29

• 2001: Arnold, Moore: c = 1.32

• 2004: Kastening: c = 1.27

• 2004: Nho, Landau: c = 1.32
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas

x1 = w
(1)
0

x2 = w
(1)
2β

x5 = w
(5)
0

x5 = w
(5)
2β

y

x

β
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas

We use the canonical partition function as the vehicle for the following transformation:

Particle Hamiltonian −→ partition function −→ permuation Hamiltonian.

A bosonic Feynman-Kac formula effects the transformation in the middle step. We write
X = (x1, . . . ,xN) for x1, . . . , xN in a d-dimensional cube Λ of width L. U is a hard-core
potential of radius a. The pair-interaction Hamiltonian is

H(X) = −

NX

i=1

∇2
i +

X

1≤i,j≤N

U(xi − xj). (1)

The operator H is unbounded, but it is symmetric so we consider its self-adjoint
extension. We take its domain to be f in C2(ΛN ) with Dirichlet boundary conditions.
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas

Symmetrizing the partition function (e−βH is bounded and compact, but this fact is not
needed) yields

Tr L2
sym

(e−βH) = Tr L2

“

P+e−βH
”

= Tr L2

“

e−βHP+

”

where P+ f(x1, . . . ,xN) := 1
N!

P

π∈Sn
Mπf(x1, . . . ,xN ) and

Mπ(fx1, . . . ,xN ) := f(xπ(1), . . . ,xπ(N)). That is,

Tr L2
sym

(e−βH) =
1

N !

X

π∈SN

Tr L2

“

e−βHMπ

”

.

Steps to develop a bosonic Feynman-Kac formula:

• Interpret e−βHMπ as an expectation over Brownian motions, as in the
single-particle case.

• Write e−βHMπ as an integral operator, and find the kernel.

• Compute Tr (e−βHMπ) in terms of Brownian bridges.

• Sum over π ∈ SN to obtain Z = Tr L2
sym

(e−βH); define e−HP .

• Decouple the non-interacting from the interacting terms in the permutation

Hamiltonian HP , so that we may write e−H
(0)
P

(X,π)−H
(1)
P

(X,π).

• Drop all but 2-jump interactions; find the logarithm of e−H
(1)
P

(X,π).
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: e
−βH

Mπ as expectation

Proposition: With H as above, e−βHf(xπ(1), . . . ,xπ(N)) is

E
xπ(1),...,xπ(N)

0

»

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
f
“

w
(1)
2β , . . . ,w

(N)
2β

”–

.

Proof: Using the Trotter product formula, namely eβ(A+B) = limn→∞

“

eβA/neβB/n
”n

with A =
PN

i=1 ∇
2
i and B = −

P

i<j U(xi − xj), e−βHf(xπ(1), . . . ,xπ(N)) is

lim
n→∞

e
β
n

P

i ∇2
i e−

β
n

P

i<j U(xi−xj)
“

e
β
n

P

i ∇2
i e−

β
n

P

i<j U(xi−xj )
”n−1

f(xπ(1), . . . ,xπ(N)).

Write e
β
n

P

i ∇2
i as an integral operator (

P

i ∇
2
i is an (Nd)-dimensional Laplacian and

eα∇2

f = g2α ∗ f), and put Z(k) = (z
(k)
1 , . . . , z

(k)
N ). Then e−βHf(xπ(1), . . . , xπ(N)) is

lim
n→∞

Z

RNdn

g2β/n

“

X− Z
(1)
”

· · · g2β/n

“

Z
(n−1) − Z

(n)
”

 
nY

k=1

e−
β
n

P

i<j U(z
(k)
i −z

(k)
j )

!

f(xπ(1), . . . ,xπ(N)) dZ(1) · · · dZ(n).
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: e
−βH

Mπ as expectation

We recognize an integrand as in the Brownian-motion appendix of my paper, with
βk = 2kβ/n, so we can write

lim
n→∞

Z

RNdn

g2β/n

“

X − Z
(1)
”

· · · g2β/n

“

Z
(n−1) − Z

(n)
”

e
2β
n (− 1

2 )
P

i<j

Pn
k=1 U

“

z
(k)
i −z

(k)
j

”

f(xπ(1), . . . ,xπ(N)) dZ(1) · · · dZ(n)

= E
xπ(1),...,xπ(N)

0

»

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
f
“

w
(1)
2β , . . . ,w

(N)
2β

”–

.

�
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: e
−βH

Mπ as an integral operator

Proposition: If H = −
P

i ∇
2
i +

P

i<j U(xi − xj), then

e−βHf(xπ(1), . . . ,xπ(N)) =

Z

G2β,U (xπ(1), . . . ,xπ(N),y1, . . . ,yN )

f(y1, . . . ,yN ) dy1 · · · dyN

(2)

where

G2β,U (xπ(1), . . . ,xπ(N),y1, . . . ,yN ) =

E
xπ(1),...,xπ(N)

0

"

exp

(

−
1

2

X

i<j

Z 2β

0

U
“

w
(i)
s − w

(j)
s

”

ds

)
NY

i=1

δ
“

w
(i)
β − y

(i)
”
#

.
(3)

Proof: Insert equation 3 into the right-hand side of 2, interchange expectation and
integral, and integrate out the delta function. �
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Lemma for operator trace

Lemma: If a trace-class operator A on a separable Hilbert space has a G(x,y) such that

Af(x) =

Z

G(x,y)f(y) dy,

then

Tr (A) =

Z

G(x,x) dx.

Proof: Let {φj} be a (countable) basis for the Hilbert space. Then

Tr (A) =
X

j

〈φj | A | φj〉 =
X

j

Z Z

φ∗
j (x)G(x,y)φj(y) dy dx

=

Z Z

G(x,y)

 
X

j

φ∗
j (x)φj(y)

!

dy dx

=

Z Z

G(x,y)δ(x− y) dy dx

=

Z

G(x,x) dx.

�
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Tr (e−βH
Mπ) using Brownian bridges

Proposition: The trace may be computed using Brownian bridges as follows:

Tr (e−βHMπ) =

Z

dX

Z " NY

k=1

dW
xk,xπ(k)

0,2β

“

w
(k)
”
#»

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds

–

.

Proof: Using the proposition above, we have

Tr (e−βHMπ) =

Z

G2β,U (xπ(1), . . . ,xπ(N),x1, . . . ,xN) dX.

Equation 3 gives us an expression for G. Then

Tr (e−βHMπ) =

Z

E
xπ(1),...,xπ(N)

0

"

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
NY

i=1

δ
“

w
(i)
2β − x

(i)
”
#

dX.

As justified in my paper, we may convert this expectation over Brownian motion into an
expectation over Brownian bridges to obtain

Tr (e−βHMπ) =

NY

i=1

g2β

`
xi − xπ(i)

´
Z

E
x1,xπ(1) ;...;xN ,xπ(N)

0,2β

»

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds

–

dX.

The definition of the dW notation finishes the proof. �
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Sum over π ∈ SN

Applying the proposition, we now continue our plan by summing over all permutations:

Tr L2
sym

(e−βH) =
1

N !

X

π∈SN

Tr L2

“

e−βHMπ

”

=
1

N !

Z

dX
X

π∈SN

"
NY

k=1

Z

dW
xk,xπ(k)

0,2β

“

w
(k)
”
#

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
.

Notationally, we may split this up as

Tr L2
sym

(e−βH) =
1

N !

Z

dX
X

π∈SN

e−HP (X,π)

e−HP (X,π) =

"
NY

k=1

Z

dW
xk,xπ(k)

0,2β

“

w
(k)
”
#

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
.

(4)

Pivotal point of this paper: the original partition function appears as a sum over π of an
X-averaged quantity. That quantity is non-negative so we may write it as the
exponential of something which we call HP . The sum over permutations of e−HP is
precisely what we would want for a partition function involving energies, not of particles,
but of individual permutations.
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Interacting and non-interacting terms

If U ≡ 0, then we have e−HP (X,π) =
hQN

k=1

R
dW

xk,xπ(k)

0,2β

“

w(k)
”

(1)
i

.

Since
R

dW
xk,xπ(k)

0,2β

“

w(k)
”

(1) = g2β(xk − xπ(k)) = e
− 1

4β
‖xk−xπ(k)‖

2

(4πβ)d/2 , we have

e−HP (X,π) =
e−H

(0)
P

(X,π)

(4πβ)dN/2
where H

(0)
P (X, π) =

1

4β

NX

k=1

‖xk − xπ(k)‖
2. (5)

(We ignore the prefactor in equation 5 since it cancels out in the computation of
expectations of random variables.) A key point: the β in a permutation Hamiltonian is
indeed reciprocated — in contrast to our experience with particle Hamiltonians.

Removing the U ≡ 0 assumption, equation 4 is

e−HP (X,π) =

"
NY

k=1

Z

dW
xk,xπ(k)

0,2β

“

w
(k)
”
#

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
.

Since dW
xi,xπ(i)

0,2β

“

w(k)
”

= g2β(xi − xπ(i)) dŴ
xi,xπ(i)

0,2β

“

w(k)
”

, we have

e−H
(1)
P

(X,π) =

"
NY

k=1

Z

dŴ
xk,xπ(k)

0,2β (w(k))

#

e
− 1

2

P

i<j

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
.

J. Kerl (Arizona) Interacting spatial permutations January 16, 2009 15 / 35



Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Organize e
−H

(1)
P by m-jump interactions

• Recall U(r) = ∞ for r ≤ a, else 0. If wi and wj do (resp. do not) come within
radius a of one another at any Feynman time between 0 and 2β,
R 2β

0
U
“

w
(i)
s − w

(j)
s

”

ds = +∞ (resp. 0) and e
− 1

2

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
is 0 (resp. 1).

• Shorthand:
R

k
:= dŴ

xk,xπ(k)

0,2β

“

w(k)
”

. Also: Υij := 1 − e
− 1

2

R 2β
0 U

“

w
(i)
s −w

(j)
s

”

ds
.

• Recall that
R

e
R 2β
0 f(ws) ds dWx,y

0,2β(w) := E
x,y
0,2β

h

e
R 2β
0 f(ws) ds

i

. With N

permutation jumps and N(N − 1)/2 distinct jump pairs,

e−H
(1)
P

(X,π) =
h
QN

k=1

R

k

i
Q

i<j (1 − Υij) is the probability that all pairs avoid one

another.

• N = 3 example: e−H
(1)
P

(X,π) is
ˆR

1

R

2

R

3

˜
( 1
|{z}

m=0

− (Υ12 + Υ13 + Υ23)
| {z }

m=1

+(Υ12Υ13 + Υ12Υ23 + Υ13Υ23)
| {z }

m=2

−Υ12Υ13Υ23
| {z }

m=3

).

In general,

e−H
(1)
P

(X,π) =

"
NY

k=1

Z

k

#
N(N−1)/2
X

m=0

(−1)m
X

(i1,j1),...,(im,jm)

mY

ℓ=1

Υiℓ,jℓ .

The first sum is over sizes of subsets of the N(N − 1)/2 jump pairs; the second sum
is over all possible ways of selecting m pairs.
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Heuristic for cluster expansion

Move the integrals through the sums:

e−H
(1)
P

(X,π) =

N(N−1)/2
X

m=0

(−1)m
X

(i1,j1),...,(im,jm)

"
NY

k=1

Z

k

#
mY

ℓ=1

Υiℓ,jℓ .

For non-overlapping pairs, certainly
ˆR

1

R

2

R

3

R

4
Υ12Υ34

˜
=
ˆR

1

R

2
Υ12

˜ ˆR

3

R

4
Υ34

˜
.

For overlapping pairs,
ˆR

1

R

2

R

3
Υ12Υ13

˜
≈
ˆR

1

R

2
Υ12

˜ ˆR

1

R

3
Υ13

˜
as long as the

collisions between bridge pairs 1, 2 and 1, 3 are weakly correlated. (The cluster expansion
simply formalizes this.)

Define Vij = V (xi,xπ(i),xj ,xπ(j)) =
hR

i

R

j

i

Υij . We assume small interactions Vij , so

e−H
(1)
P

(X,π) ≈
Y

i<j

(1 − Vij)

≈
Y

i<j

„

1 − Vij +
V 2

ij

2
−

V 3
ij

6
+ . . .

«

=
Y

i<j

e−Vij = e−
P

i<j Vij .

Now H
(1)
P (X, π) =

P

1≤i<j≤N V (xi,xπ(i),xj ,xπ(j)).
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Bosonic Feynman-Kac formulas

Bosonic Feynman-Kac formulas: Simplified jump-pair interactions

When one computes the jump-pair interaction, it is possible to replace the double
Brownian bridge by a single Brownian bridge.

xi

xπ(i)

xπ(j)
xj

xπ(i) − xπ(j)

xi − xj

Ball of radius a
centered at the origin

Feynman paths for
particles of radius a

Proposition: The jump-pair interaction Vij = V (xi,xπ(i),xj ,xπ(j)) satisfies

Z

dŴ
xi,xπ(i)

0,2β (w(i))

Z

dŴ
xj ,xπ(j)

0,2β (w(j))

»

1 − exp



−
1

2

Z 2β

0

U
“

w
(i)
s −w

(j)
s

”

ds

ff–

=

Z

dŴ
xi−xj ,xπ(i),xπ(j)

0,4β (w(ij))

»

1 − exp



−
1

4

Z 4β

0

U
“

w
(ij)
s

”

ds

ff–

.
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Models of spatial permutations

Models of spatial permutations
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Models of spatial permutations

Models of spatial permutations

Here we define and describe two configuration models of spatial permutations from a
mathematical point of view. One may relate these models to the physics of the Bose gas,
using the derivation just supplied.

x1

x2

x8

x7
x6

x5

x3

x4

‖x5 − xπ(5)‖
V (x4,xπ(4),x1,xπ(1)

Figure: A configuration of X and π with N = 8.
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Models of spatial permutations

Models of spatial permutations: Definitions

State space: ΩΛ,N = ΛN × SN where SN is the group of permutations of N points.

Hamiltonian: HP (X, π) =
PN

i=1
1
4β

‖xi − xπ(i)‖
2 +

P

1≤i<j≤N V (xi,xπ(i),xj ,xπ(j)).

Contributions to the energy of a configuration (X, π):

• The sum of squares of permutation jump lengths. This discourages permutations
with long jumps; permutations with many short jumps will be less strongly
discouraged.

• The double sum over interactions between permutation jumps. This discourages
interacting permutations.

Jump-interaction potentials: We require that V be translation-invariant i.e. for all a ∈ Λ,
and for all x,y ∈ Λ,

V (x,y,x′,y′) = V (x + a,y + a,x′ + a,y′ + a) and V (x,y,x′,y′) = V (x′,y′, x,y).

For BEC, above:

V (x,y,x′,y′) =

Z

dŴx−x′ ,y−y′

0,4β (w)
h

1 − e−
1
4

R 4β
0 U(ws) ds

i

. (6)
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Models of spatial permutations

Models of spatial permutations: Definitions

Partition functions for a fixed point configuration X (cubic unit lattice [GRU]) and for an
average over point configurations [BU07, U07], respectively:

Y (Λ,X) =
X

σ∈SN

e−HP (X,σ) and Z(Λ, N) =
1

N !

Z

ΛN

Y (Λ, X) dX.

Probability measures on the finite set SN , for a fixed point configuration X and for an
average over point configurations, respectively:

PΛ,X(π) =
e−HP (X,π)

Y (Λ, X)
and PΛ,N (π) =

R

ΛN dXe−HP (X,π)

Z(Λ, N)N !
.

Heuristic for the non-interacting V = 0 case:

• As β → 0, the probability measure becomes supported only on the identity
permutation.

• As β → ∞, the probability measure approaches the uniform distribution on SN .

Expectations: For a random variable θ(π), we have

EΛ,X(θ) =

P

π∈SN
θ(π)e−HP (X,π)

Y,X(Λ)
and EΛ,N (θ) =

R

ΛN dX
P

π∈SN
θ(π)e−HP (X,π).

Z(Λ, N)N !
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Models of spatial permutations

Models of spatial permutations: Definitions

Random variables: BEC occurs [Feynman, Sütő] iff there are infinite cycles. These
depend on π, not on the geometry of x1, . . . ,xN . Our random variables will depend on π
only.

• Define ℓi(π) to be the length of the permutation cycle containing the point xi. E.g.
ℓ1(π) = 4 in figure 1.

• Let ρ = N
V

, i.e. ρ is the particle density.

• For 1 ≤ m ≤ n ≤ N , define

̺m,n(π) =
1

V
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

This is the density of sites in cycles of specified length; it takes values between 0 and
ρ.

• Related random variable:

fm,n =
1

N
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n} =

̺m,n

ρ
.

This is the fraction of sites in cycles of specified length; it takes values between 0
and 1. For figure 1, we have f2,3(π) = 3/8.
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Models of spatial permutations: Existence of infinite cycles

Thermodynamic limit: We inquire about the fraction of sites participating in short and
long cycles (as quantified below) in the infinite-volume limit. Namely, we let V, N → ∞
with fixed ratio ρ = N/V , and we ask about the cycle-length distribution as a function of
ρ.

One does not need to construct an infinite-volume model, although this is done in section
3 of [BU07], for pure interest: We examine limits of expectations of random variables,
where the limit is taken as the number of points N of the model goes to infinity. The
limits are in R.

Critical density: We define ρc by the following formula. (This is chosen to match the
critical density for BEC.)

ρ(0)
c =

Z

Rd

dk

e4βπ2|k|2 − 1
=

ζ(3/2)

(β
(0)
c 4π)3/2

. (7)

Late note: The recent paper [BU08] produces an expression for ρ
(a)
c , as well as an

analogue of the following theorem for the weakly interacting (a > 0) case.
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Models of spatial permutations

Models of spatial permutations: Existence of infinite cycles

Theorem ([U07], proved in section 1 of [BU07]): In the U ≡ 0 case, for any
0 < A < B < 1 (nominally, A is just above 0 and B is just below 1) and any s ≥ 0,

lim
V →∞

EΛ,N(f1,NA ) =

(

1, ρ ≤ ρ
(0)
c

ρ
(0)
c /ρ, ρ

(0)
c ≤ ρ

lim
V →∞

EΛ,N (fNA,NB ) = 0

lim
V →∞

EΛ,N (fNB ,sN ) =

8

><

>:

0, ρ ≤ ρ
(0)
c

1 − ρ
(0)
c /ρ, ρ

(0)
c ≤ ρ ≤ s + ρ

(0)
c

s/ρ, s + ρ
(0)
c ≤ ρ.

(8)

Density of sites in short cycles

Density of sites in long cycles
s

ρcρc

ρc

ρc + sρc + s

1

ρρ

Fraction of sites in short cycles

Fraction of sitess
ρc+s in long cycles

Below ρ
(0)
c , all sites are in short cycles; as density increases past ρ

(0)
c and ρ

(0)
c + s, a

strictly positive fraction are in long cycles; asymptotically, all sites are in long cycles.
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Simple model with two-cycle interactions
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Simple model with two-cycle interactions

Simple model with two-cycle interactions: Motivation

Ueltschi’s 2007 paper [U07] has little more to say about the full jump-pair interaction.
There are (at least) three things which can be done with it:

• Compute it directly using simulation methods: far too expensive.

• Write this equation in terms of special functions. Our research on this matter, and
our contacts with experts in Brownian bridges, has not produced a special-function
expression.

• Although one may not simplify all interaction pairs, one may extract the pairs with
highest collision probability (namely, two-cycles) and simplify those. This is the
two-cycle-interaction model. (Notation: i ◦-π-◦ j for a two-cycle between xi and xj .)

For the simplified two-cycle-interaction model, unlike the fully interacting model, one
obtains expressions for the pressure, critical density, and critical temperature for the
weakly interacting Bose gas. These appear as perturbations to the known expressions for
the ideal gas.
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Simple model with two-cycle interactions

Simple model with two-cycle interactions: Motivation

The permutation Hamiltonian becomes

HP (X, π) =
NX

i=1

1

4β
‖xi − xπ(i)‖

2 +
X

1≤i<j≤N

V (xi,xπ(i),xj ,xπ(j))

≈ H̃P (X, π) =
NX

i=1

1

4β
‖xi − xπ(i)‖

2 +
X

i ◦-π-◦ j

V (xi,xπ(i),xj ,xπ(j)).

(9)

An unpublished computation of Ueltschi and Betz shows that, for two-cycles, the
jump-pair interaction (equation 6) simplifies significantly to

V (xi,xπ(i),xπ(i),xi) =
2a

‖xi − xπ(i)‖
+ O(a2), (10)

where a is the radius of the interparticle hard-core potential U .

Key point: the Brownian bridges of equation 6 have been simplified out completely for
this two-cycle-interaction model.
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Simple model with two-cycle interactions: Hamiltonian with r2(π)

Seek a Hamiltonian of the form H
(α)
P (X, π) =

PN
i=1

1
4β

‖xi − xπ(i)‖
2 + αr2(π). Average

out the distance dependence in equation 10 (reasonable since expectations average over
x anyway): here, all two-cycles acquire the same weight α regardless of ‖xi − xπ(i)‖. It
remains to connect the old parameter a with the new parameter α.

Proposition: α =
“

8
πβ

”1/2

a + O(a2).

The chemical potential µ is defined to be change in energy per additional particle, with
fixed volume and entropy, i.e. µ = (∂E/∂N)S,V . Particles in the ground state
(condensed particles) contribute nothing to the pressure. An expression for the pressure
p(α) is obtained in [U07] using the grand-canonical partition function and occupation
numbers for Fourier modes.

Proposition: The critical density for the two-cycle-interaction model is

ρ(α)
c =

∂p(α)

∂µ

˛
˛
˛
˛
˛
µ=0−

= ρ(0)
c −

(1 − e−α)

29/2π3/2β3/2
. (11)

Proof: Differentiate equation 11 through the integral sign. �
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Simple model with two-cycle interactions: Lemma for partial derivatives

Lemma: Let f : R
3 → R be continuously differentiable. Let (x0, y0, z0) be a point on the

surface f(x, y, z) = 0 where ∂f/∂x, ∂f/∂y, and ∂f/∂z are non-zero. Then there is a
neighborhood of (x0, y0, z0) such that

∂x

∂y

∂y

∂z

∂z

∂x
= −1.

Proof: Since ∂f/∂x 6= 0, by the implicit function theorem we can solve for x and write
f(x(y, z), y, z) = 0. Differentiating with respect to y, we have

∂f

∂x

∂x

∂y
+

∂f

∂y
= 0

∂x

∂y
= −

∂f/∂y

∂f/∂x
.

Likewise,
∂y

∂z
= −

∂f/∂z

∂f/∂y
and

∂z

∂x
= −

∂f/∂x

∂f/∂z
.

Multiplying the three partials together, we obtain

∂x

∂y

∂y

∂z

∂z

∂x
= −

„
∂f/∂y

∂f/∂x

«„
∂f/∂z

∂f/∂y

«„
∂f/∂x

∂f/∂z

«

= −1.

�

J. Kerl (Arizona) Interacting spatial permutations January 16, 2009 30 / 35



Simple model with two-cycle interactions

Simple model with two-cycle interactions: Shift in critical temperature

Proposition: For the two-cycle model with small a,

T
(a)
c − T

(0)
c

T
(0)
c

≈ 0.37ρ1/3a.

Proof: We will use the lemma for ∂a
∂ρ

∂ρ
∂β

∂β
∂a

= −1. (Since we are working on the critical

manifold, we take ρ and β to mean ρ
(a)
c and β

(a)
c , respectively.)

Taylor-expand ρ
(a)
c and use b = 1/ζ(3/2)π1/2 for brevity:

ρ
(a)
c − ρ

(0)
c

ρ
(0)
c

= −
ba

β1/2
; a =

−ρ
(a)
c β1/2

ρ
(0)
c b

+
β1/2

b
and

∂a

∂ρ
=

−β1/2

ρ
(0)
c b

.

Using equation 7 for ρ
(0)
c and ∂ρ

(a)
c /∂β ≈ ∂ρ

(0)
c /∂β,

∂ρ

∂β
=

−ζ(3/2)

(4πβ)3/2
.

From (T
(a)
c − T

(0)
c )/T

(0)
c = cρ1/3a with β = 1/T , we obtain

β(a)
c = β(0)

c − β(0)
c cρ1/3a and

∂β

∂a
= −β(0)

c cρ1/3.
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Simple model with two-cycle interactions: Shift in critical temperature

Combining the product of all three partial derivatives and using the lemma on the triple
product of partial derivatives, we have

 

β1/2

ρ
(0)
c b

!„
ζ(3/2)

(4πβ)3/2

«“

β(0)
c cρ1/3

”

= 1.

Solving for c, along with some algebra, gives

c =
ρ
(0)
c ρ−1/3β5/2

β
(0)
c β1/2

2b (4π)3/2

3 ζ(3/2)
=

4b π1/2

3 ζ(3/2)1/3
≈ 0.37.

�

Remark: This result applies for the two-cycle model. When longer cycles are included,
the shift in critical temperature is expected to be more pronounced. Thus, this result
provides a rough lower bound on the true constant c, which from other methods
discussed above is believed to be approximately 1.3. Further work is needed before the
random-cycle model can be used to improve on the latter estimate.
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Future work
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Future work

Future work

Theory: Seek a computationally tractable expression for the full jump-pair interaction,
perhaps involving averaging over positions as was done for the two-cycle model.

Experiments: Simulations currently underway use the two-cycle-interaction model, with
points on a cubic unit lattice. One would like to vary the positions of the points as well,
in order to simulate the point-process-configuration model.

Statistical analysis: Markov-chain Monte Carlo simulations map (N, β, ρ, a) to sample
mean of ̺m,n. For a large number of trials, one expects a central-limit distribution for
the estimated values of ̺m,n; we also desire to have a practical estimator for the variance
of the sample mean. To approach the infinite-volume limit in N , one needs to do
finite-size scaling.
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Future work

Thank you for attending!
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