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The probability model

State space: ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions.
Point positions: X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ.

Hamiltonian, where T = 1/β and rℓ(π) is the number of ℓ-cycles in π:

H(X, π) =
T

4

N
X

i=1

‖xi − xπ(i)‖
2 +

N
X

ℓ=1

αℓrℓ(π).

• The first term discourages long permutation jumps, moreso for higher T .

• The temperature scale factor T/4, not β/4, is surprising but correct for the
Bose-gas derivation of the Hamiltonian.

• The second term discourages cycles of length ℓ, moreso for higher αℓ. These
interactions are not between points, but rather between permutation jumps.
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The probability model

Fixed point positions (quenched model — includes all simulations done up to the present
on the cubic unit lattice with N = L3):

PX(π) =
1

Y (Λ, X)
e−H(X,π), Y (Λ, X) =

X

σ∈SN

e−H(X,σ).

Varying positions (annealed model — many theoretical results are available):

P (π) =
1

Z(Λ, N)
e−H(X,π), Z(Λ, N) =

1

N !

Z

ΛN

Y (Λ,X) dX.

In either case, we write the expectation of an RV S(π) as E[S] =
P

π∈SN
P (π)S(π).

Feynman (1953) studied long cycles in the context of Bose-Einstein condensation for
interacting systems. See also Sütő (1993, 2002), and papers of Betz and Ueltschi.
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The probability model: intuition

What does a typical random spatial permutation actually look like? (Recall
H(X, π) = T

4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π).)

• As T → ∞, the probability measure becomes supported only on the identity
permutation. Large but finite T : there are tiny islands of 2-cycles, 3-cycles, etc.

• As T → 0, length-dependent terms go to zero. The probability measure approaches
the uniform distribution on SN : all π’s are equally likely.

For intermediate T , things get more interesting:

• The length of each permutation jump, ‖π(x) − x‖, remains small.

• Above a critical temperature Tc, all cycles are short: 2-cycles, 3-cycles, etc.
Tc ≈ 6.86, and positive α terms increase Tc.

• Phase transition at Tc: below Tc, jump lengths remain short but long cycles form.
Order-parameter RVs fI , fM , fW , fS quantify this; ξ is correlation length.

• Figures: high T , medium but subcritical T , and low T .
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Behavior of order parameters as functions of L, T , and α.

fM = E[ℓmax]/N is left-sided; 1/ξ is right-sided. All order-parameter plots tend to the

right as α increases, i.e. ∆Tc(α) = Tc(α)−Tc(0)
Tc(0)

is positive for small positive α.

Goal: quantify ∆Tc(α)’s first-order dependence on α.
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Known results and conjectures

Recall H(X, π) = T
4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π). We have the following models:

• Non-interacting model: αℓ ≡ 0.

• Two-cycle model: α2 = α and other cycle weights are zero.

• Ewens model: αℓ is constant in ℓ.

• General-cycle model: No restrictions on αℓ.

Known results for the continuum (obtained largely using Fourier methods):

• ∆Tc(α) is known (to first order in α) for two-cycle interactions (Betz and Ueltschi,
CMP 2008) and small cycle weights (Betz and Ueltschi 2008). (This taps into a
long and controversial history in the physics literature: see Baym et al., EJP B 2001,
or Seiringer and Ueltschi, PRB 2009, for surveys.) The critical (ρ, T, α) manifold
relates ρc to Tc.

ρc(α) ≈
X

ℓ≥1

e−αℓ

Z

R3

e−ℓ 4π2β‖k‖2

dk =
1

(4πβ)3/2

X

ℓ≥1

e−αℓℓ−3/2

∆Tc(α) ≈ cρ1/3α, for α ≈ 0, with c = 4πζ(3/2)−2/3e2α/3 ≈ 0.66 when ρ = 1.
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Metropolis sampling

The expectation of a random variable S (e.g. fW , fM , fI , fS , ξ) is

E[S] =
X

π∈SN

P (π)S(π).

The number of permutations, N !, grows intractably in N . The expectation is instead
estimated by summing over some number M (104 to 106) typical permutations. The
sample mean is now a random variable with its own variance.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of detailed
balance, autocorrelation, batched means, and quantification of variance of sample means.

Metropolis step (analogue of single spin-flips for the Ising model): swap permutation
arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles:

As usual, the proposed change is accepted with probability min{1, e−∆H}.
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Computational results: ∆Tc

Raw MCMC data yield S(L, T, α) plots as above, for each order parameter S.
Finite-size scaling (see Caracciolo et al., arXiv:cond-mat/0312175 for a survey)
determines the critical temperature Tc(α).

Define reduced temperature t = T−Tc(α)
Tc(α)

, and correlation length ξ as above.

Hypotheses: (1) At infinite volume, S ∼ | − t|ρ and ξ ∼ |t|−ν (power-law behavior).
(2) Finite-volume corrections enter only through a universal function QS of the ratio L/ξ:

S(L, T, α) = L−ρ/νQS((L/ξ)1/ν) = L−ρ/νQS(L1/νt)

Method:

• Estimate critical exponents ρ, ν via power-law regression on MCMC data plots.

• Plot Lρ̂/ν̂S(L, T, α) as function of T . Since t = 0 at Tc(α), these plots for different
L cross at Tc(α).

• Having estimated ρ̂, ν̂, and T̂c(α), plot Lρ̂/ν̂S(L, T, α) as function of L1/ν̂ t̂. This
causes all curves to collapse, confirming the FSS hypothesis.

• Regress ∆T̂c(α) on α to estimate the constant c.
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Computational results: ∆Tc

Raw data vs. power-law fit for 1/ξ with α = 0, followed by crossing plot:

6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05
T

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
/

� raw and fit 1/
�
 raw and fit, �=0.000

L=40
L=60
L=80
L=40
L=60
L=80

6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05
T

0

10

20

30

40

50

60

L
ˆ	/ˆ
1/�(L,T) 1/
�
 crossing plot, 
=0.000

L=30
L=40
L=50
L=60
L=70
L=80

Collapse plot for 1/ξ with α = 0, followed by ∆Tc(α) vs. α:
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We find Tc(0) ≈ 6.683 ± 0.003 and c ≈ 0.665 ± 0.067 for Ewens weights on the lattice.
For small cycle weights on the continuum, Betz and Ueltschi have Tc(0) ≈ 6.625 and
c ≈ 0.667. Conclusions: (1) Lattice structure modifies the critical temperature; (2) the
α-dependent shift in critical temperature is unaffected.
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Other work

Dissertation items not presented today:

• Precise exposition of the theory of autocorrelation estimators for exponentially
correlated Markov processes. Precise quantification of the advantages and
non-advantages of batched means.

• A worm algorithm permits odd winding numbers and has an elegant theory.
However, it has a stopping-time problem.

• Finite-size scaling details.

• Mean length of longest cycle as a fraction of the number of sites in long cycles
recovers work of Shepp and Lloyd (1966) for non-spatial uniform permutations.

For the future (postdoctoral):

• Use varying (annealed) point positions on the continuum. This samples from the
true point distribution.

• Replace cycle-weight interactions in the Hamiltonian with those derived from the
true Bose-gas model. Analytical as well as simulational work is needed in order to
make this computationally tractable.

J. Kerl (Arizona) MCMC methods for random spatial permutations March 27, 2010 10 / 11



For more information, please visit http://math.arizona.edu/~kerl.

Thank you for attending!
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