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ABSTRACT

CRITICAL BEHAVIOR FOR THE MODEL
OF RANDOM SPATIAL PERMUTATIONS

John Kerl, Ph.D.
The University of Arizona, March 25, 2010

Director: Tom Kennedy

We elaborate on a model of random spatial permutations, wherein permutations
are weighted according to point positions. This model originates in a study of the
interacting Bose gas; the low-temperature-dependent onset of the appearance of arbi-
trarily long cycles is connected to the phase transition of Bose-Einstein condensates.
For our work, we consider a simplified model with point positions held fixed on the
cubic lattice, with interactions expressed as Ewens-type weights on cycle lengths of
permutations. The critical temperature of the transition to long cycles depends on an
interaction-strength parameter a. For weak interactions, the shift in critical temper-
ature is expected to be linear in o with constant of linearity c¢. Using Markov chain
Monte Carlo methods, we find ¢ = 0.618 0.086. This finding matches a similar ana-
lytical result of Ueltschi and Betz. We also examine the mean longest cycle length as
a fraction of the number of sites in long cycles, recovering an earlier result of Shepp
and Lloyd for non-spatial permutations. The plan of this paper is as follows. We
begin with a non-technical discussion of the historical context of the project, along
with a mention of alternative approaches. Relevant previous works are cited, thus an-
notating the bibliography. The random-cycle approach to the BEC problem requires
a model of spatial permutations. This model it is of its own probabilistic interest; it
is developed mathematically, without reference to the Bose gas. Markov-chain Monte
Carlo algorithms for sampling from the random-cycle distribution — the swap-only,
swap-and-reverse, band-update, and worm algorithms — are presented, compared,
and contrasted. Finite-size scaling techniques are used to obtain information about
infinite-volume quantities from finite-volume computational data.
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