1. Which of the following tables determine y as a function of x? (Hint: Please be very careful! This is a tricky question.)

(1)	x	y
	5	2
	6	4
	8	4
	9	5

- $\begin{array}{c|cccc}
 & x & y \\
 \hline
 & 2 & 9 \\
 & 3 & 5 \\
 \hline
 & 4 & 3 \\
 & 3 & 5 \\
 \hline
 \end{array}$

- (A) All of them
- (\overline{B}) 1 and 2 only
- (C) 2 only

- (D) 1 and 2 only
- (E) 2 and 3 only

- 2. Which of the following has a domain of all real numbers except 8?
 - (1) $g(x) = \frac{2x}{x-8}$
- (2) $f(x) = \sqrt{x-8}$
- (3) $h(x) = \frac{1}{x^2 64}$

- (A) 1 only
- (B) 2 and 3 only
- (C) 2 only
- (D) 1 and 2 only (E) All of them

- 3. What is the average rate of change for the function $f(x) = 2x^2 + 3$ on the interval [-1,4]? (Hint: Use difference quotients.)
 - (A) 8
- (B) -8
- (C) -6

- (D) 6
- (E) None of these

4. Which of the following have a range of $[0, \infty)$?

(A)
$$f(x) = \begin{cases} -x^2 & \text{for } x < 1\\ 1/2 & \text{for } x \ge 1 \end{cases}$$
 (B) $f(x) = \begin{cases} 1/2 & \text{for } x > 1\\ |x| & \text{for } x < 1 \end{cases}$ (C) $f(x) = \begin{cases} -|x| & \text{for } x < 1\\ 1/2 & \text{for } x \ge 1 \end{cases}$ (D) $f(x) = \begin{cases} 1/2 & \text{for } x > 1\\ |x| & \text{for } x < 1\\ -|x| & \text{for } x < 1 \end{cases}$