## Exam \#2 solutions • Thursday, March 1, 2007

## MATH $124 \cdot$ Calculus I • Section $8 \cdot$ Spring 2007

Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation, except for parts 2c, 2d, and $8 b$ which specifically ask for verbal responses.
John Kerl (kerl at math dot arizona dot edu).
Problem 1. Let $f(x)=x^{x}$. Numerically approximate $f^{\prime}(2)$ using difference quotients. Use at least three successively smaller values of $h$.
Solution: The approximation is $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$. We have $x=2$ throughout, $f(x)=x^{x}$, and $f(x+h)=(x+h)^{x+h}$. With $h=0.01$ :

$$
\frac{f(x+h)-f(x)}{h}=\frac{2.01^{2.01}-2^{2}}{0.01} \approx 6.840
$$

With $h=0.001$ :

$$
\frac{f(x+h)-f(x)}{h}=\frac{2.001^{2.001}-2^{2}}{0.001} \approx 6.779
$$

With $h=0.0001$ :

$$
\frac{f(x+h)-f(x)}{h}=\frac{2.0001^{2.0001}-2^{2}}{0.0001} \approx 6.773
$$

It looks like about 6.77.
Problem 2. On a mountain-climbing expedition, you find that the air becomes cooler as you climb. Let $y$ be your altitude above sea level, measured in feet; let $H$ be the air temperature in degrees Fahrenheit.

Part (a). What are the units of $H^{\prime}(y)$ ?
Solution: The notation tells you that $H$ is a function of $y$. The input units of $H(y)$ are the units of $y$, which are feet. The output units of $H(y)$ are the units of $H$, which are degrees Fahrenheit. The units of the derivative $H^{\prime}(y)$ are the original function's output units over the original functions input units, namely, degrees Fahrenheit per foot.

Part (b). What is the sign of $H^{\prime}(y)$ ?
Solution: The air temperature is getting cooler (decreasing number of degrees) as you climb (increasing number of feet). So, the sign must be negative.

Part (c). Give a practical interpretation of $H^{-1}(35)$.
Solution: A function sends inputs (here, feet) to outputs (here, degrees Fahrenheit); the inverse function sends the original function's outputs (degrees) back to the original function's inputs (feet). So, 35 must be degrees Fahrenheit. Then $H^{-1}(35)$ must be the altitude at which the temperature is $35^{\circ} \mathrm{F}$.

Part (d). Give a practical interpretation of $H^{\prime}(7500)$.
Solution: The derivative $H^{\prime}(y)$ is the rate of change in temperature as a function of altitude. At altitude 7500 feet, the temperature is dropping by this many degrees per additional foot of altitude.

Problem 3. In a lab experiment, you have microorganisms growing in a Petri dish. The number $m$ of microrganisms, in millions, is a function of time $t$ in days since the start of the experiment. This number is given by

$$
m(t)=4.1 e^{0.24 t}
$$

Find the rate of change in population on day 5 of the experiment. In your answer, please show units.

Solution: The derivative $m^{\prime}(t)$ is $0.24 \cdot 4.1 e^{0.24 t}$, using the chain and exponential rules. Evaluating at $t=5$ gives

$$
m^{\prime}(5)=0.24 \cdot 4.1 e^{0.24 \cdot 5}=0.984 e^{1.2} \approx 3.267 \text { million microorganisms per day }
$$

Problem 4. Let $G(t)=2^{-r t} \sin (a t)$. Find $G^{\prime}(t)$.
Solution: Using the product and chain rules, we have

$$
G^{\prime}(t)=-r \ln (2) 2^{-r t} \sin (a t)+a 2^{-r t} \cos (a t)
$$

Problem 5. Let $f(z)=\tan ^{-1}(z)$. Compute $f^{\prime \prime}(1)$.
Solution: The first derivative is

$$
f^{\prime}(z)=\frac{1}{1+z^{2}}
$$

For the second derivative, you can use the quotient rule, or you can use the exponential and chain rules since we can write $f^{\prime}(z)=\left(1+z^{2}\right)^{-1}$. Either way, you should get

$$
f^{\prime \prime}(z)=\frac{-2 z}{\left(1+z^{2}\right)^{2}}
$$

Evaluating at $z=1$ gives

$$
f^{\prime \prime}(1)=\frac{-2}{\left(1+1^{2}\right)^{2}}=\frac{-1}{2}
$$

Problem 6. Let $q(x)=\ln \left(2+2 x+x^{2}\right)$.

Part (a). Find $q^{\prime}(x)$.
Solution: Using the log and chain rules, we have

$$
q^{\prime}(x)=\frac{2+2 x}{2+2 x+x^{2}}
$$

Part (b). Find an equation for the tangent line to $q(x)$ at $x=3$.
Solution: As usual, use point-slope form at the specified point. The horizontal coordinate of the point is $x_{0}=3$; the vertical coordinate of the point is

$$
y_{0}=q(3)=\ln (2+6+9)=\ln (17) .
$$

The slope is

$$
m=q^{\prime}(3)=\frac{2+6}{2+6+9}=\frac{8}{17}
$$

Putting these together we have

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=\ln (17)+\frac{8}{17}(x-3)
\end{aligned}
$$

As a sanity check, you can graph the original function and the tangent line. You should see


Problem 7. Let $F(t)$ and $G(t)$ be given by the following graphs.



Part (a). Find $G^{\prime}(40)$.
Solution: This is undefined: $G$ has a corner at $t=40$.
Part (b). Let $H(t)=\frac{F(t)}{G(t)}$. Find $H^{\prime}(50)$.
Solution: Using the quotient rule, we have

$$
H^{\prime}(t)=\frac{F^{\prime}(t) G(t)-F(t) G^{\prime}(t)}{G(t)^{2}} .
$$

At $t=50$, this is

$$
H^{\prime}(50)=\frac{F^{\prime}(50) G(50)-F(50) G^{\prime}(50)}{G(50)^{2}} .
$$

We can read all these values off the graph:

$$
F(50)=40, \quad F^{\prime}(50)=2, \quad G(50)=40, \quad G^{\prime}(50)=0 .
$$

Then

$$
H^{\prime}(50)=\frac{2 \cdot 40-40 \cdot 0}{40^{2}}=\frac{80}{1600}=0.05 .
$$

Part (c). Let $H(t)=F(G(t))$. Find $H^{\prime}(30)$.
Solution: Using the chain rule, we have

$$
H^{\prime}(t)=F^{\prime}(G(t)) G^{\prime}(t) .
$$

We can read all the necessary values off the graph:

$$
G(30)=50, \quad F^{\prime}(50)=2, \quad G^{\prime}(30)=-1 .
$$

Then

$$
H^{\prime}(30)=F^{\prime}(G(30)) G^{\prime}(30)=2 \cdot(-1)=-2 .
$$

Problem 8. Let

$$
f(x)= \begin{cases}\sin (x), & x \geq 0 \\ x-x^{3}, & x \leq 0\end{cases}
$$

Part (a). Find $f^{\prime}(x)$. Write it as a piecewise function.
Solution: Differentiating the pieces, we have

$$
f^{\prime}(x)= \begin{cases}\cos (x), & x \geq 0 \\ 1-3 x^{2}, & x \leq 0\end{cases}
$$

Part (b). Is the original function $f(x)$ differentiable at $x=0$ ? Why or why not? (Hint: graph it.) Solution: Graphing the function, you should see


The slopes match up at $x=0$ so $f^{\prime}(x)$ is defined there.
Problem 9. When is $g(x)=x^{3}+b x^{2}+c x+d$ concave up? Assume $b, c, d$ are constants. (You will need to solve an inequality.)
Solution: A function is concave up when $g^{\prime \prime}(x)>0$. Computing this, we have

$$
\begin{aligned}
g(x) & =x^{3}+b x^{2}+c x+d \\
g^{\prime}(x) & =3 x^{2}+2 b x+c \\
g^{\prime \prime}(x) & =6 x+2 b \\
g^{\prime \prime}(x) & >0 \\
6 x+2 b & >0 \\
6 x & >-2 b \\
x & >\frac{-b}{3} .
\end{aligned}
$$

