Exam \#4 solutions • Thursday, April 26, 2007

MATH $124 \cdot$ Calculus I \cdot Section $8 \cdot$ Spring 2007

Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation, unless a problem specifically requests a verbal response.
John Kerl (kerl at math dot arizona dot edu).
Problem 1. Let

$$
\begin{aligned}
& x(t)=3 t^{2}-6 t \\
& y(t)=\frac{4}{3} t^{3}-4 t
\end{aligned}
$$

Part (a). Find the time(s) t, if any, when the particle comes to a stop.
Solution: We need to find when $d x / d t$ and $d y / d t$ are both zero. We have

$$
\begin{aligned}
d x / d t & =6 t-6 \\
d y / d t & =4 t^{2}-4
\end{aligned}
$$

The former is zero when $t=1$; the latter is zero when $t= \pm 1$. They are simultaneously zero only at $t=1$.

Part (b). Find an equation for the tangent line to this curve at $t=3$.
Solution: Parametric equations for a line through a point $\left(x_{0}, y_{0}\right)$ in the direction a, b are

$$
\begin{aligned}
x & =x_{0}+a t \\
y & =y_{0}+b t
\end{aligned}
$$

The point $\left(x_{0}, y_{0}\right)$ is found by plugging $t=3$ into the original equations:

$$
\begin{aligned}
x_{0} & =3 \cdot 3^{2}-6 \cdot 3=9 \\
y_{0} & =\frac{4}{3} 3^{3}-4 \cdot 3=24
\end{aligned}
$$

The a and b are $d x /\left.d t\right|_{t=3}$ and $d y /\left.d t\right|_{t=3}:$

$$
\begin{aligned}
a & =\left.\frac{d x}{d t}\right|_{t=3}=6 \cdot 3-6=12 \\
b & =\left.\frac{d y}{d t}\right|_{t=3}=4 \cdot 3^{2}-4=32
\end{aligned}
$$

So, the tangent line has equations

$$
\begin{aligned}
& x=9+12 t \\
& y=24+32 t .
\end{aligned}
$$

Problem 2. The function $H(t)$ describes the growth rate in thousands per month of flour beetles in a jar, where t is measured in months since the start of the year.

Part (a). What are the units of $\int_{4}^{7} H(t) d t$?
Solution: The units of an integral are the units of the integrand times the units of the dependent variable. Since $H(t)$ is thousands of beetles per month and t is months, the units of the integral are thousands of beetles.

Part (b). Give a practical interpretation of $\int_{4}^{7} H(t) d t$.
Solution: This is the population change between month 4 and month 7.

Problem 3. The air pressure within a chamber is given by

$$
P(t)=2.1+0.4 t^{0.5}
$$

where P is in units called atmospheres and t is measured in hours. Find the average pressure over the time between $t=2$ hours and $t=5$ hours.

Solution: Compute

$$
\frac{\int_{2}^{5} P(t)}{5-2}=\frac{\int_{2}^{5}\left(2.1+0.4 t^{0.5}\right)}{5-2}
$$

The integral is

$$
2.1 t+\left.\frac{0.4 t^{1.5}}{1.5}\right|_{2} ^{5}=\left(10.5+\frac{0.4 \cdot 5^{1.5}}{1.5}\right)-\left(4.2+\frac{0.4 \cdot 2^{1.5}}{1.5}\right) \approx 8.53
$$

Then the average value is

$$
8.53 / 3 \approx 2.84
$$

Note that if you graph $P(t)$ from 2 to 5 , you'll see that it rises slowly from $P(2) \approx 2.7$ to $P(5) \approx 3.0$. Thus, an average of 2.84 is reasonable.

Problem 4. Find the exact area between $f(x)=e^{x}-2$ and $g(x)=-1$ on the interval $[2,4]$.
Solution: The area between $f(x)$ and $g(x)$ from 2 to 4 is $\int_{2}^{4}(f(x)-g(x)) d x$ so we can compute

$$
\begin{aligned}
\int_{2}^{4}\left(e^{x}-2-(-1)\right) d x & =\int_{2}^{4}\left(e^{x}-1\right) d x \\
& =e^{x}-\left.x\right|_{2} ^{4} \\
& =\left(e^{4}-4\right)-\left(e^{2}-2\right) \\
& =e^{4}-e^{2}-2
\end{aligned}
$$

Problem 5. Find the general antiderivative:

$$
\int\left(\frac{y^{2.1}}{3}-\frac{7}{y}+0.2 A e^{y}+B\right) d y
$$

Solution:

$$
\frac{y^{3.1}}{9.3}-7 \ln (|y|)+0.2 A e^{y}+B y+C
$$

Problem 6. Let $g^{\prime}(x)$ be given by the following graph, and suppose $g(0)=2$:

Part (a). What are the x-coordinates of the critical points of $g(x)$?
Solution: Critical points of $g(x)$ occur when $g^{\prime}(x)$ is zero (or undefined). From the graph we see $g^{\prime}(x)=0$ at $x=0,2,4$.

Part (b). What are the x-coordinates of the inflection points of $g(x)$?
Solution: Inflection points of $g(x)$ occur at extrema of $g^{\prime}(x)$. These are at $x=1,3$.
Part (c). Find the values of $g(x)$ at the critical and inflection points.
Solution: We are given $g(0)=2$, and we are given $g^{\prime}(x)$ in graphical format. This suggests the fundamental theorem of calculus, one landmark at a time. By "landmark" I mean a critical or inflection point.

$$
\begin{aligned}
g(1) & =g(0)+\int_{0}^{1} g^{\prime}(x) d x=2+10=12 \\
g(2) & =g(1)+\int_{2}^{1} g^{\prime}(x) d x=12+10=22 \\
g(3) & =g(2)+\int_{3}^{2} g^{\prime}(x) d x=22-5=17 \\
g(4) & =g(3)+\int_{4}^{3} g^{\prime}(x) d x=17-5=12
\end{aligned}
$$

Part (d). Sketch a graph of $g(x)$. Label critical points and inflection points of $g(x)$.
Solution: Using the above information we can plot the critical points $(0,2),(2,22)$, and $(4,12)$, along with the inflection points $(1,12)$ and $(3,17)$. Then we can connect the dots as follows:

- Since $g^{\prime}(x)$ is positive on $(0,2), g(x)$ is increasing there.
- Since $g^{\prime}(x)$ is negative on $(2,4), g(x)$ is decreasing there.
- Since $g^{\prime}(x)$ increases on $(0,1)$ and $(3,4), g(x)$ is concave up there.
- Since $g^{\prime}(x)$ decreases on $(1,2)$ and $(2,3), g(x)$ is concave down there.
(The sketch is on the next page.)

Here is a sketch:

Problem 7. The quantity A varies with time as specified by

$$
\frac{d A}{d t}=7.3 \cos (t)-0.04
$$

Part (a). Write down a general solution for A.
Solution: The general antiderivative is

$$
7.3 \sin (t)-0.04 t+C
$$

Part (b). Given that $A(0)=2.1$, write down a specific solution for A.
Solution: Using the initial condition, we have

$$
2.1=7.3 \sin (0)-0.04 \cdot 0+C=C
$$

So, the solution is

$$
7.3 \sin (t)-0.04 t+2.1
$$

Problem 8.

Part (a). Let

$$
G(x)=\int_{1}^{x} e^{t^{2}} d t
$$

Determine (with justification) whether $G(x)$ is increasing, decreasing, or constant.
Solution: A function is increasing, decreasing, or constant when its derivative is positive, negative, or zero, respectively. The derivative is

$$
G^{\prime}(x)=\frac{d}{d x} \int_{1}^{x} e^{t^{2}} d t=e^{x^{2}}
$$

using the second fundamental theorem of calculus. The output of exponential functions is always positive, so this function is increasing everywhere.
Here is another solution, which a student came up with: $e^{t^{2}}$ is always positive, so as the right endpoint of the integral slides rightward from 1, only positive areas are added. Thus, the integral function is increasing.

Part (b). Now let

$$
G(x)=\int_{1}^{a x+b} e^{t^{2}} d t
$$

Find $G^{\prime}(x)$.
Solution: Using the second fundamental theorem and the chain rule, we evaluate the integrand at the right endpoint (upper limit), times the derivative of the right endpoint. This is

$$
G^{\prime}(x)=a e^{(a x+b)^{2}}
$$

