-Homework 2-

#35 Determine the zeroes of $D(x) = x^2 - 8x + 5$. (Hint: Use the quadratic formula.) #36 Determine the zeroes of $B(y) = y^2 + 2y - 5$. (Hint: Use the quadratic formula.) #39 Determine the zeroes of $R(t) = \sqrt{16 - t^2}$. #40 Determine the zeroes of $R(x) = \frac{3}{4}\sqrt{x^2 - 12}$.

#44 A ball is thrown upward from an initial height of h_0 feet with an initial velocity of v_0 feet per second. Its height (in feet) above ground level, t seconds after it is thrown, is given by the function

$$h(t) = -16t^2 + v_0t + h_0$$

Suppose that a ball is thrown upward from a tower such that $v_0 = 64$ and $h_0 = 24$.

(a) How high was the ball after 3 seconds?

(b) When did the ball hit the ground (to the nearest 0.01 second)?

(c) Compute

$$\frac{h(2) - h(0)}{2}$$

What is the significance of this number?

#45 A ball is dropped from the top of the Empire State Building (1250 feet tall) in New York City. Its height t seconds after it is dropped is given by $h(t) = 1250t - 16t^2$. After t_0 seconds, it hits the ground.

(a) What is the value of t_0 (to the nearest 0.01 second)?

(b) Compute

$$\frac{h(t_0) - h(0)}{t_0}$$
 and $\frac{h(t_0) - h(t_0 - 1)}{1}$.

Suppose that you were standing on the ground, waiting to catch the dropped ball. Which of these two numbers would be most important to you?

In exercises 46-49, a table of values has been generated with function f of the form f(x) = nx, f(x) = n/x, $f(x) = x^n$, or $f(x) = n^x$ (*n* is constant). Determine f for each table.

—Homework 2—

#35 Determine the zeroes of $D(x) = x^2 - 8x + 5$. (Hint: Use the quadratic formula.)

#36 Determine the zeroes of $B(y) = y^2 + 2y - 5$. (Hint: Use the quadratic formula.)

#39 Determine the zeroes of $R(t) = \sqrt{16 - t^2}$.

#40 Determine the zeroes of $R(x) = \frac{3}{4}\sqrt{x^2 - 12}$.

#44 A ball is thrown upward from an initial height of h_0 feet with an initial velocity of v_0 feet per second. Its height (in feet) above ground level, t seconds after it is thrown, is given by the function

$$h(t) = -16t^2 + v_0t + h_0.$$

Suppose that a ball is thrown upward from a tower such that $v_0 = 64$ and $h_0 = 24$.

(a) How high was the ball after 3 seconds?

(b) When did the ball hit the ground (to the nearest 0.01 second)?

(c) Compute

$$\frac{h(2)-h(0)}{2}.$$

What is the significance of this number?

#45 A ball is dropped from the top of the Empire State Building (1250 feet tall) in New York City. Its height t seconds after it is dropped is given by $h(t) = 1250t - 16t^2$. After t_0 seconds, it hits the ground.

(a) What is the value of t_0 (to the nearest 0.01 second)?

$$\frac{h(t_0) - h(0)}{t_0}$$
 and $\frac{h(t_0) - h(t_0 - 1)}{1}$.

Suppose that you were standing on the ground, waiting to catch the dropped ball. Which of these two numbers would be most important to you?

In exercises 46-49, a table of values has been generated with function f of the form f(x) = nx, f(x) = n/x, $f(x) = x^n$, or $f(x) = n^x$ (*n* is constant). Determine f for each table.

#48	x	0	1	2	3	5	#49	x	4	6	10	12	16
	f(x)	1	3	9	27	243		f(x)	6	9	15	18	24