Exam #4 · Thursday, April 26, 2007

MATH 124 \cdot Calculus I \cdot Section 8 \cdot Spring 2007

Name _____

Problem 1. Let

$$\begin{aligned} x(t) &= 3t^2 - 6t \\ y(t) &= \frac{4}{3}t^3 - 4t. \end{aligned}$$

Part (a). Find the time(s) t, if any, when the particle comes to a stop.

Part (b). Find an equation for the tangent line to this curve at t = 3.

Problem 2. The function H(t) describes the growth rate in thousands per month of flour beetles in a jar, where t is measured in months since the start of the year.

Part (a). What are the units of $\int_4^7 H(t) dt$?

Part (b). Give a practical interpretation of $\int_4^7 H(t) dt$.

Problem 3. The air pressure within a chamber is given by

$$P(t) = 2.1 + 0.4t^{0.5}$$

where P is in units called atmospheres and t is measured in hours. Find the average pressure over the time between t = 2 hours and t = 5 hours.

Problem 4. Find the exact area between $f(x) = e^x - 2$ and g(x) = -1 on the interval [2,4].

Problem 5. Find the general antiderivative:

$$\int \left(\frac{y^{2.1}}{3} - \frac{7}{y} + 0.2Ae^y + B\right) \, dy.$$

Problem 6. Let g'(x) be given by the following graph, and suppose g(0) = 2:

Part (a). What are the x-coordinates of the critical points of g(x)?

Part (b). What are the x-coordinates of the inflection points of g(x)?

Part (c). Find the values of g(x) at the critical and inflection points.

Part (d). Sketch a graph of g(x). Label critical points and inflection points of g(x).

Problem 7. The quantity A varies with time as specified by

$$\frac{dA}{dt} = 7.3\cos(t) - 0.04.$$

Part (a). Write down a general solution for A.

Part (b). Given that A(0) = 2.1, write down a specific solution for A.

Problem 8. Part (a). Let

$$G(x) = \int_{1}^{x} e^{t^2} dt.$$

Determine (with justification) whether G(x) is increasing, decreasing, or constant.

Part (b). Now let

$$G(x) = \int_1^{ax+b} e^{t^2} dt.$$

Find G'(x).