File formats

Examples

$ mlr --usage-data-format-examples
  DKVP: delimited key-value pairs (Miller default format)
  +---------------------+
  | apple=1,bat=2,cog=3 |  Record 1: "apple" => "1", "bat" => "2", "cog" => "3"
  | dish=7,egg=8,flint  |  Record 2: "dish" => "7", "egg" => "8", "3" => "flint"
  +---------------------+

  NIDX: implicitly numerically indexed (Unix-toolkit style)
  +---------------------+
  | the quick brown     | Record 1: "1" => "the", "2" => "quick", "3" => "brown"
  | fox jumped          | Record 2: "1" => "fox", "2" => "jumped"
  +---------------------+

  CSV/CSV-lite: comma-separated values with separate header line
  +---------------------+
  | apple,bat,cog       |
  | 1,2,3               | Record 1: "apple => "1", "bat" => "2", "cog" => "3"
  | 4,5,6               | Record 2: "apple" => "4", "bat" => "5", "cog" => "6"
  +---------------------+

  PPRINT: pretty-printed tabular
  +---------------------+
  | apple bat cog       |
  | 1     2   3         | Record 1: "apple => "1", "bat" => "2", "cog" => "3"
  | 4     5   6         | Record 2: "apple" => "4", "bat" => "5", "cog" => "6"
  +---------------------+

  XTAB: pretty-printed transposed tabular
  +---------------------+
  | apple 1             | Record 1: "apple" => "1", "bat" => "2", "cog" => "3"
  | bat   2             |
  | cog   3             |
  |                     |
  | dish 7              | Record 2: "dish" => "7", "egg" => "8"
  | egg  8              |
  +---------------------+

DKVP: Key-value pairs

Miller’s default file format is DKVP, for delimited key-value pairs. Example:

$ mlr cat data/small
a=pan,b=pan,i=1,x=0.3467901443380824,y=0.7268028627434533
a=eks,b=pan,i=2,x=0.7586799647899636,y=0.5221511083334797
a=wye,b=wye,i=3,x=0.20460330576630303,y=0.33831852551664776
a=eks,b=wye,i=4,x=0.38139939387114097,y=0.13418874328430463
a=wye,b=pan,i=5,x=0.5732889198020006,y=0.8636244699032729

Such data are easy to generate, e.g. in Ruby with

puts "host=#{hostname},seconds=#{t2-t1},message=#{msg}"

puts mymap.collect{|k,v| "#{k}=#{v}"}.join(',')

or print statements in various languages, e.g.

echo "type=3,user=$USER,date=$date\n";

logger.log("type=3,user=$USER,date=$date\n");

Fields lacking an IPS will have positional index (starting at 1) used as the key, as in NIDX format. For example, dish=7,egg=8,flint is parsed as "dish" => "7", "egg" => "8", "3" => "flint" and dish,egg,flint is parsed as "1" => "dish", "2" => "egg", "3" => "flint".

As discussed in Record-heterogeneity, Miller handles changes of field names within the same data stream. But using DKVP format this is particularly natural. One of my favorite use-cases for Miller is in application/server logs, where I log all sorts of lines such as

resource=/path/to/file,loadsec=0.45,ok=true
record_count=100, resource=/path/to/file
resource=/some/other/path,loadsec=0.97,ok=false

etc. and I just log them as needed. Then later, I can use grep, mlr --opprint group-like, etc. to analyze my logs.

See Reference regarding how to specify separators other than the default equals-sign and comma.

NIDX: Index-numbered (toolkit style)

With --inidx --ifs ' ' --repifs, Miller splits lines on whitespace and assigns integer field names starting with 1. This recapitulates Unix-toolkit behavior.

Example with index-numbered output:

$ cat data/small
a=pan,b=pan,i=1,x=0.3467901443380824,y=0.7268028627434533
a=eks,b=pan,i=2,x=0.7586799647899636,y=0.5221511083334797
a=wye,b=wye,i=3,x=0.20460330576630303,y=0.33831852551664776
a=eks,b=wye,i=4,x=0.38139939387114097,y=0.13418874328430463
a=wye,b=pan,i=5,x=0.5732889198020006,y=0.8636244699032729

$ mlr --onidx --ofs ' ' cat data/small
pan pan 1 0.3467901443380824 0.7268028627434533
eks pan 2 0.7586799647899636 0.5221511083334797
wye wye 3 0.20460330576630303 0.33831852551664776
eks wye 4 0.38139939387114097 0.13418874328430463
wye pan 5 0.5732889198020006 0.8636244699032729

Example with index-numbered input:

$ cat data/mydata.txt
oh say can you see
by the dawn's
early light

$ mlr --inidx --ifs ' ' --odkvp cat data/mydata.txt
1=oh,2=say,3=can,4=you,5=see
1=by,2=the,3=dawn's
1=early,2=light

Example with index-numbered input and output:

$ cat data/mydata.txt
oh say can you see
by the dawn's
early light

$ mlr --nidx --fs ' ' --repifs cut -f 2,3 data/mydata.txt
say can
the dawn's
light

CSV/TSV/etc.

When mlr is invoked with the --csv or --csvlite option, key names are found on the first record and values are taken from subsequent records. This includes the case of CSV-formatted files. See
Record-heterogeneity for how Miller handles changes of field names within a single data stream.

Miller has record separator RS and field separator FS, just as awk does. For TSV, use --fs tab; to convert TSV to CSV, use --ifs tab --ofs comma, etc. (See also Reference.)

Miller’s --csv flag supports RFC-4180 CSV ( https://tools.ietf.org/html/rfc4180). This includes CRLF line-terminators by default, regardless of platform.

Please use mlr --csv --rs lf for native Un*x (linefeed-terminated) CSV files.

The RFC says, somewhat briefly, that “there may be a header line”. Miller’s --implicit-csv-header option allows you to read CSV data which lacks a header line, applying column labels 1, 2, 3, etc. for you. You may also use Miller’s label to replace those numerical column names with labels of your choosing.

Here are the differences between CSV and CSV-lite:

  • CSV supports RFC-4180)-style double-quoting, including the ability to have commas and/or CR-LF line-endings contained within an input field; CSV-lite does not.
  • Default record separator for CSV is CR-LF; default record separator for CSV-lite is LF.
  • CSV does not allow heterogeneous data; CSV-lite does (see also here).
  • The CSV-lite input-reading code is more efficient than the CSV input-reader.

Here are things they have in common:

  • The ability to specify record/field separators other than the default, e.g. CR-LF vs. LF, or tab instead of comma for TSV, and so on.
  • The --implicit-csv-header flag for input and the --headerless-csv-output flag for output.

PPRINT: Pretty-printed tabular

Miller’s pretty-print format is like CSV, but column-aligned. For example, compare

$ mlr --ocsv cat data/small
a,b,i,x,y
pan,pan,1,0.3467901443380824,0.7268028627434533
eks,pan,2,0.7586799647899636,0.5221511083334797
wye,wye,3,0.20460330576630303,0.33831852551664776
eks,wye,4,0.38139939387114097,0.13418874328430463
wye,pan,5,0.5732889198020006,0.8636244699032729

$ mlr --opprint cat data/small
a   b   i x                   y
pan pan 1 0.3467901443380824  0.7268028627434533
eks pan 2 0.7586799647899636  0.5221511083334797
wye wye 3 0.20460330576630303 0.33831852551664776
eks wye 4 0.38139939387114097 0.13418874328430463
wye pan 5 0.5732889198020006  0.8636244699032729

Note that while Miller is a line-at-a-time processor and retains input lines in memory only where necessary (e.g. for sort), pretty-print output requires it to accumulate all input lines (so that it can compute maximum column widths) before producing any output. This has two consequences: (a) pretty-print output won’t work on tail -f contexts, where Miller will be waiting for an end-of-file marker which never arrives; (b) pretty-print output for large files is constrained by available machine memory.

See Record-heterogeneity for how Miller handles changes of field names within a single data stream.

XTAB: Vertical tabular

This is perhaps most useful for looking a very wide and/or multi-column data which causes line-wraps on the screen (but see also https://github.com/twosigma/ngrid for an entirely different, very powerful option). Namely:

$ grep -v '^#' /etc/passwd | head -n 6 | mlr --nidx --fs : --opprint cat
1          2 3  4  5                          6               7
nobody     * -2 -2 Unprivileged User          /var/empty      /usr/bin/false
root       * 0  0  System Administrator       /var/root       /bin/sh
daemon     * 1  1  System Services            /var/root       /usr/bin/false
_uucp      * 4  4  Unix to Unix Copy Protocol /var/spool/uucp /usr/sbin/uucico
_taskgated * 13 13 Task Gate Daemon           /var/empty      /usr/bin/false
_networkd  * 24 24 Network Services           /var/networkd   /usr/bin/false

$ grep -v '^#' /etc/passwd | head -n 2 | mlr --nidx --fs : --oxtab cat
1 nobody
2 *
3 -2
4 -2
5 Unprivileged User
6 /var/empty
7 /usr/bin/false

1 root
2 *
3 0
4 0
5 System Administrator
6 /var/root
7 /bin/sh